This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
max_words, batch_size, maxlen, epochs = 10000, 125, 500, 5 | |
# Determine the number of categories + default(i.e. sentence types) | |
num_classes = np.max(y_train) + 1 | |
# Vectorize the output sentence type classifcations to Keras readable format | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
# Pad the input vectors to ensure a consistent length | |
x_train = sequence.pad_sequences(x_train, maxlen=maxlen) | |
x_test = sequence.pad_sequences(x_test, maxlen=maxlen) | |
model = Sequential() | |
# Create Embedding (Input) Layer (max_words) --> LSTM Layer (128) | |
model.add(Embedding(max_words, 128)) | |
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2)) | |
# LSTM Layer (128) --> Output Layer (num_classes) | |
model.add(Dense(num_classes, activation='softmax')) | |
# Add optimization method, loss function and optimization value | |
model.compile(loss='categorical_crossentropy', | |
optimizer='adam', metrics=['accuracy']) | |
# "Fit the model" (train model), using training dataw (80% of dataset) | |
model.fit(x_train, y_train, batch_size=batch_size, | |
epochs=epochs, validation_data=(x_test, y_test)) | |
# Evalute the trained model, using the test data (20% of the dataset) | |
score = model.evaluate(x_test, y_test, batch_size=batch_size) | |
# Final testing accuracy, using the resevered 20% testing data | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment