Skip to content

Instantly share code, notes, and snippets.

@liaden
Created July 3, 2018 16:01
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save liaden/6aa473c220eeee784f4fe62df1689f79 to your computer and use it in GitHub Desktop.
Save liaden/6aa473c220eeee784f4fe62df1689f79 to your computer and use it in GitHub Desktop.
ree gc.c
/**********************************************************************
gc.c -
$Author$
$Date$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2003 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby.h"
#include "rubysig.h"
#include "st.h"
#include "node.h"
#include "env.h"
#include "re.h"
#include <stdio.h>
#include <setjmp.h>
#include <math.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdarg.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#endif
void re_free_registers _((struct re_registers*));
void rb_io_fptr_finalize _((struct rb_io_t*));
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
#ifdef __CYGWIN__
int _setjmp(), _longjmp();
#endif
#define T_DEFERRED 0x3a
#ifndef GC_MALLOC_LIMIT
#if defined(MSDOS) || defined(__human68k__)
#define GC_MALLOC_LIMIT 200000
#else
#define GC_MALLOC_LIMIT (2000000*sizeof(VALUE))
#endif
#endif
#ifndef GC_LEVEL_MAX /*maximum # of VALUEs on 'C' stack during GC*/
#define GC_LEVEL_MAX 8000
#endif
#ifndef GC_STACK_PAD
#define GC_STACK_PAD 200 /* extra padding VALUEs for GC stack */
#endif
#define GC_STACK_MAX (GC_LEVEL_MAX+GC_STACK_PAD)
static VALUE *stack_limit, *gc_stack_limit;
static size_t malloc_increase = 0;
static size_t malloc_limit = GC_MALLOC_LIMIT;
#ifdef MBARI_API
/*
* call-seq:
* GC.limit => increase limit in bytes
*
* Get the # of bytes that may be allocated before triggering
* a mark and sweep by the garbarge collector to reclaim unused storage.
*
* <i>Only available when MBARI_API extentions are enabled at build time</i>
*/
static VALUE gc_getlimit(VALUE mod)
{
return ULONG2NUM(malloc_limit);
}
/*
* call-seq:
* GC.limit= => updated increase limit in bytes
*
* Set the # of bytes that may be allocated before triggering
* a mark and sweep by the garbarge collector to reclaim unused storage.
* Attempts to set the GC.limit= less than 0 will be ignored.
*
* GC.limit=5000000 #=> 5000000
* GC.limit #=> 5000000
* GC.limit=-50 #=> 5000000
* GC.limit=0 #=> 0 #functionally equivalent to GC.stress=true
*
* <i>Only available when MBARI_API extentions are enabled at build time</i>
*/
static VALUE gc_setlimit(VALUE mod, VALUE newLimit)
{
long limit = NUM2LONG(newLimit);
rb_secure(2);
if (limit < 0) return gc_getlimit(mod);
malloc_limit = limit;
return newLimit;
}
/*
* call-seq:
* GC.growth
*
* Get # of bytes that have been allocated since the last mark & sweep
*
* <i>Only available when MBARI_API extentions are enabled at build time</i>
*/
static VALUE gc_growth(VALUE mod)
{
return ULONG2NUM(malloc_increase);
}
/*
* call-seq:
* GC.exorcise
*
* Purge ghost references from recently freed stack space
*
* <i>Only available when MBARI_API extentions are enabled at build time</i>
*/
static VALUE gc_exorcise(VALUE mod)
{
rb_gc_wipe_stack();
return Qnil;
}
#endif /* MBARI_API */
static size_t unstressed_malloc_limit = GC_MALLOC_LIMIT;
/*
* call-seq:
* GC.stress => true or false
*
* returns current status of GC stress mode.
*
*/
static VALUE
gc_stress_get(self)
VALUE self;
{
return malloc_limit ? Qfalse : Qtrue;
}
/*
* call-seq:
* GC.stress = bool => bool
*
* updates GC stress mode.
*
* When GC.stress = true, GC is invoked for all GC opportunity:
* all memory and object allocation.
*
* Since it makes Ruby very slow, it is only for debugging.
*
*/
static VALUE
gc_stress_set(self, bool)
VALUE self, bool;
{
rb_secure(2);
if (!RTEST(bool))
malloc_limit = unstressed_malloc_limit;
else if (malloc_limit > 0) {
unstressed_malloc_limit = malloc_limit;
malloc_limit = 0;
}
return bool;
}
static void run_final();
static VALUE nomem_error;
static void garbage_collect();
NORETURN(void rb_exc_jump _((VALUE)));
static unsigned long live_objects = 0;
unsigned long rb_os_live_objects()
{ return live_objects; }
#if defined(HAVE_LONG_LONG)
static unsigned long long allocated_objects = 0;
unsigned long long rb_os_allocated_objects()
{ return allocated_objects; }
#else
static unsigned long allocated_objects = 0;
unsigned long rb_os_allocated_objects()
{ return allocated_objects; }
#endif
void
rb_memerror()
{
rb_thread_t th = rb_curr_thread;
if (!nomem_error ||
(rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(1);
}
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
rb_exc_jump(nomem_error);
}
rb_thread_raised_set(th, RAISED_NOMEMORY);
rb_exc_raise(nomem_error);
}
static long gc_allocated_size = 0;
static long gc_num_allocations = 0;
static int gc_statistics = 0;
void *
ruby_xmalloc(size)
long size;
{
void *mem;
if (size < 0) {
rb_raise(rb_eNoMemError, "negative allocation size (or too big)");
}
if (size == 0) size = 1;
if ((malloc_increase+=size) > malloc_limit) {
garbage_collect();
malloc_increase = size;
}
RUBY_CRITICAL(mem = malloc(size));
if (!mem) {
garbage_collect();
RUBY_CRITICAL(mem = malloc(size));
if (!mem) {
rb_memerror();
}
}
if (gc_statistics) {
gc_allocated_size += size;
gc_num_allocations += 1;
}
#if STACK_WIPE_SITES & 0x100
rb_gc_update_stack_extent();
#endif
return mem;
}
void *
ruby_xcalloc(n, size)
long n, size;
{
void *mem;
mem = xmalloc(n * size);
memset(mem, 0, n * size);
return mem;
}
void *
ruby_xrealloc(ptr, size)
void *ptr;
long size;
{
void *mem;
if (size < 0) {
rb_raise(rb_eArgError, "negative re-allocation size");
}
if (!ptr) return xmalloc(size);
if (size == 0) size = 1;
if ((malloc_increase+=size) > malloc_limit) {
garbage_collect();
malloc_increase = size;
}
RUBY_CRITICAL(mem = realloc(ptr, size));
if (!mem) {
garbage_collect();
RUBY_CRITICAL(mem = realloc(ptr, size));
if (!mem) {
rb_memerror();
}
}
#if STACK_WIPE_SITES & 0x200
rb_gc_update_stack_extent();
#endif
return mem;
}
void
ruby_xfree(x)
void *x;
{
if (x)
RUBY_CRITICAL(free(x));
}
#if HAVE_LONG_LONG
#define GC_TIME_TYPE LONG_LONG
#else
#define GC_TIME_TYPE long
#endif
extern int ruby_in_compile;
static int dont_gc;
static GC_TIME_TYPE gc_time = 0;
static int gc_collections = 0;
static int during_gc;
static int need_call_final = 0;
static st_table *finalizer_table = 0;
/************************************************************
* Heap and copy-on-write debugging support functions
************************************************************/
/* Compound structure, containing debugging options. */
static struct {
FILE *terminal;
/* Whether to allocate Ruby heaps by mmapping a file. This makes it easier to see how many
* bytes in heaps have been made dirty, using memory analysis tools.
*/
int alloc_heap_with_file;
/* Whether to ask the user to press Enter, before garbage collection starts.
* Can be used to check how many pages are made dirty by the garbage collector.
*/
int prompt_before_gc;
/* Whether to ask the user to press Enter before the sweep phase of the garbage
* collector starts. */
int prompt_before_sweep;
/* Whether to ask the user to press Enter after the sweep phase of the garbage
* collector starts. */
int prompt_after_sweep;
int print_sweeped_objects;
} debug_options;
#define OPTION_ENABLED(name) (getenv((name)) && *getenv((name)) && *getenv((name)) != '0')
static VALUE
rb_gc_init_debugging(VALUE self)
{
if (debug_options.terminal != NULL) {
fclose(debug_options.terminal);
debug_options.terminal = NULL;
}
if (getenv("RD_TERMINAL")) {
debug_options.terminal = fopen(getenv("RD_TERMINAL"), "a+");
if (debug_options.terminal == NULL) {
int e = errno;
fprintf(stderr, "Cannot open %s: %s (%d)\n", getenv("RD_TERMINAL"), strerror(e), e);
fflush(stderr);
}
}
debug_options.alloc_heap_with_file = OPTION_ENABLED("RD_ALLOC_HEAP_WITH_FILE");
debug_options.prompt_before_gc = OPTION_ENABLED("RD_PROMPT_BEFORE_GC");
debug_options.prompt_before_sweep = OPTION_ENABLED("RD_PROMPT_BEFORE_SWEEP");
debug_options.prompt_after_sweep = OPTION_ENABLED("RD_PROMPT_AFTER_SWEEP");
debug_options.print_sweeped_objects = OPTION_ENABLED("RD_PRINT_SWEEPED_OBJECTS");
return Qnil;
}
static void
debug_print(const char *message, ...)
{
va_list ap;
va_start(ap, message);
if (debug_options.terminal != NULL) {
vfprintf(debug_options.terminal, message, ap);
fflush(debug_options.terminal);
} else {
vfprintf(stderr, message, ap);
fflush(stderr);
}
va_end(ap);
}
#define debug_prompt(prompt) \
do { \
if (debug_options.terminal != NULL) { \
fprintf(debug_options.terminal, prompt); \
fflush(debug_options.terminal); \
getc(debug_options.terminal); \
} else { \
fprintf(stderr, prompt); \
fflush(stderr); \
getchar(); \
} \
} while (0)
/************************************
* Heap (de)allocation functions
************************************/
typedef struct {
int fd;
size_t size;
} FileHeapAllocatorMetaData;
static void *
alloc_ruby_heap_with_file(size_t size)
{
FileHeapAllocatorMetaData meta;
meta.fd = open("/dev/zero", O_RDONLY);
meta.size = size;
if (meta.fd == -1) {
return NULL;
} else {
void *memory = mmap(NULL, size + sizeof(meta), PROT_READ | PROT_WRITE,
MAP_PRIVATE, meta.fd, 0);
if (memory == NULL) {
return NULL;
} else {
memcpy(memory, &meta, sizeof(meta));
return memory + sizeof(meta);
}
}
}
static void *
alloc_ruby_heap(size_t size)
{
if (debug_options.alloc_heap_with_file) {
return alloc_ruby_heap_with_file(size);
} else {
return malloc(size);
}
}
static void
free_ruby_heap_with_file(void *heap)
{
FileHeapAllocatorMetaData *meta = (FileHeapAllocatorMetaData *)
(heap - sizeof(FileHeapAllocatorMetaData));
close(meta->fd);
munmap(heap, meta->size + sizeof(FileHeapAllocatorMetaData));
}
static void
free_ruby_heap(void *heap)
{
if (debug_options.alloc_heap_with_file) {
free_ruby_heap_with_file(heap);
} else {
free(heap);
}
}
/*******************************************************************/
/*
* call-seq:
* GC.enable => true or false
*
* Enables garbage collection, returning <code>true</code> if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable()
{
int old = dont_gc;
dont_gc = Qfalse;
return old;
}
/*
* call-seq:
* GC.disable => true or false
*
* Disables garbage collection, returning <code>true</code> if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable()
{
int old = dont_gc;
dont_gc = Qtrue;
return old;
}
/*
* call-seq:
* GC.enable_stats => true or false
*
* Enables garbage collection statistics, returning <code>true</code> if garbage
* collection statistics was already enabled.
*
* GC.enable_stats #=> false or true
* GC.enable_stats #=> true
*
*/
VALUE
rb_gc_enable_stats()
{
int old = gc_statistics;
gc_statistics = Qtrue;
return old;
}
/*
* call-seq:
* GC.disable_stats => true or false
*
* Disables garbage collection statistics, returning <code>true</code> if garbage
* collection statistics was already disabled.
*
* GC.disable_stats #=> false or true
* GC.disable_stats #=> true
*
*/
VALUE
rb_gc_disable_stats()
{
int old = gc_statistics;
gc_statistics = Qfalse;
gc_allocated_size = 0;
gc_num_allocations = 0;
return old;
}
/*
* call-seq:
* GC.clear_stats => nil
*
* Clears garbage collection statistics, returning nil. This resets the number
* of collections (GC.collections) and the time used (GC.time) to 0.
*
* GC.clear_stats #=> nil
*
*/
VALUE
rb_gc_clear_stats()
{
gc_collections = 0;
gc_time = 0;
gc_allocated_size = 0;
gc_num_allocations = 0;
return Qnil;
}
/*
* call-seq:
* GC.allocated_size => Integer
*
* Returns the size of memory (in bytes) allocated since GC statistics collection
* was enabled.
*
* GC.allocated_size #=> 35
*
*/
VALUE
rb_gc_allocated_size()
{
return INT2NUM(gc_allocated_size);
}
/*
* call-seq:
* GC.num_allocations => Integer
*
* Returns the number of memory allocations since GC statistics collection
* was enabled.
*
* GC.num_allocations #=> 150
*
*/
VALUE
rb_gc_num_allocations()
{
return INT2NUM(gc_num_allocations);
}
/*
* call-seq:
* GC.collections => Integer
*
* Returns the number of garbage collections performed while GC statistics collection
* was enabled.
*
* GC.collections #=> 35
*
*/
VALUE
rb_gc_collections()
{
return INT2NUM(gc_collections);
}
/*
* call-seq:
* GC.time => Integer
*
* Returns the time spent during garbage collection while GC statistics collection
* was enabled (in micro seconds).
*
* GC.time #=> 20000
*
*/
VALUE
rb_gc_time()
{
#if HAVE_LONG_LONG
return LL2NUM(gc_time);
#else
return LONG2NUM(gc_time);
#endif
}
VALUE rb_mGC;
static struct gc_list {
VALUE *varptr;
struct gc_list *next;
} *global_List = 0;
void
rb_gc_register_address(addr)
VALUE *addr;
{
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_List;
tmp->varptr = addr;
global_List = tmp;
}
void
rb_gc_unregister_address(addr)
VALUE *addr;
{
struct gc_list *tmp = global_List;
if (tmp->varptr == addr) {
global_List = tmp->next;
RUBY_CRITICAL(free(tmp));
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
RUBY_CRITICAL(free(t));
break;
}
tmp = tmp->next;
}
}
#undef GC_DEBUG
void
rb_global_variable(var)
VALUE *var;
{
rb_gc_register_address(var);
}
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
unsigned long flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RVarmap varmap;
struct SCOPE scope;
} as;
#ifdef GC_DEBUG
char *file;
int line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
static RVALUE *freelist = 0;
static RVALUE *deferred_final_list = 0;
static int heaps_increment = 10;
static struct heaps_slot {
void *membase;
RVALUE *slot;
int limit;
RVALUE *slotlimit;
int *marks;
int marks_size;
} *heaps;
static int heaps_length = 0;
static int heaps_used = 0;
static int heap_min_slots = 10000;
static int heap_slots = 10000;
static int heap_free_min = 4096;
static int heap_slots_increment = 10000;
static double heap_slots_growth_factor = 1.8;
static int verbose_gc_stats = Qfalse;
static FILE* gc_data_file = NULL;
static RVALUE *himem, *lomem;
#include "marktable.h"
#include "marktable.c"
#include "fastmarktable.c"
static int gc_cycles = 0;
static void set_gc_parameters()
{
char *gc_stats_ptr, *min_slots_ptr, *free_min_ptr, *heap_slots_incr_ptr,
*heap_incr_ptr, *malloc_limit_ptr, *gc_heap_file_ptr, *heap_slots_growth_factor_ptr;
gc_data_file = stderr;
gc_stats_ptr = getenv("RUBY_GC_STATS");
if (gc_stats_ptr != NULL) {
int gc_stats_i = atoi(gc_stats_ptr);
if (gc_stats_i > 0) {
verbose_gc_stats = Qtrue;
}
}
gc_heap_file_ptr = getenv("RUBY_GC_DATA_FILE");
if (gc_heap_file_ptr != NULL) {
FILE* data_file = fopen(gc_heap_file_ptr, "w");
if (data_file != NULL) {
gc_data_file = data_file;
}
else {
fprintf(stderr,
"can't open gc log file %s for writing, using default\n", gc_heap_file_ptr);
}
}
min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
if (min_slots_ptr != NULL) {
int min_slots_i = atoi(min_slots_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_HEAP_MIN_SLOTS=%s\n", min_slots_ptr);
}
if (min_slots_i > 0) {
heap_slots = min_slots_i;
heap_min_slots = min_slots_i;
}
}
free_min_ptr = getenv("RUBY_HEAP_FREE_MIN");
if (free_min_ptr != NULL) {
int free_min_i = atoi(free_min_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_HEAP_FREE_MIN=%s\n", free_min_ptr);
}
if (free_min_i > 0) {
heap_free_min = free_min_i;
}
}
heap_incr_ptr = getenv("RUBY_HEAP_INCREMENT");
if (heap_incr_ptr != NULL) {
int heap_incr_i = atoi(heap_incr_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_HEAP_INCREMENT=%s\n", heap_incr_ptr);
}
if (heap_incr_i > 0) {
heaps_increment = heap_incr_i;
}
}
heap_slots_incr_ptr = getenv("RUBY_HEAP_SLOTS_INCREMENT");
if (heap_slots_incr_ptr != NULL) {
int heap_slots_incr_i = atoi(heap_slots_incr_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_HEAP_SLOTS_INCREMENT=%s\n", heap_slots_incr_ptr);
}
if (heap_slots_incr_i > 0) {
heap_slots_increment = heap_slots_incr_i;
}
}
heap_slots_growth_factor_ptr = getenv("RUBY_HEAP_SLOTS_GROWTH_FACTOR");
if (heap_slots_growth_factor_ptr != NULL) {
double heap_slots_growth_factor_d = atof(heap_slots_growth_factor_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_HEAP_SLOTS_GROWTH_FACTOR=%s\n", heap_slots_growth_factor_ptr);
}
if (heap_slots_growth_factor_d > 0) {
heap_slots_growth_factor = heap_slots_growth_factor_d;
}
}
malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
if (malloc_limit_ptr != NULL) {
int malloc_limit_i = atol(malloc_limit_ptr);
if (verbose_gc_stats) {
fprintf(gc_data_file, "RUBY_GC_MALLOC_LIMIT=%s\n", malloc_limit_ptr);
}
if (malloc_limit_i > 0) {
malloc_limit = malloc_limit_i;
}
}
}
/*
* call-seq:
* GC.dump => nil
*
* dumps information about the current GC data structures to the GC log file
*
* GC.dump #=> nil
*
*/
VALUE
rb_gc_dump()
{
int i;
for (i = 0; i < heaps_used; i++) {
int heap_size = heaps[i].limit;
fprintf(gc_data_file, "HEAP[%2d]: size=%7d\n", i, heap_size);
}
return Qnil;
}
/*
* call-seq:
* GC.log String => String
*
* Logs string to the GC data file and returns it.
*
* GC.log "manual GC call" #=> "manual GC call"
*
*/
VALUE
rb_gc_log(self, original_str)
VALUE self, original_str;
{
if (original_str == Qnil) {
fprintf(gc_data_file, "\n");
}
else {
VALUE str = StringValue(original_str);
char *p = RSTRING(str)->ptr;
fprintf(gc_data_file, "%s\n", p);
}
return original_str;
}
static void
add_heap()
{
RVALUE *p, *pend;
if (heaps_used == heaps_length) {
/* Realloc heaps */
struct heaps_slot *p;
int length;
heaps_length += heaps_increment;
length = heaps_length*sizeof(struct heaps_slot);
RUBY_CRITICAL(
if (heaps_used > 0) {
p = (struct heaps_slot *)realloc(heaps, length);
if (p) heaps = p;
}
else {
p = heaps = (struct heaps_slot *)malloc(length);
});
if (p == 0) rb_memerror();
}
for (;;) {
RUBY_CRITICAL(p = (RVALUE*)alloc_ruby_heap(sizeof(RVALUE)*(heap_slots+1)));
if (p == 0) {
if (heap_slots == heap_min_slots) {
rb_memerror();
}
heap_slots = heap_min_slots;
continue;
}
heaps[heaps_used].membase = p;
if ((VALUE)p % sizeof(RVALUE) == 0)
heap_slots += 1;
else
p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
heaps[heaps_used].slot = p;
heaps[heaps_used].limit = heap_slots;
heaps[heaps_used].slotlimit = p + heap_slots;
heaps[heaps_used].marks_size = (int) (ceil(heap_slots / (sizeof(int) * 8.0)));
heaps[heaps_used].marks = (int *) calloc(heaps[heaps_used].marks_size, sizeof(int));
break;
}
pend = p + heap_slots;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
heaps_used++;
heap_slots += heap_slots_increment;
heap_slots_increment *= heap_slots_growth_factor;
if (heap_slots <= 0) heap_slots = heap_min_slots;
while (p < pend) {
p->as.free.flags = 0;
p->as.free.next = freelist;
freelist = p;
p++;
}
}
#define RANY(o) ((RVALUE*)(o))
int
rb_during_gc()
{
return during_gc;
}
VALUE
rb_newobj()
{
VALUE obj;
if (during_gc)
rb_bug("object allocation during garbage collection phase");
if (!malloc_limit || !freelist) garbage_collect();
obj = (VALUE)freelist;
freelist = freelist->as.free.next;
MEMZERO((void*)obj, RVALUE, 1);
#ifdef GC_DEBUG
RANY(obj)->file = ruby_sourcefile;
RANY(obj)->line = ruby_sourceline;
#endif
live_objects++;
allocated_objects++;
return obj;
}
VALUE
rb_data_object_alloc(klass, datap, dmark, dfree)
VALUE klass;
void *datap;
RUBY_DATA_FUNC dmark;
RUBY_DATA_FUNC dfree;
{
NEWOBJ(data, struct RData);
if (klass) Check_Type(klass, T_CLASS);
OBJSETUP(data, klass, T_DATA);
data->data = datap;
data->dfree = dfree;
data->dmark = dmark;
return (VALUE)data;
}
extern st_table *rb_class_tbl;
VALUE *rb_gc_stack_start = 0;
#ifdef __ia64
VALUE *rb_gc_register_stack_start = 0;
#endif
VALUE *rb_gc_stack_end = (VALUE *)STACK_GROW_DIRECTION;
#ifdef DJGPP
/* set stack size (http://www.delorie.com/djgpp/v2faq/faq15_9.html) */
unsigned int _stklen = 0x180000; /* 1.5 kB */
#endif
#if defined(DJGPP) || defined(_WIN32_WCE)
static unsigned int STACK_LEVEL_MAX = 65535;
#elif defined(__human68k__)
unsigned int _stacksize = 262144;
# define STACK_LEVEL_MAX (_stacksize - 4096)
# undef HAVE_GETRLIMIT
#elif defined(HAVE_GETRLIMIT) || defined(_WIN32)
static size_t STACK_LEVEL_MAX = 655300;
#else
# define STACK_LEVEL_MAX 655300
#endif
#ifndef nativeAllocA
/* portable way to return an approximate stack pointer */
NOINLINE(VALUE *__sp(void));
VALUE *__sp(void) {
VALUE tos;
return &tos;
}
# define SET_STACK_END VALUE stack_end
# define STACK_END (&stack_end)
#else
# define SET_STACK_END ((void)0)
# define STACK_END __sp()
#endif
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH(start) ((start) - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH(start) (STACK_END - (start) + 1)
#else
# define STACK_LENGTH(start) ((STACK_END < (start)) ? \
(start) - STACK_END : STACK_END - (start) + 1)
#endif
#if STACK_GROW_DIRECTION > 0
# define STACK_UPPER(a, b) a
#elif STACK_GROW_DIRECTION < 0
# define STACK_UPPER(a, b) b
#else
int rb_gc_stack_grow_direction;
static int
stack_grow_direction(addr)
VALUE *addr;
{
SET_STACK_END;
return rb_gc_stack_grow_direction = STACK_END > addr ? 1 : -1;
}
# define STACK_UPPER(a, b) (rb_gc_stack_grow_direction > 0 ? a : b)
#endif
size_t
ruby_stack_length(start, base)
VALUE *start, **base;
{
SET_STACK_END;
if (base) *base = STACK_UPPER(start, STACK_END);
return STACK_LENGTH(start);
}
int
ruby_stack_check()
{
SET_STACK_END;
return __stack_past(stack_limit, STACK_END);
}
/*
Zero memory that was (recently) part of the stack, but is no longer.
Invoke when stack is deep to mark its extent and when it's shallow to wipe it.
*/
#if STACK_WIPE_METHOD != 4
#if STACK_WIPE_METHOD
void rb_gc_wipe_stack(void)
{
VALUE *stack_end = rb_gc_stack_end;
VALUE *sp = __sp();
rb_gc_stack_end = sp;
#if STACK_WIPE_METHOD == 1
#warning clearing of "ghost references" from the call stack has been disabled
#elif STACK_WIPE_METHOD == 2 /* alloca ghost stack before clearing it */
if (__stack_past(sp, stack_end)) {
size_t bytes = __stack_depth((char *)stack_end, (char *)sp);
STACK_UPPER(sp = nativeAllocA(bytes), stack_end = nativeAllocA(bytes));
__stack_zero(stack_end, sp);
}
#elif STACK_WIPE_METHOD == 3 /* clear unallocated area past stack pointer */
__stack_zero(stack_end, sp); /* will crash if compiler pushes a temp. here */
#else
#error unsupported method of clearing ghost references from the stack
#endif
}
#else
#warning clearing of "ghost references" from the call stack completely disabled
#endif
#endif
#define MARK_STACK_MAX 1024
static VALUE mark_stack[MARK_STACK_MAX];
static VALUE *mark_stack_ptr;
static int mark_stack_overflow;
static void
init_mark_stack()
{
mark_stack_overflow = 0;
mark_stack_ptr = mark_stack;
}
#define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
static inline void
push_mark_stack(VALUE ptr)
{
if (!mark_stack_overflow) {
if (mark_stack_ptr - mark_stack < MARK_STACK_MAX)
*mark_stack_ptr++ = ptr;
else
mark_stack_overflow = 1;
}
}
static st_table *source_filenames;
char *
rb_source_filename(f)
const char *f;
{
st_data_t name;
if (!st_lookup(source_filenames, (st_data_t)f, &name)) {
long len = strlen(f) + 1;
char *ptr = ALLOC_N(char, len + 1);
name = (st_data_t)ptr;
*ptr++ = 0;
MEMCPY(ptr, f, char, len);
st_add_direct(source_filenames, (st_data_t)ptr, name);
return ptr;
}
return (char *)name + 1;
}
static void
mark_source_filename(f)
char *f;
{
if (f) {
rb_mark_table_add_filename(f);
}
}
static int
sweep_source_filename(key, value)
char *key, *value;
{
if (rb_mark_table_contains_filename(value + 1)) {
rb_mark_table_remove_filename(value + 1);
return ST_CONTINUE;
}
else {
rb_mark_table_remove_filename(value + 1);
free(value);
return ST_DELETE;
}
}
#define gc_mark(ptr) rb_gc_mark(ptr)
static void gc_mark_children _((VALUE ptr));
static void
gc_mark_all()
{
RVALUE *p, *pend;
struct heaps_slot *heap = heaps+heaps_used;
init_mark_stack();
while (--heap >= heaps) {
p = heap->slot; pend = p + heap->limit;
while (p < pend) {
if (rb_mark_table_heap_contains(heap, p) &&
BUILTIN_TYPE(p) != T_DEFERRED) {
gc_mark_children((VALUE)p);
}
p++;
}
}
}
static void
gc_mark_rest()
{
size_t stackLen = mark_stack_ptr - mark_stack;
#ifdef nativeAllocA
VALUE *tmp_arry = nativeAllocA(stackLen*sizeof(VALUE));
#else
VALUE tmp_arry[MARK_STACK_MAX];
#endif
VALUE *p = tmp_arry + stackLen;
MEMCPY(tmp_arry, mark_stack, VALUE, stackLen);
init_mark_stack();
while(--p >= tmp_arry) gc_mark_children(*p);
}
static inline int
is_pointer_to_heap(ptr)
void *ptr;
{
RVALUE *p = RANY(ptr);
struct heaps_slot *heap;
if (p < lomem || p > himem || (VALUE)p % sizeof(RVALUE)) return Qfalse;
/* check if p looks like a pointer */
heap = heaps+heaps_used;
while (--heap >= heaps)
if (p >= heap->slot && p < heap->slot + heap->limit)
return Qtrue;
return Qfalse;
}
static void
mark_locations_array(x, n)
VALUE *x;
size_t n;
{
VALUE v;
while (n--) {
v = *x;
if (is_pointer_to_heap((void *)v)) {
gc_mark(v);
}
x++;
}
}
inline void
rb_gc_mark_locations(start, end)
VALUE *start, *end;
{
mark_locations_array(start,end - start);
}
static int
mark_entry(key, value)
ID key;
VALUE value;
{
gc_mark(value);
return ST_CONTINUE;
}
void
rb_mark_tbl(tbl)
st_table *tbl;
{
if (!tbl) return;
st_foreach(tbl, mark_entry, 0);
}
#define mark_tbl(tbl) rb_mark_tbl(tbl)
static int
mark_key(key, value)
VALUE key, value;
{
gc_mark(key);
return ST_CONTINUE;
}
void
rb_mark_set(tbl)
st_table *tbl;
{
if (!tbl) return;
st_foreach(tbl, mark_key, 0);
}
static int
mark_keyvalue(key, value)
VALUE key;
VALUE value;
{
gc_mark(key);
gc_mark(value);
return ST_CONTINUE;
}
void
rb_mark_hash(tbl)
st_table *tbl;
{
if (!tbl) return;
st_foreach(tbl, mark_keyvalue, 0);
}
#define mark_hash(tbl) rb_mark_hash(tbl)
void
rb_gc_mark_maybe(obj)
VALUE obj;
{
if (is_pointer_to_heap((void *)obj)) {
gc_mark(obj);
}
}
void
rb_gc_mark(ptr)
VALUE ptr;
{
RVALUE *obj = RANY(ptr);
SET_STACK_END;
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
if (rb_mark_table_contains(obj)) return; /* already marked */
rb_mark_table_add(obj);
if (__stack_past(gc_stack_limit, STACK_END))
push_mark_stack(ptr);
else{
gc_mark_children(ptr);
}
}
static void
gc_mark_children(ptr)
VALUE ptr;
{
RVALUE *obj = RANY(ptr);
goto marking; /* skip */
again:
obj = RANY(ptr);
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
if (rb_mark_table_contains(obj)) return; /* already marked */
rb_mark_table_add(obj);
marking:
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(ptr);
}
switch (obj->as.basic.flags & T_MASK) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
mark_source_filename(obj->as.node.nd_file);
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_CREF:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
case NODE_CLASS:
gc_mark((VALUE)obj->as.node.u2.node);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_FBODY:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
gc_mark((VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_NEWLINE:
ptr = (VALUE)obj->as.node.u3.node;
goto again;
case NODE_WHILE: /* 1,2 */
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
case NODE_MODULE:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_ARGS:
gc_mark((VALUE)obj->as.node.u1.node);
/* fall through */
case NODE_METHOD: /* 2 */
case NODE_NOT:
case NODE_GASGN:
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_CVDECL:
case NODE_CVASGN:
case NODE_COLON3:
case NODE_OPT_N:
case NODE_EVSTR:
case NODE_UNDEF:
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_BREAK:
case NODE_NEXT:
case NODE_YIELD:
case NODE_COLON2:
case NODE_SPLAT:
case NODE_TO_ARY:
case NODE_SVALUE:
ptr = (VALUE)obj->as.node.u1.node;
goto again;
case NODE_SCOPE: /* 2,3 */
case NODE_BLOCK_PASS:
case NODE_CDECL:
gc_mark((VALUE)obj->as.node.u3.node);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_CFUNC:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_REDO:
case NODE_RETRY:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ATTRSET:
case NODE_BLOCK_ARG:
case NODE_POSTEXE:
break;
case NODE_ALLOCA:
mark_locations_array((VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
default: /* unlisted NODE */
if (is_pointer_to_heap(obj->as.node.u1.node)) {
gc_mark((VALUE)obj->as.node.u1.node);
}
if (is_pointer_to_heap(obj->as.node.u2.node)) {
gc_mark((VALUE)obj->as.node.u2.node);
}
if (is_pointer_to_heap(obj->as.node.u3.node)) {
ptr = (VALUE)obj->as.node.u3.node;
goto again;
}
}
return; /* no need to mark class. */
}
gc_mark(obj->as.basic.klass);
switch (obj->as.basic.flags & T_MASK) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
mark_tbl(obj->as.klass.m_tbl);
mark_tbl(obj->as.klass.iv_tbl);
ptr = obj->as.klass.super;
goto again;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
ptr = obj->as.array.aux.shared;
goto again;
}
else {
VALUE *ptr = obj->as.array.ptr;
VALUE *pend = ptr + obj->as.array.len;
while (ptr < pend) {
gc_mark(*ptr++);
}
}
break;
case T_HASH:
mark_hash(obj->as.hash.tbl);
ptr = obj->as.hash.ifnone;
goto again;
case T_STRING:
#define STR_ASSOC FL_USER3 /* copied from string.c */
if (FL_TEST(obj, ELTS_SHARED|STR_ASSOC)) {
ptr = obj->as.string.aux.shared;
goto again;
}
break;
case T_DATA:
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
break;
case T_OBJECT:
mark_tbl(obj->as.object.iv_tbl);
break;
case T_FILE:
case T_REGEXP:
case T_FLOAT:
case T_BIGNUM:
case T_BLKTAG:
break;
case T_MATCH:
if (obj->as.match.str) {
ptr = obj->as.match.str;
goto again;
}
break;
case T_VARMAP:
gc_mark(obj->as.varmap.val);
ptr = (VALUE)obj->as.varmap.next;
goto again;
case T_SCOPE:
if (obj->as.scope.local_vars && (obj->as.scope.flags & SCOPE_MALLOC)) {
int n = obj->as.scope.local_tbl[0]+1;
VALUE *vars = &obj->as.scope.local_vars[-1];
while (n--) {
gc_mark(*vars++);
}
}
break;
case T_STRUCT:
{
VALUE *ptr = obj->as.rstruct.ptr;
VALUE *pend = ptr + obj->as.rstruct.len;
while (ptr < pend)
gc_mark(*ptr++);
}
break;
default:
rb_bug("rb_gc_mark(): unknown data type 0x%lx(0x%lx) %s",
obj->as.basic.flags & T_MASK, obj,
is_pointer_to_heap(obj) ? "corrupted object" : "non object");
}
}
static int obj_free _((VALUE));
static inline void
add_freelist(p)
RVALUE *p;
{
/* Do not touch the fields if they don't have to be modified.
* This is in order to preserve copy-on-write semantics.
*/
if (p->as.free.flags != 0)
p->as.free.flags = 0;
if (p->as.free.next != freelist)
p->as.free.next = freelist;
freelist = p;
}
static void
finalize_list(p)
RVALUE *p;
{
while (p) {
RVALUE *tmp = p->as.free.next;
run_final((VALUE)p);
/* Don't free objects that are singletons, or objects that are already freed.
* The latter is to prevent the unnecessary marking of memory pages as dirty,
* which can destroy copy-on-write semantics.
*/
if (!FL_TEST(p, FL_SINGLETON)) {
rb_mark_table_remove(p);
add_freelist(p);
}
p = tmp;
}
}
static char* obj_type(int tp)
{
switch (tp) {
case T_NIL : return "NIL";
case T_OBJECT : return "OBJECT";
case T_CLASS : return "CLASS";
case T_ICLASS : return "ICLASS";
case T_MODULE : return "MODULE";
case T_FLOAT : return "FLOAT";
case T_STRING : return "STRING";
case T_REGEXP : return "REGEXP";
case T_ARRAY : return "ARRAY";
case T_FIXNUM : return "FIXNUM";
case T_HASH : return "HASH";
case T_STRUCT : return "STRUCT";
case T_BIGNUM : return "BIGNUM";
case T_FILE : return "FILE";
case T_TRUE : return "TRUE";
case T_FALSE : return "FALSE";
case T_DATA : return "DATA";
case T_MATCH : return "MATCH";
case T_SYMBOL : return "SYMBOL";
case T_BLKTAG : return "BLKTAG";
case T_UNDEF : return "UNDEF";
case T_VARMAP : return "VARMAP";
case T_SCOPE : return "SCOPE";
case T_NODE : return "NODE";
default: return "____";
}
}
static void
free_unused_heaps()
{
int i, j;
for (i = j = 1; j < heaps_used; i++) {
if (heaps[i].limit == 0) {
free_ruby_heap(heaps[i].membase);
free(heaps[i].marks);
heaps_used--;
}
else {
if (i != j) {
heaps[j] = heaps[i];
}
j++;
}
}
}
void rb_gc_abort_threads(void);
static void
gc_sweep()
{
RVALUE *p, *pend, *final_list;
int freed = 0;
int i;
unsigned long free_min = 0;
struct heaps_slot *heap;
unsigned long really_freed = 0;
int free_counts[256];
int live_counts[256];
int do_gc_stats = gc_statistics & verbose_gc_stats;
live_objects = 0;
for (i = 0; i < heaps_used; i++) {
free_min += heaps[i].limit;
}
free_min /= 5;
if (free_min < heap_free_min)
free_min = heap_free_min;
if (do_gc_stats) {
for (i = 0 ; i< 256; i++) {
free_counts[i] = live_counts[i] = 0;
}
}
if (ruby_in_compile && ruby_parser_stack_on_heap()) {
/* should not reclaim nodes during compilation
if yacc's semantic stack is not allocated on machine stack */
for (i = 0; i < heaps_used; i++) {
heap = &heaps[i];
p = heap->slot; pend = p + heap->limit;
while (p < pend) {
if (!rb_mark_table_heap_contains(heap, p) && BUILTIN_TYPE(p) == T_NODE)
gc_mark((VALUE)p);
p++;
}
}
}
mark_source_filename(ruby_sourcefile);
if (source_filenames) {
st_foreach(source_filenames, sweep_source_filename, 0);
}
freelist = 0;
final_list = deferred_final_list;
deferred_final_list = 0;
for (i = 0; i < heaps_used; i++) {
int n = 0;
RVALUE *free = freelist;
RVALUE *final = final_list;
int deferred;
heap = &heaps[i];
p = heap->slot; pend = p + heap->limit;
while (p < pend) {
if (!rb_mark_table_heap_contains(heap, p)) {
if (p->as.basic.flags) {
if (do_gc_stats) {
really_freed++;
}
if ((deferred = obj_free((VALUE)p)) ||
((FL_TEST(p, FL_FINALIZE)) && need_call_final)) {
/* This object has a finalizer, so don't free it right now, but do it later. */
if (!deferred) {
p->as.free.flags = T_DEFERRED;
RDATA(p)->dfree = 0;
}
rb_mark_table_heap_add(heap, p); /* remain marked */
p->as.free.next = final_list;
final_list = p;
}
else {
if (do_gc_stats) {
int builtin_type = BUILTIN_TYPE(p);
if (builtin_type) {
free_counts[builtin_type]++;
}
}
add_freelist(p);
}
}
else {
if (do_gc_stats) {
int builtin_type = BUILTIN_TYPE(p);
if (builtin_type) {
free_counts[builtin_type]++;
}
}
add_freelist(p);
}
n++;
}
else if (BUILTIN_TYPE(p) == T_DEFERRED) {
/* objects to be finalized */
/* do nothing remain marked */
}
else {
rb_mark_table_heap_remove(heap, p);
live_objects++;
if (do_gc_stats) {
live_counts[BUILTIN_TYPE(p)]++;
}
}
p++;
}
if (n == heaps[i].limit && freed > free_min) {
RVALUE *pp;
heaps[i].limit = 0;
heaps[i].slotlimit = heaps[i].slot;
for (pp = final_list; pp != final; pp = pp->as.free.next) {
pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
}
freelist = free; /* cancel this page from freelist */
}
else {
freed += n;
}
}
malloc_increase = 0;
if (freed < free_min) {
add_heap();
}
during_gc = 0;
if (do_gc_stats) {
fprintf(gc_data_file, "objects processed: %.7d\n", live_objects+freed);
fprintf(gc_data_file, "live objects : %.7d\n", live_objects);
fprintf(gc_data_file, "freelist objects : %.7d\n", freed - really_freed);
fprintf(gc_data_file, "freed objects : %.7d\n", really_freed);
for(i = 0; i < 256; i++) {
if (free_counts[i] > 0) {
fprintf(gc_data_file,
"kept %.7d / freed %.7d objects of type %s\n",
live_counts[i], free_counts[i], obj_type(i));
}
}
}
/* clear finalization list */
if (final_list) {
deferred_final_list = final_list;
if (!freelist && !rb_thread_critical) {
rb_gc_finalize_deferred();
}
else {
rb_thread_pending = 1;
}
if (!freelist) {
add_heap();
}
return;
}
free_unused_heaps();
}
void
rb_gc_force_recycle(p)
VALUE p;
{
rb_mark_table_remove((RVALUE *) p);
add_freelist(RANY(p));
}
static inline void
make_deferred(p)
RVALUE *p;
{
p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_DEFERRED;
}
static int
obj_free(obj)
VALUE obj;
{
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
}
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (RANY(obj)->as.object.iv_tbl) {
st_free_table(RANY(obj)->as.object.iv_tbl);
}
break;
case T_MODULE:
case T_CLASS:
rb_clear_cache_by_class((VALUE)obj);
st_free_table(RANY(obj)->as.klass.m_tbl);
if (RANY(obj)->as.object.iv_tbl) {
st_free_table(RANY(obj)->as.object.iv_tbl);
}
break;
case T_STRING:
if (RANY(obj)->as.string.ptr && !FL_TEST(obj, ELTS_SHARED)) {
RUBY_CRITICAL(free(RANY(obj)->as.string.ptr));
}
break;
case T_ARRAY:
if (RANY(obj)->as.array.ptr && !FL_TEST(obj, ELTS_SHARED)) {
RUBY_CRITICAL(free(RANY(obj)->as.array.ptr));
}
break;
case T_HASH:
if (RANY(obj)->as.hash.tbl) {
st_free_table(RANY(obj)->as.hash.tbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
re_free_pattern(RANY(obj)->as.regexp.ptr);
}
if (RANY(obj)->as.regexp.str) {
RUBY_CRITICAL(free(RANY(obj)->as.regexp.str));
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
if ((long)RANY(obj)->as.data.dfree == -1) {
RUBY_CRITICAL(free(DATA_PTR(obj)));
}
else if (RANY(obj)->as.data.dfree) {
make_deferred(RANY(obj));
return 1;
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.regs) {
re_free_registers(RANY(obj)->as.match.regs);
RUBY_CRITICAL(free(RANY(obj)->as.match.regs));
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
struct rb_io_t *fptr = RANY(obj)->as.file.fptr;
make_deferred(RANY(obj));
RDATA(obj)->dfree = (void (*)(void*))rb_io_fptr_finalize;
RDATA(obj)->data = fptr;
return 1;
}
break;
case T_ICLASS:
/* iClass shares table with the module */
break;
case T_FLOAT:
case T_VARMAP:
case T_BLKTAG:
break;
case T_BIGNUM:
if (RANY(obj)->as.bignum.digits) {
RUBY_CRITICAL(free(RANY(obj)->as.bignum.digits));
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
RUBY_CRITICAL(free(RANY(obj)->as.node.u1.tbl));
}
break;
case NODE_ALLOCA:
RUBY_CRITICAL(free(RANY(obj)->as.node.u1.node));
break;
}
break; /* no need to free iv_tbl */
case T_SCOPE:
if (RANY(obj)->as.scope.local_vars &&
RANY(obj)->as.scope.flags != SCOPE_ALLOCA) {
VALUE *vars = RANY(obj)->as.scope.local_vars-1;
if (!(RANY(obj)->as.scope.flags & SCOPE_CLONE) && vars[0] == 0)
RUBY_CRITICAL(free(RANY(obj)->as.scope.local_tbl));
if ((RANY(obj)->as.scope.flags & (SCOPE_MALLOC|SCOPE_CLONE)) == SCOPE_MALLOC)
RUBY_CRITICAL(free(vars));
}
break;
case T_STRUCT:
if (RANY(obj)->as.rstruct.ptr) {
RUBY_CRITICAL(free(RANY(obj)->as.rstruct.ptr));
}
break;
default:
rb_bug("gc_sweep(): unknown data type 0x%lx(0x%lx)",
RANY(obj)->as.basic.flags & T_MASK, obj);
}
return 0;
}
void
rb_gc_mark_frame(frame)
struct FRAME *frame;
{
gc_mark((VALUE)frame->node);
}
#ifdef __GNUC__
#if defined(__human68k__) || defined(DJGPP)
#undef rb_setjmp
#undef rb_jmp_buf
#if defined(__human68k__)
typedef unsigned long rb_jmp_buf[8];
__asm__ (".even\n\
_rb_setjmp:\n\
move.l 4(sp),a0\n\
movem.l d3-d7/a3-a5,(a0)\n\
moveq.l #0,d0\n\
rts");
#else
#if defined(DJGPP)
typedef unsigned long rb_jmp_buf[6];
__asm__ (".align 4\n\
_rb_setjmp:\n\
pushl %ebp\n\
movl %esp,%ebp\n\
movl 8(%ebp),%ebp\n\
movl %eax,(%ebp)\n\
movl %ebx,4(%ebp)\n\
movl %ecx,8(%ebp)\n\
movl %edx,12(%ebp)\n\
movl %esi,16(%ebp)\n\
movl %edi,20(%ebp)\n\
popl %ebp\n\
xorl %eax,%eax\n\
ret");
#endif
#endif
int rb_setjmp (rb_jmp_buf);
#endif /* __human68k__ or DJGPP */
#endif /* __GNUC__ */
static void
garbage_collect_0(VALUE *top_frame)
{
struct gc_list *list;
struct FRAME * frame;
struct timeval gctv1, gctv2;
SET_STACK_END;
#ifdef HAVE_NATIVETHREAD
if (!is_ruby_native_thread()) {
rb_bug("cross-thread violation on rb_gc()");
}
#endif
if (dont_gc || during_gc) {
if (!freelist) {
add_heap();
}
return;
}
if (during_gc) return;
during_gc++;
if (gc_statistics) {
gc_collections++;
gettimeofday(&gctv1, NULL);
if (verbose_gc_stats) {
fprintf(gc_data_file, "Garbage collection started\n");
}
}
gc_stack_limit = __stack_grow(STACK_END, GC_LEVEL_MAX);
rb_mark_table_prepare();
init_mark_stack();
gc_mark((VALUE)ruby_current_node);
/* mark frame stack */
for (frame = ruby_frame; frame; frame = frame->prev) {
rb_gc_mark_frame(frame);
if (frame->tmp) {
struct FRAME *tmp = frame->tmp;
while (tmp) {
rb_gc_mark_frame(tmp);
tmp = tmp->prev;
}
}
}
gc_mark((VALUE)ruby_scope);
gc_mark((VALUE)ruby_dyna_vars);
if (finalizer_table) {
mark_tbl(finalizer_table);
}
#if STACK_GROW_DIRECTION < 0
rb_gc_mark_locations(top_frame, rb_curr_thread->stk_start);
#elif STACK_GROW_DIRECTION > 0
rb_gc_mark_locations(rb_curr_thread->stk_start, top_frame + 1);
#else
if (rb_gc_stack_grow_direction < 0)
rb_gc_mark_locations(top_frame, rb_curr_thread->stk_start);
else
rb_gc_mark_locations(rb_curr_thread->stk_start, top_frame + 1);
#endif
#ifdef __ia64
/* mark backing store (flushed register window on the stack) */
/* the basic idea from guile GC code */
rb_gc_mark_locations(rb_gc_register_stack_start, (VALUE*)rb_ia64_bsp());
#endif
#if defined(__human68k__) || defined(__mc68000__)
rb_gc_mark_locations((VALUE*)((char*)STACK_END + 2),
(VALUE*)((char*)rb_curr_thread->stk_start + 2));
#endif
rb_gc_mark_threads();
/* mark protected global variables */
for (list = global_List; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
rb_mark_end_proc();
rb_gc_mark_global_tbl();
rb_mark_tbl(rb_class_tbl);
rb_gc_mark_trap_list();
/* mark generic instance variables for special constants */
rb_mark_generic_ivar_tbl();
rb_gc_mark_parser();
/* gc_mark objects whose marking are not completed*/
do {
while (!MARK_STACK_EMPTY) {
if (mark_stack_overflow){
gc_mark_all();
}
else {
gc_mark_rest();
}
}
rb_gc_abort_threads();
} while (!MARK_STACK_EMPTY);
gc_sweep();
rb_mark_table_finalize();
gc_cycles++;
if (gc_statistics) {
GC_TIME_TYPE musecs_used;
gettimeofday(&gctv2, NULL);
musecs_used = ((GC_TIME_TYPE)(gctv2.tv_sec - gctv1.tv_sec) * 1000000) + (gctv2.tv_usec - gctv1.tv_usec);
gc_time += musecs_used;
if (verbose_gc_stats) {
fprintf(gc_data_file, "GC time: %d msec\n", musecs_used / 1000);
}
}
}
static void
garbage_collect()
{
jmp_buf save_regs_gc_mark;
VALUE *top = __sp();
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark);
#if STACK_WIPE_SITES & 0x400
# ifdef nativeAllocA
if (__stack_past (top, stack_limit)) {
/* allocate a large frame to ensure app stack cannot grow into GC stack */
(void)(volatile void*)
nativeAllocA(__stack_depth((void*)stack_limit,(void*)top));
}
garbage_collect_0(top);
# else /* no native alloca() available */
garbage_collect_0(top);
{
VALUE *paddedLimit = __stack_grow(gc_stack_limit, GC_STACK_PAD);
if (__stack_past(rb_gc_stack_end, paddedLimit))
rb_gc_stack_end = paddedLimit;
}
rb_gc_wipe_stack(); /* wipe the whole stack area reserved for this gc */
# endif
#else
garbage_collect_0(top);
#endif
}
void
rb_gc()
{
garbage_collect();
rb_gc_finalize_deferred();
}
/*
* call-seq:
* GC.start => nil
* gc.garbage_collect => nil
* ObjectSpace.garbage_collect => nil
*
* Initiates garbage collection, unless manually disabled.
*
*/
VALUE
rb_gc_start()
{
rb_gc();
return Qnil;
}
int
rb_gc_is_thread_marked(the_thread)
VALUE the_thread;
{
if (FL_ABLE(the_thread)) {
return rb_mark_table_contains((RVALUE *) the_thread);
} else {
return 0;
}
}
void
ruby_set_stack_size(size)
size_t size;
{
#ifndef STACK_LEVEL_MAX
STACK_LEVEL_MAX = size / sizeof(VALUE);
#endif
stack_limit = __stack_grow(rb_gc_stack_start, STACK_LEVEL_MAX-GC_STACK_MAX);
}
static void
set_stack_size(void)
{
#ifdef HAVE_GETRLIMIT
struct rlimit rlim;
if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
if (rlim.rlim_cur > 0 && rlim.rlim_cur != RLIM_INFINITY) {
size_t maxStackBytes = rlim.rlim_cur;
if (rlim.rlim_cur != maxStackBytes)
maxStackBytes = -1;
{
size_t space = maxStackBytes/5;
if (space > 1024*1024) space = 1024*1024;
ruby_set_stack_size(maxStackBytes - space);
return;
}
}
}
#endif
ruby_set_stack_size(STACK_LEVEL_MAX*sizeof(VALUE));
}
void
Init_stack(addr)
VALUE *addr;
{
#ifdef __ia64
if (rb_gc_register_stack_start == 0) {
# if defined(__FreeBSD__)
/*
* FreeBSD/ia64 currently does not have a way for a process to get the
* base address for the RSE backing store, so hardcode it.
*/
rb_gc_register_stack_start = (4ULL<<61);
# elif defined(HAVE___LIBC_IA64_REGISTER_BACKING_STORE_BASE)
# pragma weak __libc_ia64_register_backing_store_base
extern unsigned long __libc_ia64_register_backing_store_base;
rb_gc_register_stack_start = (VALUE*)__libc_ia64_register_backing_store_base;
# endif
}
{
VALUE *bsp = (VALUE*)rb_ia64_bsp();
if (rb_gc_register_stack_start == 0 ||
bsp < rb_gc_register_stack_start) {
rb_gc_register_stack_start = bsp;
}
}
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
MEMORY_BASIC_INFORMATION m;
memset(&m, 0, sizeof(m));
VirtualQuery(&m, &m, sizeof(m));
rb_gc_stack_start =
STACK_UPPER((VALUE *)m.BaseAddress,
(VALUE *)((char *)m.BaseAddress + m.RegionSize) - 1);
#elif defined(STACK_END_ADDRESS)
{
extern void *STACK_END_ADDRESS;
rb_gc_stack_start = STACK_END_ADDRESS;
}
#else
if (!addr) addr = (void *)&addr;
STACK_UPPER(addr, ++addr);
if (rb_gc_stack_start) {
if (STACK_UPPER(rb_gc_stack_start > addr,
rb_gc_stack_start < addr))
rb_gc_stack_start = addr;
return;
}
rb_gc_stack_start = addr;
#endif
set_stack_size();
}
void ruby_init_stack(VALUE *addr
#ifdef __ia64
, void *bsp
#endif
)
{
if (!rb_gc_stack_start ||
STACK_UPPER(rb_gc_stack_start > addr,
rb_gc_stack_start < addr)) {
rb_gc_stack_start = addr;
}
#ifdef __ia64
if (!rb_gc_register_stack_start ||
(VALUE*)bsp < rb_gc_register_stack_start) {
rb_gc_register_stack_start = (VALUE*)bsp;
}
#endif
#ifdef HAVE_GETRLIMIT
set_stack_size();
#elif defined _WIN32
{
MEMORY_BASIC_INFORMATION mi;
DWORD size;
DWORD space;
if (VirtualQuery(&mi, &mi, sizeof(mi))) {
size = (char *)mi.BaseAddress - (char *)mi.AllocationBase;
space = size / 5;
if (space > 1024*1024) space = 1024*1024;
ruby_set_stack_size(size - space);
}
}
#endif
}
/*
* Document-class: ObjectSpace
*
* The <code>ObjectSpace</code> module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* <code>ObjectSpace</code> also provides support for object
* finalizers, procs that will be called when a specific object is
* about to be destroyed by garbage collection.
*
* include ObjectSpace
*
*
* a = "A"
* b = "B"
* c = "C"
*
*
* define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
* define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
*
* <em>produces:</em>
*
* Finalizer three on 537763470
* Finalizer one on 537763480
* Finalizer two on 537763480
*
*/
void
Init_heap()
{
rb_gc_init_debugging((VALUE) NULL);
rb_use_fast_mark_table();
rb_mark_table_init();
if (!rb_gc_stack_start) {
Init_stack(0);
}
set_gc_parameters();
add_heap();
}
static VALUE
os_obj_of(of)
VALUE of;
{
int i;
int n = 0;
volatile VALUE v;
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = heaps[i].slot; pend = p + heaps[i].limit;
for (;p < pend; p++) {
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_ICLASS:
case T_VARMAP:
case T_SCOPE:
case T_NODE:
case T_DEFERRED:
continue;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON)) continue;
default:
if (!p->as.basic.klass) continue;
v = (VALUE)p;
if (!of || rb_obj_is_kind_of(v, of)) {
rb_yield(v);
n++;
}
}
}
}
}
return INT2FIX(n);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } => fixnum
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(argc, argv, os)
int argc;
VALUE *argv;
VALUE os;
{
VALUE of;
rb_secure(4);
if (argc == 0) {
of = 0;
}
else {
rb_scan_args(argc, argv, "01", &of);
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
static VALUE finalizers;
/* deprecated
*/
static VALUE
add_final(os, block)
VALUE os, block;
{
rb_warn("ObjectSpace::add_finalizer is deprecated; use define_finalizer");
if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
rb_ary_push(finalizers, block);
return block;
}
/*
* deprecated
*/
static VALUE
rm_final(os, block)
VALUE os, block;
{
rb_warn("ObjectSpace::remove_finalizer is deprecated; use undefine_finalizer");
rb_ary_delete(finalizers, block);
return block;
}
/*
* deprecated
*/
static VALUE
finals()
{
rb_warn("ObjectSpace::finalizers is deprecated");
return finalizers;
}
/*
* deprecated
*/
static VALUE
call_final(os, obj)
VALUE os, obj;
{
rb_warn("ObjectSpace::call_finalizer is deprecated; use define_finalizer");
need_call_final = 1;
FL_SET(obj, FL_FINALIZE);
return obj;
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(os, obj)
VALUE os, obj;
{
if (finalizer_table) {
st_delete(finalizer_table, (st_data_t*)&obj, 0);
}
return obj;
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed.
*
*/
static VALUE
define_final(argc, argv, os)
int argc;
VALUE *argv;
VALUE os;
{
VALUE obj, block, table;
rb_scan_args(argc, argv, "11", &obj, &block);
if (argc == 1) {
block = rb_block_proc();
}
else if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
need_call_final = 1;
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
RBASIC(obj)->flags |= FL_FINALIZE;
block = rb_ary_new3(2, INT2FIX(ruby_safe_level), block);
OBJ_FREEZE(block);
if (!finalizer_table) {
finalizer_table = st_init_numtable();
}
if (st_lookup(finalizer_table, obj, &table)) {
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC(table)->klass = 0;
st_add_direct(finalizer_table, obj, table);
}
return block;
}
void
rb_gc_copy_finalizer(dest, obj)
VALUE dest, obj;
{
VALUE table;
if (!finalizer_table) return;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &table)) {
st_insert(finalizer_table, dest, table);
}
RBASIC(dest)->flags |= FL_FINALIZE;
}
static VALUE
run_single_final(args)
VALUE *args;
{
rb_eval_cmd(args[0], args[1], (int)args[2]);
return Qnil;
}
static void
run_final(obj)
VALUE obj;
{
long i;
int status, critical_save = rb_thread_critical;
VALUE args[3], table, objid;
objid = rb_obj_id(obj); /* make obj into id */
RBASIC(obj)->klass = 0;
rb_thread_critical = Qtrue;
if (BUILTIN_TYPE(obj) == T_DEFERRED && RDATA(obj)->dfree) {
(*RDATA(obj)->dfree)(DATA_PTR(obj));
}
args[1] = 0;
args[2] = (VALUE)ruby_safe_level;
for (i=0; i<RARRAY(finalizers)->len; i++) {
args[0] = RARRAY(finalizers)->ptr[i];
if (!args[1]) args[1] = rb_ary_new3(1, objid);
rb_protect((VALUE(*)_((VALUE)))run_single_final, (VALUE)args, &status);
}
if (finalizer_table && st_delete(finalizer_table, (st_data_t*)&obj, &table)) {
for (i=0; i<RARRAY(table)->len; i++) {
VALUE final = RARRAY(table)->ptr[i];
args[0] = RARRAY(final)->ptr[1];
if (!args[1]) args[1] = rb_ary_new3(1, objid);
args[2] = FIX2INT(RARRAY(final)->ptr[0]);
rb_protect((VALUE(*)_((VALUE)))run_single_final, (VALUE)args, &status);
}
}
rb_thread_critical = critical_save;
}
void
rb_gc_finalize_deferred()
{
RVALUE *p = deferred_final_list;
deferred_final_list = 0;
if (p) {
finalize_list(p);
free_unused_heaps();
}
}
void
rb_gc_call_finalizer_at_exit()
{
RVALUE *p, *pend;
struct heaps_slot *heap;
int i;
/* run finalizers */
if (need_call_final && finalizer_table) {
p = deferred_final_list;
deferred_final_list = 0;
finalize_list(p);
for (i = 0; i < heaps_used; i++) {
p = heaps[i].slot; pend = p + heaps[i].limit;
while (p < pend) {
if (FL_TEST(p, FL_FINALIZE)) {
FL_UNSET(p, FL_FINALIZE);
run_final((VALUE)p);
}
p++;
}
}
if (finalizer_table) {
st_free_table(finalizer_table);
finalizer_table = 0;
}
}
/* run data object's finalizers */
for (i = 0; i < heaps_used; i++) {
heap = &heaps[i];
p = heap->slot; pend = p + heap->limit;
while (p < pend) {
if (BUILTIN_TYPE(p) == T_DATA &&
DATA_PTR(p) && RANY(p)->as.data.dfree &&
RANY(p)->as.basic.klass != rb_cThread) {
p->as.free.flags = 0;
rb_mark_table_heap_remove(heap, p);
if ((long)RANY(p)->as.data.dfree == -1) {
RUBY_CRITICAL(free(DATA_PTR(p)));
}
else if (RANY(p)->as.data.dfree) {
(*RANY(p)->as.data.dfree)(DATA_PTR(p));
}
}
else if (BUILTIN_TYPE(p) == T_FILE) {
p->as.free.flags = 0;
rb_mark_table_heap_remove(heap, p);
rb_io_fptr_finalize(RANY(p)->as.file.fptr);
}
p++;
}
}
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(obj, objid)
VALUE obj, objid;
{
unsigned long ptr, p0;
int type;
rb_secure(4);
p0 = ptr = NUM2ULONG(objid);
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2name(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_pointer_to_heap((void *)ptr)||
(type = BUILTIN_TYPE(ptr)) > T_SYMBOL || type == T_ICLASS) {
rb_raise(rb_eRangeError, "0x%lx is not id value", p0);
}
if (BUILTIN_TYPE(ptr) == 0 || RBASIC(ptr)->klass == 0) {
rb_raise(rb_eRangeError, "0x%lx is recycled object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ => fixnum
* obj.object_id => fixnum
*
* Returns an integer identifier for <i>obj</i>. The same number will
* be returned on all calls to <code>id</code> for a given object, and
* no two active objects will share an id.
* <code>Object#object_id</code> is a different concept from the
* <code>:name</code> notation, which returns the symbol id of
* <code>name</code>. Replaces the deprecated <code>Object#id</code>.
*/
/*
* call-seq:
* obj.hash => fixnum
*
* Generates a <code>Fixnum</code> hash value for this object. This
* function must have the property that <code>a.eql?(b)</code> implies
* <code>a.hash == b.hash</code>. The hash value is used by class
* <code>Hash</code>. Any hash value that exceeds the capacity of a
* <code>Fixnum</code> will be truncated before being used.
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (TYPE(obj) == T_SYMBOL) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((long)obj);
}
return (VALUE)((long)obj|FIXNUM_FLAG);
}
static VALUE
os_statistics()
{
int i;
int n = 0;
unsigned int objects = 0;
unsigned int total_objects_size = 0;
unsigned int total_heap_size = 0;
unsigned int total_heap_slots = 0;
unsigned int ast_nodes = 0;
char message[1024];
unsigned int total_leading_free_slots = 0;
unsigned int total_trailing_free_slots = 0;
const unsigned int group_size = 16;
unsigned int contiguous_free_groups = 0;
unsigned int terminal_objects = 0; /* Number of objects that cannot possibly refer to other objects. */
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
unsigned int leading_free_slots = 0;
unsigned int trailing_free_slots = 0;
unsigned int slot_index = 0;
unsigned int free_slots_in_current_group = 0;
enum { BEGIN, MIDDLE, END } mode = BEGIN;
p = heaps[i].slot;
pend = p + heaps[i].limit;
for (;p < pend; p++, slot_index++) {
switch (mode) {
case BEGIN:
if (p->as.basic.flags) {
mode = MIDDLE;
} else {
leading_free_slots++;
}
break;
case MIDDLE:
if (p->as.basic.flags == 0) {
mode = END;
trailing_free_slots++;
}
break;
case END:
if (p->as.basic.flags == 0) {
trailing_free_slots++;
} else {
trailing_free_slots = 0;
mode = MIDDLE;
}
break;
};
if (slot_index % group_size == 0) {
if (free_slots_in_current_group == group_size) {
contiguous_free_groups++;
}
free_slots_in_current_group = 0;
}
if (p->as.basic.flags == 0) {
free_slots_in_current_group++;
}
if (p->as.basic.flags) {
int isAST = 0;
switch (TYPE(p)) {
case T_ICLASS:
case T_VARMAP:
case T_SCOPE:
case T_NODE:
isAST = 1;
break;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON)) {
isAST = 1;
break;
}
case T_FILE:
case T_REGEXP:
case T_FLOAT:
case T_BIGNUM:
case T_BLKTAG:
terminal_objects++;
break;
default:
break;
}
objects++;
if (isAST) {
ast_nodes++;
}
}
}
total_heap_size += (void *) pend - heaps[i].membase;
total_leading_free_slots += leading_free_slots;
total_trailing_free_slots += trailing_free_slots;
}
total_objects_size = objects * sizeof(RVALUE);
total_heap_slots = total_heap_size / sizeof(RVALUE);
snprintf(message, sizeof(message),
"Number of objects : %d (%d AST nodes, %.2f%%)\n"
"Heap slot size : %d\n"
"GC cycles so far : %d\n"
"Number of heaps : %d\n"
"Total size of objects: %.2f KB\n"
"Total size of heaps : %.2f KB (%.2f KB = %.2f%% unused)\n"
"Leading free slots : %d (%.2f KB = %.2f%%)\n"
"Trailing free slots : %d (%.2f KB = %.2f%%)\n"
"Number of contiguous groups of %d slots: %d (%.2f%%)\n"
"Number of terminal objects: %d (%.2f%%)\n",
objects, ast_nodes, ast_nodes * 100 / (double) objects,
sizeof(RVALUE),
gc_cycles,
heaps_used,
total_objects_size / 1024.0,
total_heap_size / 1024.0,
(total_heap_size - total_objects_size) / 1024.0,
(total_heap_size - total_objects_size) * 100.0 / total_heap_size,
total_leading_free_slots,
total_leading_free_slots * sizeof(RVALUE) / 1024.0,
total_leading_free_slots * 100.0 / total_heap_slots,
total_trailing_free_slots,
total_trailing_free_slots * sizeof(RVALUE) / 1024.0,
total_trailing_free_slots * 100.0 / total_heap_slots,
group_size,
contiguous_free_groups,
(contiguous_free_groups * group_size * 100.0) / total_heap_slots,
terminal_objects,
terminal_objects * 100.0 / total_heap_slots
);
return rb_str_new2(message);
}
/*
* call-seq:
* GC.copy_on_write_friendly? => true or false
*
* Returns whether the garbage collector is copy-on-write friendly.
*
* This method only has meaning on platforms that support the _fork_ system call.
* Please consult the documentation for GC.copy_on_write_friendly= for additional
* notes.
*/
static VALUE
rb_gc_copy_on_write_friendly()
{
if (rb_mark_table_init == rb_fast_mark_table_init) {
return Qfalse;
} else {
return Qtrue;
}
}
/*
* call-seq:
* GC.copy_on_write_friendly = _boolean_
*
* Tell the garbage collector whether to be copy-on-write friendly.
*
* Note that this is an implementation detail of the garbage collector. On some Ruby
* implementations, the garbage collector may always be copy-on-write friendly. In that
* case, this method will do nothing. Furthermore, copy-on-write friendliness has no
* meaning on some platforms (such as Microsoft Windows), so setting this flag on those
* platform is futile.
*
* Please keep in mind that this flag is only advisory. Do not rely on it for anything
* truly important.
*
* In the mainline Ruby implementation, the copy-on-write friendly garbage collector is
* slightly slower the non-copy-on-write friendly version.
*/
static VALUE
rb_gc_set_copy_on_write_friendly(VALUE self, VALUE val)
{
if (RTEST(val)) {
rb_use_bf_mark_table();
} else {
rb_use_fast_mark_table();
}
rb_mark_table_init();
return Qnil;
}
/* call-seq:
* ObjectSpace.live_objects => number
*
* Returns the count of objects currently allocated in the system. This goes
* down after the garbage collector runs.
*/
static
VALUE os_live_objects(VALUE self)
{ return ULONG2NUM(live_objects); }
/* call-seq:
* ObjectSpace.allocated_objects => number
*
* Returns the count of objects allocated since the Ruby interpreter has
* started. This number can only increase. To know how many objects are
* currently allocated, use ObjectSpace::live_objects
*/
static
VALUE os_allocated_objects(VALUE self)
{
#if defined(HAVE_LONG_LONG)
return ULL2NUM(allocated_objects);
#else
return ULONG2NUM(allocated_objects);
#endif
}
/*
* The <code>GC</code> module provides an interface to Ruby's mark and
* sweep garbage collection mechanism. Some of the underlying methods
* are also available via the <code>ObjectSpace</code> module.
*/
void
Init_GC()
{
VALUE rb_mObSpace;
#if !STACK_GROW_DIRECTION
rb_gc_stack_end = stack_grow_direction(&rb_mObSpace);
#endif
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
#ifdef MBARI_API
rb_define_singleton_method(rb_mGC, "limit", gc_getlimit, 0);
rb_define_singleton_method(rb_mGC, "limit=", gc_setlimit, 1);
rb_define_singleton_method(rb_mGC, "growth", gc_growth, 0);
rb_define_singleton_method(rb_mGC, "exorcise", gc_exorcise, 0);
#endif
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
rb_define_singleton_method(rb_mGC, "initialize_debugging", rb_gc_init_debugging, 0);
rb_define_singleton_method(rb_mGC, "copy_on_write_friendly?", rb_gc_copy_on_write_friendly, 0);
rb_define_singleton_method(rb_mGC, "copy_on_write_friendly=", rb_gc_set_copy_on_write_friendly, 1);
rb_define_singleton_method(rb_mGC, "enable_stats", rb_gc_enable_stats, 0);
rb_define_singleton_method(rb_mGC, "disable_stats", rb_gc_disable_stats, 0);
rb_define_singleton_method(rb_mGC, "clear_stats", rb_gc_clear_stats, 0);
rb_define_singleton_method(rb_mGC, "allocated_size", rb_gc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "num_allocations", rb_gc_num_allocations, 0);
rb_define_singleton_method(rb_mGC, "collections", rb_gc_collections, 0);
rb_define_singleton_method(rb_mGC, "time", rb_gc_time, 0);
rb_define_singleton_method(rb_mGC, "dump", rb_gc_dump, 0);
rb_define_singleton_method(rb_mGC, "log", rb_gc_log, 1);
rb_mObSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
rb_define_module_function(rb_mObSpace, "add_finalizer", add_final, 1);
rb_define_module_function(rb_mObSpace, "remove_finalizer", rm_final, 1);
rb_define_module_function(rb_mObSpace, "finalizers", finals, 0);
rb_define_module_function(rb_mObSpace, "call_finalizer", call_final, 1);
rb_define_module_function(rb_mObSpace, "live_objects", os_live_objects, 0);
rb_define_module_function(rb_mObSpace, "allocated_objects", os_allocated_objects, 0);
rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
rb_define_module_function(rb_mObSpace, "statistics", os_statistics, 0);
rb_gc_register_address(&rb_mObSpace);
rb_global_variable(&finalizers);
rb_gc_unregister_address(&rb_mObSpace);
finalizers = rb_ary_new();
source_filenames = st_init_strtable();
rb_global_variable(&nomem_error);
nomem_error = rb_exc_new3(rb_eNoMemError,
rb_obj_freeze(rb_str_new2("failed to allocate memory")));
OBJ_TAINT(nomem_error);
OBJ_FREEZE(nomem_error);
rb_define_method(rb_mKernel, "hash", rb_obj_id, 0);
rb_define_method(rb_mKernel, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment