Código de análise da matéria sobre campanha #AbrilPelaVida, Núcleo Jornalismo
################################################################################################### | |
# Pacotes | |
library(dplyr) | |
library(rtweet) | |
library(ggplot2) | |
################################################################################################### | |
# Busca tweets que podem conter a expressao que estamos buscando | |
hashtag_busca1 <- search_tweets("AbrilPelaVida", n = 18000, | |
retryonratelimit = T, | |
include_rts = F) | |
hashtag_busca2 <- search_tweets("abrilpelavida", n = 18000, | |
retryonratelimit = T, | |
include_rts = F) | |
hashtag_busca3 <- search_tweets("\"abril pela vida\"", n = 18000, | |
retryonratelimit = T, | |
include_rts = F) | |
hashtag_busca4 <- search_tweets("#abrilpelavida", n = 18000, | |
retryonratelimit = T, | |
include_rts = F) | |
hashtag_busca5 <- search_tweets("#AbrilPelaVida", n = 18000, | |
retryonratelimit = T, | |
include_rts = F) | |
# Identifica o n. de tweets unicos | |
status_urls <- length(unique(c(hashtag_busca1$status_url, hashtag_busca2$status_url, | |
hashtag_busca3$status_url, hashtag_busca4$status_url, | |
hashtag_busca5$status_url))) | |
# Cria a base final, eliminando as duplicacoes e criando a variavel interacoes | |
banco_final <- bind_rows(hashtag_busca1, hashtag_busca2, hashtag_busca3, | |
hashtag_busca4, hashtag_busca5) %>% | |
select(user_id, status_id, screen_name, created_at, status_url, | |
retweet_count, favorite_count, is_quote, text) %>% | |
distinct() %>% | |
mutate(interacoes = retweet_count + favorite_count) %>% | |
group_by(status_id) %>% | |
slice_max(interacoes, n = 1) %>% | |
ungroup() | |
################################################################################################### | |
# Volume total de interacoes | |
sum(banco_final$interacoes) | |
# Numero total de usuarios que fizeram tweets unicos | |
length(unique(banco_final$user_id)) | |
# N. de tweets/dia | |
tweets_dia <- banco_final %>% | |
mutate(dia = as.Date(created_at)) %>% | |
group_by(dia) %>% | |
summarise(numero = n()) %>% | |
ungroup() | |
# Volume de interacoes/dia | |
interacoes_dia <- banco_final %>% | |
mutate(dia = as.Date(created_at)) %>% | |
group_by(dia) %>% | |
summarise(interacoes_dia = sum(interacoes)) %>% | |
ungroup() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment