Skip to content

Instantly share code, notes, and snippets.

@ljmf00
Created October 27, 2017 19:48
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save ljmf00/511468b5d2d60a1a63bd449c87acbade to your computer and use it in GitHub Desktop.
Save ljmf00/511468b5d2d60a1a63bd449c87acbade to your computer and use it in GitHub Desktop.
C++ Mathematical Expression Library
This file has been truncated, but you can view the full file.
/*
******************************************************************
* C++ Mathematical Expression Toolkit Library *
* *
* Author: Arash Partow (1999-2017) *
* URL: http://www.partow.net/programming/exprtk/index.html *
* *
* Copyright notice: *
* Free use of the C++ Mathematical Expression Toolkit Library is *
* permitted under the guidelines and in accordance with the most *
* current version of the MIT License. *
* http://www.opensource.org/licenses/MIT *
* *
* Example expressions: *
* (00) (y + x / y) * (x - y / x) *
* (01) (x^2 / sin(2 * pi / y)) - x / 2 *
* (02) sqrt(1 - (x^2)) *
* (03) 1 - sin(2 * x) + cos(pi / y) *
* (04) a * exp(2 * t) + c *
* (05) if(((x + 2) == 3) and ((y + 5) <= 9),1 + w, 2 / z) *
* (06) (avg(x,y) <= x + y ? x - y : x * y) + 2 * pi / x *
* (07) z := x + sin(2 * pi / y) *
* (08) u := 2 * (pi * z) / (w := x + cos(y / pi)) *
* (09) clamp(-1,sin(2 * pi * x) + cos(y / 2 * pi),+1) *
* (10) inrange(-2,m,+2) == if(({-2 <= m} and [m <= +2]),1,0) *
* (11) (2sin(x)cos(2y)7 + 1) == (2 * sin(x) * cos(2*y) * 7 + 1) *
* (12) (x ilike 's*ri?g') and [y < (3 z^7 + w)] *
* *
******************************************************************
*/
#ifndef INCLUDE_EXPRTK_HPP
#define INCLUDE_EXPRTK_HPP
#include <algorithm>
#include <cctype>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <exception>
#include <functional>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <set>
#include <stack>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace exprtk
{
#ifdef exprtk_enable_debugging
#define exprtk_debug(params) printf params
#else
#define exprtk_debug(params) (void)0
#endif
#define exprtk_error_location \
"exprtk.hpp:" + details::to_str(__LINE__) \
#if __GNUC__ >= 7
#define exprtk_disable_fallthrough_begin \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wimplicit-fallthrough\"") \
#define exprtk_disable_fallthrough_end \
_Pragma ("GCC diagnostic pop") \
#else
#define exprtk_disable_fallthrough_begin (void)0;
#define exprtk_disable_fallthrough_end (void)0;
#endif
namespace details
{
typedef unsigned char uchar_t;
typedef char char_t;
inline bool is_whitespace(const char_t c)
{
return (' ' == c) || ('\n' == c) ||
('\r' == c) || ('\t' == c) ||
('\b' == c) || ('\v' == c) ||
('\f' == c) ;
}
inline bool is_operator_char(const char_t c)
{
return ('+' == c) || ('-' == c) ||
('*' == c) || ('/' == c) ||
('^' == c) || ('<' == c) ||
('>' == c) || ('=' == c) ||
(',' == c) || ('!' == c) ||
('(' == c) || (')' == c) ||
('[' == c) || (']' == c) ||
('{' == c) || ('}' == c) ||
('%' == c) || (':' == c) ||
('?' == c) || ('&' == c) ||
('|' == c) || (';' == c) ;
}
inline bool is_letter(const char_t c)
{
return (('a' <= c) && (c <= 'z')) ||
(('A' <= c) && (c <= 'Z')) ;
}
inline bool is_digit(const char_t c)
{
return ('0' <= c) && (c <= '9');
}
inline bool is_letter_or_digit(const char_t c)
{
return is_letter(c) || is_digit(c);
}
inline bool is_left_bracket(const char_t c)
{
return ('(' == c) || ('[' == c) || ('{' == c);
}
inline bool is_right_bracket(const char_t c)
{
return (')' == c) || (']' == c) || ('}' == c);
}
inline bool is_bracket(const char_t c)
{
return is_left_bracket(c) || is_right_bracket(c);
}
inline bool is_sign(const char_t c)
{
return ('+' == c) || ('-' == c);
}
inline bool is_invalid(const char_t c)
{
return !is_whitespace (c) &&
!is_operator_char(c) &&
!is_letter (c) &&
!is_digit (c) &&
('.' != c) &&
('_' != c) &&
('$' != c) &&
('~' != c) &&
('\'' != c);
}
#ifndef exprtk_disable_caseinsensitivity
inline void case_normalise(std::string& s)
{
for (std::size_t i = 0; i < s.size(); ++i)
{
s[i] = static_cast<std::string::value_type>(std::tolower(s[i]));
}
}
inline bool imatch(const char_t c1, const char_t c2)
{
return std::tolower(c1) == std::tolower(c2);
}
inline bool imatch(const std::string& s1, const std::string& s2)
{
if (s1.size() == s2.size())
{
for (std::size_t i = 0; i < s1.size(); ++i)
{
if (std::tolower(s1[i]) != std::tolower(s2[i]))
{
return false;
}
}
return true;
}
return false;
}
struct ilesscompare
{
inline bool operator() (const std::string& s1, const std::string& s2) const
{
const std::size_t length = std::min(s1.size(),s2.size());
for (std::size_t i = 0; i < length; ++i)
{
const char_t c1 = static_cast<char>(std::tolower(s1[i]));
const char_t c2 = static_cast<char>(std::tolower(s2[i]));
if (c1 > c2)
return false;
else if (c1 < c2)
return true;
}
return s1.size() < s2.size();
}
};
#else
inline void case_normalise(std::string&)
{}
inline bool imatch(const char_t c1, const char_t c2)
{
return c1 == c2;
}
inline bool imatch(const std::string& s1, const std::string& s2)
{
return s1 == s2;
}
struct ilesscompare
{
inline bool operator() (const std::string& s1, const std::string& s2) const
{
return s1 < s2;
}
};
#endif
inline bool is_valid_sf_symbol(const std::string& symbol)
{
// Special function: $f12 or $F34
return (4 == symbol.size()) &&
('$' == symbol[0]) &&
imatch('f',symbol[1]) &&
is_digit(symbol[2]) &&
is_digit(symbol[3]);
}
inline const char_t& front(const std::string& s)
{
return s[0];
}
inline const char_t& back(const std::string& s)
{
return s[s.size() - 1];
}
inline std::string to_str(int i)
{
if (0 == i)
return std::string("0");
std::string result;
if (i < 0)
{
for ( ; i; i /= 10)
{
result += '0' + char(-(i % 10));
}
result += '-';
}
else
{
for ( ; i; i /= 10)
{
result += '0' + char(i % 10);
}
}
std::reverse(result.begin(), result.end());
return result;
}
inline bool is_hex_digit(const std::string::value_type digit)
{
return (('0' <= digit) && (digit <= '9')) ||
(('A' <= digit) && (digit <= 'F')) ||
(('a' <= digit) && (digit <= 'f')) ;
}
inline uchar_t hex_to_bin(uchar_t h)
{
if (('0' <= h) && (h <= '9'))
return (h - '0');
else
return static_cast<unsigned char>(std::toupper(h) - 'A');
}
template <typename Iterator>
inline void parse_hex(Iterator& itr, Iterator end, std::string::value_type& result)
{
if (
(end != (itr )) &&
(end != (itr + 1)) &&
(end != (itr + 2)) &&
(end != (itr + 3)) &&
('0' == *(itr )) &&
(
('x' == *(itr + 1)) ||
('X' == *(itr + 1))
) &&
(is_hex_digit(*(itr + 2))) &&
(is_hex_digit(*(itr + 3)))
)
{
result = hex_to_bin(static_cast<uchar_t>(*(itr + 2))) << 4 |
hex_to_bin(static_cast<uchar_t>(*(itr + 3))) ;
itr += 3;
}
else
result = '\0';
}
inline void cleanup_escapes(std::string& s)
{
typedef std::string::iterator str_itr_t;
str_itr_t itr1 = s.begin();
str_itr_t itr2 = s.begin();
str_itr_t end = s.end ();
std::size_t removal_count = 0;
while (end != itr1)
{
if ('\\' == (*itr1))
{
++removal_count;
if (end == ++itr1)
break;
else if ('\\' != (*itr1))
{
switch (*itr1)
{
case 'n' : (*itr1) = '\n'; break;
case 'r' : (*itr1) = '\r'; break;
case 't' : (*itr1) = '\t'; break;
case '0' : parse_hex(itr1, end, (*itr1));
removal_count += 3;
break;
}
continue;
}
}
if (itr1 != itr2)
{
(*itr2) = (*itr1);
}
++itr1;
++itr2;
}
s.resize(s.size() - removal_count);
}
class build_string
{
public:
build_string(const std::size_t& initial_size = 64)
{
data_.reserve(initial_size);
}
inline build_string& operator << (const std::string& s)
{
data_ += s;
return (*this);
}
inline build_string& operator << (const char_t* s)
{
data_ += std::string(s);
return (*this);
}
inline operator std::string () const
{
return data_;
}
inline std::string as_string() const
{
return data_;
}
private:
std::string data_;
};
static const std::string reserved_words[] =
{
"break", "case", "continue", "default", "false", "for",
"if", "else", "ilike", "in", "like", "and", "nand", "nor",
"not", "null", "or", "repeat", "return", "shl", "shr",
"swap", "switch", "true", "until", "var", "while", "xnor",
"xor", "&", "|"
};
static const std::size_t reserved_words_size = sizeof(reserved_words) / sizeof(std::string);
static const std::string reserved_symbols[] =
{
"abs", "acos", "acosh", "and", "asin", "asinh", "atan",
"atanh", "atan2", "avg", "break", "case", "ceil", "clamp",
"continue", "cos", "cosh", "cot", "csc", "default",
"deg2grad", "deg2rad", "equal", "erf", "erfc", "exp",
"expm1", "false", "floor", "for", "frac", "grad2deg",
"hypot", "iclamp", "if", "else", "ilike", "in", "inrange",
"like", "log", "log10", "log2", "logn", "log1p", "mand",
"max", "min", "mod", "mor", "mul", "ncdf", "nand", "nor",
"not", "not_equal", "null", "or", "pow", "rad2deg",
"repeat", "return", "root", "round", "roundn", "sec", "sgn",
"shl", "shr", "sin", "sinc", "sinh", "sqrt", "sum", "swap",
"switch", "tan", "tanh", "true", "trunc", "until", "var",
"while", "xnor", "xor", "&", "|"
};
static const std::size_t reserved_symbols_size = sizeof(reserved_symbols) / sizeof(std::string);
static const std::string base_function_list[] =
{
"abs", "acos", "acosh", "asin", "asinh", "atan", "atanh",
"atan2", "avg", "ceil", "clamp", "cos", "cosh", "cot",
"csc", "equal", "erf", "erfc", "exp", "expm1", "floor",
"frac", "hypot", "iclamp", "like", "log", "log10", "log2",
"logn", "log1p", "mand", "max", "min", "mod", "mor", "mul",
"ncdf", "pow", "root", "round", "roundn", "sec", "sgn",
"sin", "sinc", "sinh", "sqrt", "sum", "swap", "tan", "tanh",
"trunc", "not_equal", "inrange", "deg2grad", "deg2rad",
"rad2deg", "grad2deg"
};
static const std::size_t base_function_list_size = sizeof(base_function_list) / sizeof(std::string);
static const std::string logic_ops_list[] =
{
"and", "nand", "nor", "not", "or", "xnor", "xor", "&", "|"
};
static const std::size_t logic_ops_list_size = sizeof(logic_ops_list) / sizeof(std::string);
static const std::string cntrl_struct_list[] =
{
"if", "switch", "for", "while", "repeat", "return"
};
static const std::size_t cntrl_struct_list_size = sizeof(cntrl_struct_list) / sizeof(std::string);
static const std::string arithmetic_ops_list[] =
{
"+", "-", "*", "/", "%", "^"
};
static const std::size_t arithmetic_ops_list_size = sizeof(arithmetic_ops_list) / sizeof(std::string);
static const std::string assignment_ops_list[] =
{
":=", "+=", "-=",
"*=", "/=", "%="
};
static const std::size_t assignment_ops_list_size = sizeof(assignment_ops_list) / sizeof(std::string);
static const std::string inequality_ops_list[] =
{
"<", "<=", "==",
"=", "!=", "<>",
">=", ">"
};
static const std::size_t inequality_ops_list_size = sizeof(inequality_ops_list) / sizeof(std::string);
inline bool is_reserved_word(const std::string& symbol)
{
for (std::size_t i = 0; i < reserved_words_size; ++i)
{
if (imatch(symbol, reserved_words[i]))
{
return true;
}
}
return false;
}
inline bool is_reserved_symbol(const std::string& symbol)
{
for (std::size_t i = 0; i < reserved_symbols_size; ++i)
{
if (imatch(symbol, reserved_symbols[i]))
{
return true;
}
}
return false;
}
inline bool is_base_function(const std::string& function_name)
{
for (std::size_t i = 0; i < base_function_list_size; ++i)
{
if (imatch(function_name, base_function_list[i]))
{
return true;
}
}
return false;
}
inline bool is_control_struct(const std::string& cntrl_strct)
{
for (std::size_t i = 0; i < cntrl_struct_list_size; ++i)
{
if (imatch(cntrl_strct, cntrl_struct_list[i]))
{
return true;
}
}
return false;
}
inline bool is_logic_opr(const std::string& lgc_opr)
{
for (std::size_t i = 0; i < logic_ops_list_size; ++i)
{
if (imatch(lgc_opr, logic_ops_list[i]))
{
return true;
}
}
return false;
}
struct cs_match
{
static inline bool cmp(const char_t c0, const char_t c1)
{
return (c0 == c1);
}
};
struct cis_match
{
static inline bool cmp(const char_t c0, const char_t c1)
{
return (std::tolower(c0) == std::tolower(c1));
}
};
template <typename Iterator, typename Compare>
inline bool match_impl(const Iterator pattern_begin,
const Iterator pattern_end,
const Iterator data_begin,
const Iterator data_end,
const typename std::iterator_traits<Iterator>::value_type& zero_or_more,
const typename std::iterator_traits<Iterator>::value_type& zero_or_one)
{
if (0 == std::distance(data_begin,data_end))
{
return false;
}
Iterator d_itr = data_begin;
Iterator p_itr = pattern_begin;
Iterator c_itr = data_begin;
Iterator m_itr = data_begin;
while ((data_end != d_itr) && (zero_or_more != (*p_itr)))
{
if ((!Compare::cmp((*p_itr),(*d_itr))) && (zero_or_one != (*p_itr)))
{
return false;
}
++p_itr;
++d_itr;
}
while (data_end != d_itr)
{
if (zero_or_more == (*p_itr))
{
if (pattern_end == (++p_itr))
{
return true;
}
m_itr = p_itr;
c_itr = d_itr;
++c_itr;
}
else if ((Compare::cmp((*p_itr),(*d_itr))) || (zero_or_one == (*p_itr)))
{
++p_itr;
++d_itr;
}
else
{
p_itr = m_itr;
d_itr = c_itr++;
}
}
while ((p_itr != pattern_end) && (zero_or_more == (*p_itr))) { ++p_itr; }
return (p_itr == pattern_end);
}
inline bool wc_match(const std::string& wild_card,
const std::string& str)
{
return match_impl<const char_t*,cs_match>(wild_card.data(),
wild_card.data() + wild_card.size(),
str.data(),
str.data() + str.size(),
'*',
'?');
}
inline bool wc_imatch(const std::string& wild_card,
const std::string& str)
{
return match_impl<const char_t*,cis_match>(wild_card.data(),
wild_card.data() + wild_card.size(),
str.data(),
str.data() + str.size(),
'*',
'?');
}
inline bool sequence_match(const std::string& pattern,
const std::string& str,
std::size_t& diff_index,
char_t& diff_value)
{
if (str.empty())
{
return ("Z" == pattern);
}
else if ('*' == pattern[0])
return false;
typedef std::string::const_iterator itr_t;
itr_t p_itr = pattern.begin();
itr_t s_itr = str .begin();
itr_t p_end = pattern.end();
itr_t s_end = str .end();
while ((s_end != s_itr) && (p_end != p_itr))
{
if ('*' == (*p_itr))
{
const char_t target = static_cast<char>(std::toupper(*(p_itr - 1)));
if ('*' == target)
{
diff_index = static_cast<std::size_t>(std::distance(str.begin(),s_itr));
diff_value = static_cast<char>(std::toupper(*p_itr));
return false;
}
else
++p_itr;
while (s_itr != s_end)
{
if (target != std::toupper(*s_itr))
break;
else
++s_itr;
}
continue;
}
else if (
('?' != *p_itr) &&
std::toupper(*p_itr) != std::toupper(*s_itr)
)
{
diff_index = static_cast<std::size_t>(std::distance(str.begin(),s_itr));
diff_value = static_cast<char>(std::toupper(*p_itr));
return false;
}
++p_itr;
++s_itr;
}
return (
(s_end == s_itr) &&
(
(p_end == p_itr) ||
('*' == *p_itr)
)
);
}
static const double pow10[] = {
1.0,
1.0E+001, 1.0E+002, 1.0E+003, 1.0E+004,
1.0E+005, 1.0E+006, 1.0E+007, 1.0E+008,
1.0E+009, 1.0E+010, 1.0E+011, 1.0E+012,
1.0E+013, 1.0E+014, 1.0E+015, 1.0E+016
};
static const std::size_t pow10_size = sizeof(pow10) / sizeof(double);
namespace numeric
{
namespace constant
{
static const double e = 2.71828182845904523536028747135266249775724709369996;
static const double pi = 3.14159265358979323846264338327950288419716939937510;
static const double pi_2 = 1.57079632679489661923132169163975144209858469968755;
static const double pi_4 = 0.78539816339744830961566084581987572104929234984378;
static const double pi_180 = 0.01745329251994329576923690768488612713442871888542;
static const double _1_pi = 0.31830988618379067153776752674502872406891929148091;
static const double _2_pi = 0.63661977236758134307553505349005744813783858296183;
static const double _180_pi = 57.29577951308232087679815481410517033240547246656443;
static const double log2 = 0.69314718055994530941723212145817656807550013436026;
static const double sqrt2 = 1.41421356237309504880168872420969807856967187537695;
}
namespace details
{
struct unknown_type_tag {};
struct real_type_tag {};
struct complex_type_tag {};
struct int_type_tag {};
template <typename T>
struct number_type { typedef unknown_type_tag type; };
#define exprtk_register_real_type_tag(T) \
template<> struct number_type<T> { typedef real_type_tag type; }; \
#define exprtk_register_complex_type_tag(T) \
template<> struct number_type<std::complex<T> > \
{ typedef complex_type_tag type; }; \
#define exprtk_register_int_type_tag(T) \
template<> struct number_type<T> { typedef int_type_tag type; }; \
exprtk_register_real_type_tag(double )
exprtk_register_real_type_tag(long double)
exprtk_register_real_type_tag(float )
exprtk_register_complex_type_tag(double )
exprtk_register_complex_type_tag(long double)
exprtk_register_complex_type_tag(float )
exprtk_register_int_type_tag(short )
exprtk_register_int_type_tag(int )
exprtk_register_int_type_tag(long long int )
exprtk_register_int_type_tag(unsigned short )
exprtk_register_int_type_tag(unsigned int )
exprtk_register_int_type_tag(unsigned long long int)
#undef exprtk_register_real_type_tag
#undef exprtk_register_int_type_tag
template <typename T>
struct epsilon_type
{
static inline T value()
{
const T epsilon = T(0.0000000001);
return epsilon;
}
};
template <>
struct epsilon_type <float>
{
static inline float value()
{
const float epsilon = float(0.000001f);
return epsilon;
}
};
template <>
struct epsilon_type <long double>
{
static inline long double value()
{
const long double epsilon = (long double)(0.000000000001);
return epsilon;
}
};
template <typename T>
inline bool is_nan_impl(const T v, real_type_tag)
{
return std::not_equal_to<T>()(v,v);
}
template <typename T>
inline int to_int32_impl(const T v, real_type_tag)
{
return static_cast<int>(v);
}
template <typename T>
inline long long int to_int64_impl(const T v, real_type_tag)
{
return static_cast<long long int>(v);
}
template <typename T>
inline bool is_true_impl(const T v)
{
return std::not_equal_to<T>()(T(0),v);
}
template <typename T>
inline bool is_false_impl(const T v)
{
return std::equal_to<T>()(T(0),v);
}
template <typename T>
inline T abs_impl(const T v, real_type_tag)
{
return ((v < T(0)) ? -v : v);
}
template <typename T>
inline T min_impl(const T v0, const T v1, real_type_tag)
{
return std::min<T>(v0,v1);
}
template <typename T>
inline T max_impl(const T v0, const T v1, real_type_tag)
{
return std::max<T>(v0,v1);
}
template <typename T>
inline T equal_impl(const T v0, const T v1, real_type_tag)
{
const T epsilon = epsilon_type<T>::value();
return (abs_impl(v0 - v1,real_type_tag()) <= (std::max(T(1),std::max(abs_impl(v0,real_type_tag()),abs_impl(v1,real_type_tag()))) * epsilon)) ? T(1) : T(0);
}
inline float equal_impl(const float v0, const float v1, real_type_tag)
{
const float epsilon = epsilon_type<float>::value();
return (abs_impl(v0 - v1,real_type_tag()) <= (std::max(1.0f,std::max(abs_impl(v0,real_type_tag()),abs_impl(v1,real_type_tag()))) * epsilon)) ? 1.0f : 0.0f;
}
template <typename T>
inline T equal_impl(const T v0, const T v1, int_type_tag)
{
return (v0 == v1) ? 1 : 0;
}
template <typename T>
inline T expm1_impl(const T v, real_type_tag)
{
// return std::expm1<T>(v);
if (abs_impl(v,real_type_tag()) < T(0.00001))
return v + (T(0.5) * v * v);
else
return std::exp(v) - T(1);
}
template <typename T>
inline T expm1_impl(const T v, int_type_tag)
{
return T(std::exp<double>(v)) - T(1);
}
template <typename T>
inline T nequal_impl(const T v0, const T v1, real_type_tag)
{
typedef real_type_tag rtg;
const T epsilon = epsilon_type<T>::value();
return (abs_impl(v0 - v1,rtg()) > (std::max(T(1),std::max(abs_impl(v0,rtg()),abs_impl(v1,rtg()))) * epsilon)) ? T(1) : T(0);
}
inline float nequal_impl(const float v0, const float v1, real_type_tag)
{
typedef real_type_tag rtg;
const float epsilon = epsilon_type<float>::value();
return (abs_impl(v0 - v1,rtg()) > (std::max(1.0f,std::max(abs_impl(v0,rtg()),abs_impl(v1,rtg()))) * epsilon)) ? 1.0f : 0.0f;
}
template <typename T>
inline T nequal_impl(const T v0, const T v1, int_type_tag)
{
return (v0 != v1) ? 1 : 0;
}
template <typename T>
inline T modulus_impl(const T v0, const T v1, real_type_tag)
{
return std::fmod(v0,v1);
}
template <typename T>
inline T modulus_impl(const T v0, const T v1, int_type_tag)
{
return v0 % v1;
}
template <typename T>
inline T pow_impl(const T v0, const T v1, real_type_tag)
{
return std::pow(v0,v1);
}
template <typename T>
inline T pow_impl(const T v0, const T v1, int_type_tag)
{
return std::pow(static_cast<double>(v0),static_cast<double>(v1));
}
template <typename T>
inline T logn_impl(const T v0, const T v1, real_type_tag)
{
return std::log(v0) / std::log(v1);
}
template <typename T>
inline T logn_impl(const T v0, const T v1, int_type_tag)
{
return static_cast<T>(logn_impl<double>(static_cast<double>(v0),static_cast<double>(v1),real_type_tag()));
}
template <typename T>
inline T log1p_impl(const T v, real_type_tag)
{
if (v > T(-1))
{
if (abs_impl(v,real_type_tag()) > T(0.0001))
{
return std::log(T(1) + v);
}
else
return (T(-0.5) * v + T(1)) * v;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
template <typename T>
inline T log1p_impl(const T v, int_type_tag)
{
if (v > T(-1))
{
return std::log(T(1) + v);
}
else
return std::numeric_limits<T>::quiet_NaN();
}
template <typename T>
inline T root_impl(const T v0, const T v1, real_type_tag)
{
return std::pow(v0,T(1) / v1);
}
template <typename T>
inline T root_impl(const T v0, const T v1, int_type_tag)
{
return root_impl<double>(static_cast<double>(v0),static_cast<double>(v1),real_type_tag());
}
template <typename T>
inline T round_impl(const T v, real_type_tag)
{
return ((v < T(0)) ? std::ceil(v - T(0.5)) : std::floor(v + T(0.5)));
}
template <typename T>
inline T roundn_impl(const T v0, const T v1, real_type_tag)
{
const int index = std::max<int>(0, std::min<int>(pow10_size - 1, (int)std::floor(v1)));
const T p10 = T(pow10[index]);
if (v0 < T(0))
return T(std::ceil ((v0 * p10) - T(0.5)) / p10);
else
return T(std::floor((v0 * p10) + T(0.5)) / p10);
}
template <typename T>
inline T roundn_impl(const T v0, const T, int_type_tag)
{
return v0;
}
template <typename T>
inline T hypot_impl(const T v0, const T v1, real_type_tag)
{
return std::sqrt((v0 * v0) + (v1 * v1));
}
template <typename T>
inline T hypot_impl(const T v0, const T v1, int_type_tag)
{
return static_cast<T>(std::sqrt(static_cast<double>((v0 * v0) + (v1 * v1))));
}
template <typename T>
inline T atan2_impl(const T v0, const T v1, real_type_tag)
{
return std::atan2(v0,v1);
}
template <typename T>
inline T atan2_impl(const T, const T, int_type_tag)
{
return 0;
}
template <typename T>
inline T shr_impl(const T v0, const T v1, real_type_tag)
{
return v0 * (T(1) / std::pow(T(2),static_cast<T>(static_cast<int>(v1))));
}
template <typename T>
inline T shr_impl(const T v0, const T v1, int_type_tag)
{
return v0 >> v1;
}
template <typename T>
inline T shl_impl(const T v0, const T v1, real_type_tag)
{
return v0 * std::pow(T(2),static_cast<T>(static_cast<int>(v1)));
}
template <typename T>
inline T shl_impl(const T v0, const T v1, int_type_tag)
{
return v0 << v1;
}
template <typename T>
inline T sgn_impl(const T v, real_type_tag)
{
if (v > T(0)) return T(+1);
else if (v < T(0)) return T(-1);
else return T( 0);
}
template <typename T>
inline T sgn_impl(const T v, int_type_tag)
{
if (v > T(0)) return T(+1);
else if (v < T(0)) return T(-1);
else return T( 0);
}
template <typename T>
inline T and_impl(const T v0, const T v1, real_type_tag)
{
return (is_true_impl(v0) && is_true_impl(v1)) ? T(1) : T(0);
}
template <typename T>
inline T and_impl(const T v0, const T v1, int_type_tag)
{
return v0 && v1;
}
template <typename T>
inline T nand_impl(const T v0, const T v1, real_type_tag)
{
return (is_false_impl(v0) || is_false_impl(v1)) ? T(1) : T(0);
}
template <typename T>
inline T nand_impl(const T v0, const T v1, int_type_tag)
{
return !(v0 && v1);
}
template <typename T>
inline T or_impl(const T v0, const T v1, real_type_tag)
{
return (is_true_impl(v0) || is_true_impl(v1)) ? T(1) : T(0);
}
template <typename T>
inline T or_impl(const T v0, const T v1, int_type_tag)
{
return (v0 || v1);
}
template <typename T>
inline T nor_impl(const T v0, const T v1, real_type_tag)
{
return (is_false_impl(v0) && is_false_impl(v1)) ? T(1) : T(0);
}
template <typename T>
inline T nor_impl(const T v0, const T v1, int_type_tag)
{
return !(v0 || v1);
}
template <typename T>
inline T xor_impl(const T v0, const T v1, real_type_tag)
{
return (is_false_impl(v0) != is_false_impl(v1)) ? T(1) : T(0);
}
template <typename T>
inline T xor_impl(const T v0, const T v1, int_type_tag)
{
return v0 ^ v1;
}
template <typename T>
inline T xnor_impl(const T v0, const T v1, real_type_tag)
{
const bool v0_true = is_true_impl(v0);
const bool v1_true = is_true_impl(v1);
if ((v0_true && v1_true) || (!v0_true && !v1_true))
return T(1);
else
return T(0);
}
template <typename T>
inline T xnor_impl(const T v0, const T v1, int_type_tag)
{
const bool v0_true = is_true_impl(v0);
const bool v1_true = is_true_impl(v1);
if ((v0_true && v1_true) || (!v0_true && !v1_true))
return T(1);
else
return T(0);
}
#if (defined(_MSC_VER) && (_MSC_VER >= 1900)) || !defined(_MSC_VER)
#define exprtk_define_erf(TT,impl) \
inline TT erf_impl(TT v) { return impl(v); } \
exprtk_define_erf( float,::erff)
exprtk_define_erf( double,::erf )
exprtk_define_erf(long double,::erfl)
#undef exprtk_define_erf
#endif
template <typename T>
inline T erf_impl(T v, real_type_tag)
{
#if defined(_MSC_VER) && (_MSC_VER < 1900)
// Credits: Abramowitz & Stegun Equations 7.1.25-28
static const T c[] = {
T( 1.26551223), T(1.00002368),
T( 0.37409196), T(0.09678418),
T(-0.18628806), T(0.27886807),
T(-1.13520398), T(1.48851587),
T(-0.82215223), T(0.17087277)
};
const T t = T(1) / (T(1) + T(0.5) * abs_impl(v,real_type_tag()));
T result = T(1) - t * std::exp((-v * v) -
c[0] + t * (c[1] + t *
(c[2] + t * (c[3] + t *
(c[4] + t * (c[5] + t *
(c[6] + t * (c[7] + t *
(c[8] + t * (c[9]))))))))));
return (v >= T(0)) ? result : -result;
#else
return erf_impl(v);
#endif
}
template <typename T>
inline T erf_impl(T v, int_type_tag)
{
return erf_impl(static_cast<double>(v),real_type_tag());
}
#if (defined(_MSC_VER) && (_MSC_VER >= 1900)) || !defined(_MSC_VER)
#define exprtk_define_erfc(TT,impl) \
inline TT erfc_impl(TT v) { return impl(v); } \
exprtk_define_erfc( float,::erfcf)
exprtk_define_erfc( double,::erfc )
exprtk_define_erfc(long double,::erfcl)
#undef exprtk_define_erfc
#endif
template <typename T>
inline T erfc_impl(T v, real_type_tag)
{
#if defined(_MSC_VER) && (_MSC_VER < 1900)
return T(1) - erf_impl(v,real_type_tag());
#else
return erfc_impl(v);
#endif
}
template <typename T>
inline T erfc_impl(T v, int_type_tag)
{
return erfc_impl(static_cast<double>(v),real_type_tag());
}
template <typename T>
inline T ncdf_impl(T v, real_type_tag)
{
T cnd = T(0.5) * (T(1) + erf_impl(
abs_impl(v,real_type_tag()) /
T(numeric::constant::sqrt2),real_type_tag()));
return (v < T(0)) ? (T(1) - cnd) : cnd;
}
template <typename T>
inline T ncdf_impl(T v, int_type_tag)
{
return ncdf_impl(static_cast<double>(v),real_type_tag());
}
template <typename T>
inline T sinc_impl(T v, real_type_tag)
{
if (std::abs(v) >= std::numeric_limits<T>::epsilon())
return(std::sin(v) / v);
else
return T(1);
}
template <typename T>
inline T sinc_impl(T v, int_type_tag)
{
return sinc_impl(static_cast<double>(v),real_type_tag());
}
template <typename T> inline T acos_impl(const T v, real_type_tag) { return std::acos (v); }
template <typename T> inline T acosh_impl(const T v, real_type_tag) { return std::log(v + std::sqrt((v * v) - T(1))); }
template <typename T> inline T asin_impl(const T v, real_type_tag) { return std::asin (v); }
template <typename T> inline T asinh_impl(const T v, real_type_tag) { return std::log(v + std::sqrt((v * v) + T(1))); }
template <typename T> inline T atan_impl(const T v, real_type_tag) { return std::atan (v); }
template <typename T> inline T atanh_impl(const T v, real_type_tag) { return (std::log(T(1) + v) - std::log(T(1) - v)) / T(2); }
template <typename T> inline T ceil_impl(const T v, real_type_tag) { return std::ceil (v); }
template <typename T> inline T cos_impl(const T v, real_type_tag) { return std::cos (v); }
template <typename T> inline T cosh_impl(const T v, real_type_tag) { return std::cosh (v); }
template <typename T> inline T exp_impl(const T v, real_type_tag) { return std::exp (v); }
template <typename T> inline T floor_impl(const T v, real_type_tag) { return std::floor(v); }
template <typename T> inline T log_impl(const T v, real_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T v, real_type_tag) { return std::log10(v); }
template <typename T> inline T log2_impl(const T v, real_type_tag) { return std::log(v)/T(numeric::constant::log2); }
template <typename T> inline T neg_impl(const T v, real_type_tag) { return -v; }
template <typename T> inline T pos_impl(const T v, real_type_tag) { return +v; }
template <typename T> inline T sin_impl(const T v, real_type_tag) { return std::sin (v); }
template <typename T> inline T sinh_impl(const T v, real_type_tag) { return std::sinh (v); }
template <typename T> inline T sqrt_impl(const T v, real_type_tag) { return std::sqrt (v); }
template <typename T> inline T tan_impl(const T v, real_type_tag) { return std::tan (v); }
template <typename T> inline T tanh_impl(const T v, real_type_tag) { return std::tanh (v); }
template <typename T> inline T cot_impl(const T v, real_type_tag) { return T(1) / std::tan(v); }
template <typename T> inline T sec_impl(const T v, real_type_tag) { return T(1) / std::cos(v); }
template <typename T> inline T csc_impl(const T v, real_type_tag) { return T(1) / std::sin(v); }
template <typename T> inline T r2d_impl(const T v, real_type_tag) { return (v * T(numeric::constant::_180_pi)); }
template <typename T> inline T d2r_impl(const T v, real_type_tag) { return (v * T(numeric::constant::pi_180)); }
template <typename T> inline T d2g_impl(const T v, real_type_tag) { return (v * T(20.0/9.0)); }
template <typename T> inline T g2d_impl(const T v, real_type_tag) { return (v * T(9.0/20.0)); }
template <typename T> inline T notl_impl(const T v, real_type_tag) { return (std::not_equal_to<T>()(T(0),v) ? T(0) : T(1)); }
template <typename T> inline T frac_impl(const T v, real_type_tag) { return (v - static_cast<long long>(v)); }
template <typename T> inline T trunc_impl(const T v, real_type_tag) { return T(static_cast<long long>(v)); }
template <typename T> inline T abs_impl(const T v, int_type_tag) { return ((v >= T(0)) ? v : -v); }
template <typename T> inline T exp_impl(const T v, int_type_tag) { return std::exp (v); }
template <typename T> inline T log_impl(const T v, int_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T v, int_type_tag) { return std::log10(v); }
template <typename T> inline T log2_impl(const T v, int_type_tag) { return std::log(v)/T(numeric::constant::log2); }
template <typename T> inline T neg_impl(const T v, int_type_tag) { return -v; }
template <typename T> inline T pos_impl(const T v, int_type_tag) { return +v; }
template <typename T> inline T ceil_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T floor_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T round_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T notl_impl(const T v, int_type_tag) { return !v; }
template <typename T> inline T sqrt_impl(const T v, int_type_tag) { return std::sqrt (v); }
template <typename T> inline T frac_impl(const T , int_type_tag) { return T(0); }
template <typename T> inline T trunc_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T acos_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T acosh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T asin_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T asinh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T atan_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T atanh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cos_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cosh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sin_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sinh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tan_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tanh_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cot_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sec_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T csc_impl(const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T>
inline bool is_integer_impl(const T& v, real_type_tag)
{
return std::equal_to<T>()(T(0),std::fmod(v,T(1)));
}
template <typename T>
inline bool is_integer_impl(const T&, int_type_tag)
{
return true;
}
}
template <typename Type>
struct numeric_info { enum { length = 0, size = 32, bound_length = 0, min_exp = 0, max_exp = 0 }; };
template<> struct numeric_info<int> { enum { length = 10, size = 16, bound_length = 9}; };
template<> struct numeric_info<float> { enum { min_exp = -38, max_exp = +38}; };
template<> struct numeric_info<double> { enum { min_exp = -308, max_exp = +308}; };
template<> struct numeric_info<long double> { enum { min_exp = -308, max_exp = +308}; };
template <typename T>
inline int to_int32(const T v)
{
typename details::number_type<T>::type num_type;
return to_int32_impl(v, num_type);
}
template <typename T>
inline long long int to_int64(const T v)
{
typename details::number_type<T>::type num_type;
return to_int64_impl(v, num_type);
}
template <typename T>
inline bool is_nan(const T v)
{
typename details::number_type<T>::type num_type;
return is_nan_impl(v, num_type);
}
template <typename T>
inline T min(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return min_impl(v0, v1, num_type);
}
template <typename T>
inline T max(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return max_impl(v0, v1, num_type);
}
template <typename T>
inline T equal(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return equal_impl(v0, v1, num_type);
}
template <typename T>
inline T nequal(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return nequal_impl(v0, v1, num_type);
}
template <typename T>
inline T modulus(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return modulus_impl(v0, v1, num_type);
}
template <typename T>
inline T pow(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return pow_impl(v0, v1, num_type);
}
template <typename T>
inline T logn(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return logn_impl(v0, v1, num_type);
}
template <typename T>
inline T root(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return root_impl(v0, v1, num_type);
}
template <typename T>
inline T roundn(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return roundn_impl(v0, v1, num_type);
}
template <typename T>
inline T hypot(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return hypot_impl(v0, v1, num_type);
}
template <typename T>
inline T atan2(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return atan2_impl(v0, v1, num_type);
}
template <typename T>
inline T shr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return shr_impl(v0, v1, num_type);
}
template <typename T>
inline T shl(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return shl_impl(v0, v1, num_type);
}
template <typename T>
inline T and_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return and_impl(v0, v1, num_type);
}
template <typename T>
inline T nand_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return nand_impl(v0, v1, num_type);
}
template <typename T>
inline T or_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return or_impl(v0, v1, num_type);
}
template <typename T>
inline T nor_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return nor_impl(v0, v1, num_type);
}
template <typename T>
inline T xor_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return xor_impl(v0, v1, num_type);
}
template <typename T>
inline T xnor_opr(const T v0, const T v1)
{
typename details::number_type<T>::type num_type;
return xnor_impl(v0, v1, num_type);
}
template <typename T>
inline bool is_integer(const T v)
{
typename details::number_type<T>::type num_type;
return is_integer_impl(v, num_type);
}
template <typename T, unsigned int N>
struct fast_exp
{
static inline T result(T v)
{
unsigned int k = N;
T l = T(1);
while (k)
{
if (k & 1)
{
l *= v;
--k;
}
v *= v;
k >>= 1;
}
return l;
}
};
template <typename T> struct fast_exp<T,10> { static inline T result(T v) { T v_5 = fast_exp<T,5>::result(v); return v_5 * v_5; } };
template <typename T> struct fast_exp<T, 9> { static inline T result(T v) { return fast_exp<T,8>::result(v) * v; } };
template <typename T> struct fast_exp<T, 8> { static inline T result(T v) { T v_4 = fast_exp<T,4>::result(v); return v_4 * v_4; } };
template <typename T> struct fast_exp<T, 7> { static inline T result(T v) { return fast_exp<T,6>::result(v) * v; } };
template <typename T> struct fast_exp<T, 6> { static inline T result(T v) { T v_3 = fast_exp<T,3>::result(v); return v_3 * v_3; } };
template <typename T> struct fast_exp<T, 5> { static inline T result(T v) { return fast_exp<T,4>::result(v) * v; } };
template <typename T> struct fast_exp<T, 4> { static inline T result(T v) { T v_2 = v * v; return v_2 * v_2; } };
template <typename T> struct fast_exp<T, 3> { static inline T result(T v) { return v * v * v; } };
template <typename T> struct fast_exp<T, 2> { static inline T result(T v) { return v * v; } };
template <typename T> struct fast_exp<T, 1> { static inline T result(T v) { return v; } };
template <typename T> struct fast_exp<T, 0> { static inline T result(T ) { return T(1); } };
#define exprtk_define_unary_function(FunctionName) \
template <typename T> \
inline T FunctionName (const T v) \
{ \
typename details::number_type<T>::type num_type; \
return FunctionName##_impl(v,num_type); \
} \
exprtk_define_unary_function(abs )
exprtk_define_unary_function(acos )
exprtk_define_unary_function(acosh)
exprtk_define_unary_function(asin )
exprtk_define_unary_function(asinh)
exprtk_define_unary_function(atan )
exprtk_define_unary_function(atanh)
exprtk_define_unary_function(ceil )
exprtk_define_unary_function(cos )
exprtk_define_unary_function(cosh )
exprtk_define_unary_function(exp )
exprtk_define_unary_function(expm1)
exprtk_define_unary_function(floor)
exprtk_define_unary_function(log )
exprtk_define_unary_function(log10)
exprtk_define_unary_function(log2 )
exprtk_define_unary_function(log1p)
exprtk_define_unary_function(neg )
exprtk_define_unary_function(pos )
exprtk_define_unary_function(round)
exprtk_define_unary_function(sin )
exprtk_define_unary_function(sinc )
exprtk_define_unary_function(sinh )
exprtk_define_unary_function(sqrt )
exprtk_define_unary_function(tan )
exprtk_define_unary_function(tanh )
exprtk_define_unary_function(cot )
exprtk_define_unary_function(sec )
exprtk_define_unary_function(csc )
exprtk_define_unary_function(r2d )
exprtk_define_unary_function(d2r )
exprtk_define_unary_function(d2g )
exprtk_define_unary_function(g2d )
exprtk_define_unary_function(notl )
exprtk_define_unary_function(sgn )
exprtk_define_unary_function(erf )
exprtk_define_unary_function(erfc )
exprtk_define_unary_function(ncdf )
exprtk_define_unary_function(frac )
exprtk_define_unary_function(trunc)
#undef exprtk_define_unary_function
}
template <typename T>
inline T compute_pow10(T d, const int exponent)
{
static const double fract10[] =
{
0.0,
1.0E+001, 1.0E+002, 1.0E+003, 1.0E+004, 1.0E+005, 1.0E+006, 1.0E+007, 1.0E+008, 1.0E+009, 1.0E+010,
1.0E+011, 1.0E+012, 1.0E+013, 1.0E+014, 1.0E+015, 1.0E+016, 1.0E+017, 1.0E+018, 1.0E+019, 1.0E+020,
1.0E+021, 1.0E+022, 1.0E+023, 1.0E+024, 1.0E+025, 1.0E+026, 1.0E+027, 1.0E+028, 1.0E+029, 1.0E+030,
1.0E+031, 1.0E+032, 1.0E+033, 1.0E+034, 1.0E+035, 1.0E+036, 1.0E+037, 1.0E+038, 1.0E+039, 1.0E+040,
1.0E+041, 1.0E+042, 1.0E+043, 1.0E+044, 1.0E+045, 1.0E+046, 1.0E+047, 1.0E+048, 1.0E+049, 1.0E+050,
1.0E+051, 1.0E+052, 1.0E+053, 1.0E+054, 1.0E+055, 1.0E+056, 1.0E+057, 1.0E+058, 1.0E+059, 1.0E+060,
1.0E+061, 1.0E+062, 1.0E+063, 1.0E+064, 1.0E+065, 1.0E+066, 1.0E+067, 1.0E+068, 1.0E+069, 1.0E+070,
1.0E+071, 1.0E+072, 1.0E+073, 1.0E+074, 1.0E+075, 1.0E+076, 1.0E+077, 1.0E+078, 1.0E+079, 1.0E+080,
1.0E+081, 1.0E+082, 1.0E+083, 1.0E+084, 1.0E+085, 1.0E+086, 1.0E+087, 1.0E+088, 1.0E+089, 1.0E+090,
1.0E+091, 1.0E+092, 1.0E+093, 1.0E+094, 1.0E+095, 1.0E+096, 1.0E+097, 1.0E+098, 1.0E+099, 1.0E+100,
1.0E+101, 1.0E+102, 1.0E+103, 1.0E+104, 1.0E+105, 1.0E+106, 1.0E+107, 1.0E+108, 1.0E+109, 1.0E+110,
1.0E+111, 1.0E+112, 1.0E+113, 1.0E+114, 1.0E+115, 1.0E+116, 1.0E+117, 1.0E+118, 1.0E+119, 1.0E+120,
1.0E+121, 1.0E+122, 1.0E+123, 1.0E+124, 1.0E+125, 1.0E+126, 1.0E+127, 1.0E+128, 1.0E+129, 1.0E+130,
1.0E+131, 1.0E+132, 1.0E+133, 1.0E+134, 1.0E+135, 1.0E+136, 1.0E+137, 1.0E+138, 1.0E+139, 1.0E+140,
1.0E+141, 1.0E+142, 1.0E+143, 1.0E+144, 1.0E+145, 1.0E+146, 1.0E+147, 1.0E+148, 1.0E+149, 1.0E+150,
1.0E+151, 1.0E+152, 1.0E+153, 1.0E+154, 1.0E+155, 1.0E+156, 1.0E+157, 1.0E+158, 1.0E+159, 1.0E+160,
1.0E+161, 1.0E+162, 1.0E+163, 1.0E+164, 1.0E+165, 1.0E+166, 1.0E+167, 1.0E+168, 1.0E+169, 1.0E+170,
1.0E+171, 1.0E+172, 1.0E+173, 1.0E+174, 1.0E+175, 1.0E+176, 1.0E+177, 1.0E+178, 1.0E+179, 1.0E+180,
1.0E+181, 1.0E+182, 1.0E+183, 1.0E+184, 1.0E+185, 1.0E+186, 1.0E+187, 1.0E+188, 1.0E+189, 1.0E+190,
1.0E+191, 1.0E+192, 1.0E+193, 1.0E+194, 1.0E+195, 1.0E+196, 1.0E+197, 1.0E+198, 1.0E+199, 1.0E+200,
1.0E+201, 1.0E+202, 1.0E+203, 1.0E+204, 1.0E+205, 1.0E+206, 1.0E+207, 1.0E+208, 1.0E+209, 1.0E+210,
1.0E+211, 1.0E+212, 1.0E+213, 1.0E+214, 1.0E+215, 1.0E+216, 1.0E+217, 1.0E+218, 1.0E+219, 1.0E+220,
1.0E+221, 1.0E+222, 1.0E+223, 1.0E+224, 1.0E+225, 1.0E+226, 1.0E+227, 1.0E+228, 1.0E+229, 1.0E+230,
1.0E+231, 1.0E+232, 1.0E+233, 1.0E+234, 1.0E+235, 1.0E+236, 1.0E+237, 1.0E+238, 1.0E+239, 1.0E+240,
1.0E+241, 1.0E+242, 1.0E+243, 1.0E+244, 1.0E+245, 1.0E+246, 1.0E+247, 1.0E+248, 1.0E+249, 1.0E+250,
1.0E+251, 1.0E+252, 1.0E+253, 1.0E+254, 1.0E+255, 1.0E+256, 1.0E+257, 1.0E+258, 1.0E+259, 1.0E+260,
1.0E+261, 1.0E+262, 1.0E+263, 1.0E+264, 1.0E+265, 1.0E+266, 1.0E+267, 1.0E+268, 1.0E+269, 1.0E+270,
1.0E+271, 1.0E+272, 1.0E+273, 1.0E+274, 1.0E+275, 1.0E+276, 1.0E+277, 1.0E+278, 1.0E+279, 1.0E+280,
1.0E+281, 1.0E+282, 1.0E+283, 1.0E+284, 1.0E+285, 1.0E+286, 1.0E+287, 1.0E+288, 1.0E+289, 1.0E+290,
1.0E+291, 1.0E+292, 1.0E+293, 1.0E+294, 1.0E+295, 1.0E+296, 1.0E+297, 1.0E+298, 1.0E+299, 1.0E+300,
1.0E+301, 1.0E+302, 1.0E+303, 1.0E+304, 1.0E+305, 1.0E+306, 1.0E+307, 1.0E+308
};
static const int fract10_size = static_cast<int>(sizeof(fract10) / sizeof(double));
const int e = std::abs(exponent);
if (exponent >= std::numeric_limits<T>::min_exponent10)
{
if (e < fract10_size)
{
if (exponent > 0)
return T(d * fract10[e]);
else
return T(d / fract10[e]);
}
else
return T(d * std::pow(10.0, 10.0 * exponent));
}
else
{
d /= T(fract10[ -std::numeric_limits<T>::min_exponent10]);
return T(d / fract10[-exponent + std::numeric_limits<T>::min_exponent10]);
}
}
template <typename Iterator, typename T>
inline bool string_to_type_converter_impl_ref(Iterator& itr, const Iterator end, T& result)
{
if (itr == end)
return false;
const bool negative = ('-' == (*itr));
if (negative || ('+' == (*itr)))
{
if (end == ++itr)
return false;
}
static const uchar_t zero = static_cast<uchar_t>('0');
while ((end != itr) && (zero == (*itr))) ++itr;
bool return_result = true;
unsigned int digit = 0;
const std::size_t length = static_cast<std::size_t>(std::distance(itr,end));
if (length <= 4)
{
exprtk_disable_fallthrough_begin
switch (length)
{
#ifdef exprtk_use_lut
#define exprtk_process_digit \
if ((digit = details::digit_table[(int)*itr++]) < 10) \
result = result * 10 + (digit); \
else \
{ \
return_result = false; \
break; \
} \
#else
#define exprtk_process_digit \
if ((digit = (*itr++ - zero)) < 10) \
result = result * T(10) + digit; \
else \
{ \
return_result = false; \
break; \
} \
#endif
case 4 : exprtk_process_digit
case 3 : exprtk_process_digit
case 2 : exprtk_process_digit
case 1 : if ((digit = (*itr - zero))>= 10) { digit = 0; return_result = false; }
#undef exprtk_process_digit
}
exprtk_disable_fallthrough_end
}
else
return_result = false;
if (length && return_result)
{
result = result * 10 + static_cast<T>(digit);
++itr;
}
result = negative ? -result : result;
return return_result;
}
template <typename Iterator, typename T>
static inline bool parse_nan(Iterator& itr, const Iterator end, T& t)
{
typedef typename std::iterator_traits<Iterator>::value_type type;
static const std::size_t nan_length = 3;
if (std::distance(itr,end) != static_cast<int>(nan_length))
return false;
if (static_cast<type>('n') == (*itr))
{
if (
(static_cast<type>('a') != *(itr + 1)) ||
(static_cast<type>('n') != *(itr + 2))
)
{
return false;
}
}
else if (
(static_cast<type>('A') != *(itr + 1)) ||
(static_cast<type>('N') != *(itr + 2))
)
{
return false;
}
t = std::numeric_limits<T>::quiet_NaN();
return true;
}
template <typename Iterator, typename T>
static inline bool parse_inf(Iterator& itr, const Iterator end, T& t, bool negative)
{
static const char_t inf_uc[] = "INFINITY";
static const char_t inf_lc[] = "infinity";
static const std::size_t inf_length = 8;
const std::size_t length = static_cast<std::size_t>(std::distance(itr,end));
if ((3 != length) && (inf_length != length))
return false;
const char_t* inf_itr = ('i' == (*itr)) ? inf_lc : inf_uc;
while (end != itr)
{
if (*inf_itr == static_cast<char>(*itr))
{
++itr;
++inf_itr;
continue;
}
else
return false;
}
if (negative)
t = -std::numeric_limits<T>::infinity();
else
t = std::numeric_limits<T>::infinity();
return true;
}
template <typename Iterator, typename T>
inline bool string_to_real(Iterator& itr_external, const Iterator end, T& t, numeric::details::real_type_tag)
{
if (end == itr_external) return false;
Iterator itr = itr_external;
T d = T(0);
const bool negative = ('-' == (*itr));
if (negative || '+' == (*itr))
{
if (end == ++itr)
return false;
}
bool instate = false;
static const char zero = static_cast<uchar_t>('0');
#define parse_digit_1(d) \
if ((digit = (*itr - zero)) < 10) \
{ d = d * T(10) + digit; } \
else \
{ break; } \
if (end == ++itr) break; \
#define parse_digit_2(d) \
if ((digit = (*itr - zero)) < 10) \
{ d = d * T(10) + digit; } \
else { break; } \
++itr; \
if ('.' != (*itr))
{
const Iterator curr = itr;
while ((end != itr) && (zero == (*itr))) ++itr;
unsigned int digit;
while (end != itr)
{
// Note: For 'physical' superscalar architectures it
// is advised that the following loop be: 4xPD1 and 1xPD2
#ifdef exprtk_enable_superscalar
parse_digit_1(d)
parse_digit_1(d)
#endif
parse_digit_1(d)
parse_digit_1(d)
parse_digit_2(d)
}
if (curr != itr) instate = true;
}
int exponent = 0;
if (end != itr)
{
if ('.' == (*itr))
{
const Iterator curr = ++itr;
unsigned int digit;
T tmp_d = T(0);
while (end != itr)
{
#ifdef exprtk_enable_superscalar
parse_digit_1(tmp_d)
parse_digit_1(tmp_d)
parse_digit_1(tmp_d)
#endif
parse_digit_1(tmp_d)
parse_digit_1(tmp_d)
parse_digit_2(tmp_d)
}
if (curr != itr)
{
instate = true;
d += compute_pow10(tmp_d,static_cast<int>(-std::distance(curr,itr)));
}
#undef parse_digit_1
#undef parse_digit_2
}
if (end != itr)
{
typename std::iterator_traits<Iterator>::value_type c = (*itr);
if (('e' == c) || ('E' == c))
{
int exp = 0;
if (!details::string_to_type_converter_impl_ref(++itr, end, exp))
{
if (end == itr)
return false;
else
c = (*itr);
}
exponent += exp;
}
if (end != itr)
{
if (('f' == c) || ('F' == c) || ('l' == c) || ('L' == c))
++itr;
else if ('#' == c)
{
if (end == ++itr)
return false;
else if (('I' <= (*itr)) && ((*itr) <= 'n'))
{
if (('i' == (*itr)) || ('I' == (*itr)))
{
return parse_inf(itr, end, t, negative);
}
else if (('n' == (*itr)) || ('N' == (*itr)))
{
return parse_nan(itr, end, t);
}
else
return false;
}
else
return false;
}
else if (('I' <= (*itr)) && ((*itr) <= 'n'))
{
if (('i' == (*itr)) || ('I' == (*itr)))
{
return parse_inf(itr, end, t, negative);
}
else if (('n' == (*itr)) || ('N' == (*itr)))
{
return parse_nan(itr, end, t);
}
else
return false;
}
else
return false;
}
}
}
if ((end != itr) || (!instate))
return false;
else if (exponent)
d = compute_pow10(d,exponent);
t = static_cast<T>((negative) ? -d : d);
return true;
}
template <typename T>
inline bool string_to_real(const std::string& s, T& t)
{
const typename numeric::details::number_type<T>::type num_type;
const char_t* begin = s.data();
const char_t* end = s.data() + s.size();
return string_to_real(begin, end, t, num_type);
}
template <typename T>
struct functor_t
{
/*
Note: The following definitions for Type, may require tweaking
based on the compiler and target architecture. The benchmark
should provide enough information to make the right choice.
*/
//typedef T Type;
//typedef const T Type;
typedef const T& Type;
typedef T& RefType;
typedef T (*qfunc_t)(Type t0, Type t1, Type t2, Type t3);
typedef T (*tfunc_t)(Type t0, Type t1, Type t2);
typedef T (*bfunc_t)(Type t0, Type t1);
typedef T (*ufunc_t)(Type t0);
};
} // namespace details
namespace lexer
{
struct token
{
enum token_type
{
e_none = 0, e_error = 1, e_err_symbol = 2,
e_err_number = 3, e_err_string = 4, e_err_sfunc = 5,
e_eof = 6, e_number = 7, e_symbol = 8,
e_string = 9, e_assign = 10, e_addass = 11,
e_subass = 12, e_mulass = 13, e_divass = 14,
e_modass = 15, e_shr = 16, e_shl = 17,
e_lte = 18, e_ne = 19, e_gte = 20,
e_swap = 21, e_lt = '<', e_gt = '>',
e_eq = '=', e_rbracket = ')', e_lbracket = '(',
e_rsqrbracket = ']', e_lsqrbracket = '[', e_rcrlbracket = '}',
e_lcrlbracket = '{', e_comma = ',', e_add = '+',
e_sub = '-', e_div = '/', e_mul = '*',
e_mod = '%', e_pow = '^', e_colon = ':',
e_ternary = '?'
};
token()
: type(e_none),
value(""),
position(std::numeric_limits<std::size_t>::max())
{}
void clear()
{
type = e_none;
value = "";
position = std::numeric_limits<std::size_t>::max();
}
template <typename Iterator>
inline token& set_operator(const token_type tt,
const Iterator begin, const Iterator end,
const Iterator base_begin = Iterator(0))
{
type = tt;
value.assign(begin,end);
if (base_begin)
position = static_cast<std::size_t>(std::distance(base_begin,begin));
return (*this);
}
template <typename Iterator>
inline token& set_symbol(const Iterator begin, const Iterator end, const Iterator base_begin = Iterator(0))
{
type = e_symbol;
value.assign(begin,end);
if (base_begin)
position = static_cast<std::size_t>(std::distance(base_begin,begin));
return (*this);
}
template <typename Iterator>
inline token& set_numeric(const Iterator begin, const Iterator end, const Iterator base_begin = Iterator(0))
{
type = e_number;
value.assign(begin,end);
if (base_begin)
position = static_cast<std::size_t>(std::distance(base_begin,begin));
return (*this);
}
template <typename Iterator>
inline token& set_string(const Iterator begin, const Iterator end, const Iterator base_begin = Iterator(0))
{
type = e_string;
value.assign(begin,end);
if (base_begin)
position = static_cast<std::size_t>(std::distance(base_begin,begin));
return (*this);
}
inline token& set_string(const std::string& s, const std::size_t p)
{
type = e_string;
value = s;
position = p;
return (*this);
}
template <typename Iterator>
inline token& set_error(const token_type et,
const Iterator begin, const Iterator end,
const Iterator base_begin = Iterator(0))
{
if (
(e_error == et) ||
(e_err_symbol == et) ||
(e_err_number == et) ||
(e_err_string == et) ||
(e_err_sfunc == et)
)
{
type = et;
}
else
type = e_error;
value.assign(begin,end);
if (base_begin)
position = static_cast<std::size_t>(std::distance(base_begin,begin));
return (*this);
}
static inline std::string to_str(token_type t)
{
switch (t)
{
case e_none : return "NONE";
case e_error : return "ERROR";
case e_err_symbol : return "ERROR_SYMBOL";
case e_err_number : return "ERROR_NUMBER";
case e_err_string : return "ERROR_STRING";
case e_eof : return "EOF";
case e_number : return "NUMBER";
case e_symbol : return "SYMBOL";
case e_string : return "STRING";
case e_assign : return ":=";
case e_addass : return "+=";
case e_subass : return "-=";
case e_mulass : return "*=";
case e_divass : return "/=";
case e_modass : return "%=";
case e_shr : return ">>";
case e_shl : return "<<";
case e_lte : return "<=";
case e_ne : return "!=";
case e_gte : return ">=";
case e_lt : return "<";
case e_gt : return ">";
case e_eq : return "=";
case e_rbracket : return ")";
case e_lbracket : return "(";
case e_rsqrbracket : return "]";
case e_lsqrbracket : return "[";
case e_rcrlbracket : return "}";
case e_lcrlbracket : return "{";
case e_comma : return ",";
case e_add : return "+";
case e_sub : return "-";
case e_div : return "/";
case e_mul : return "*";
case e_mod : return "%";
case e_pow : return "^";
case e_colon : return ":";
case e_ternary : return "?";
case e_swap : return "<=>";
default : return "UNKNOWN";
}
}
inline bool is_error() const
{
return (
(e_error == type) ||
(e_err_symbol == type) ||
(e_err_number == type) ||
(e_err_string == type) ||
(e_err_sfunc == type)
);
}
token_type type;
std::string value;
std::size_t position;
};
class generator
{
public:
typedef token token_t;
typedef std::vector<token_t> token_list_t;
typedef std::vector<token_t>::iterator token_list_itr_t;
typedef details::char_t char_t;
generator()
: base_itr_(0),
s_itr_ (0),
s_end_ (0)
{
clear();
}
inline void clear()
{
base_itr_ = 0;
s_itr_ = 0;
s_end_ = 0;
token_list_.clear();
token_itr_ = token_list_.end();
store_token_itr_ = token_list_.end();
}
inline bool process(const std::string& str)
{
base_itr_ = str.data();
s_itr_ = str.data();
s_end_ = str.data() + str.size();
eof_token_.set_operator(token_t::e_eof,s_end_,s_end_,base_itr_);
token_list_.clear();
while (!is_end(s_itr_))
{
scan_token();
if (token_list_.empty())
return true;
else if (token_list_.back().is_error())
return false;
}
return true;
}
inline bool empty() const
{
return token_list_.empty();
}
inline std::size_t size() const
{
return token_list_.size();
}
inline void begin()
{
token_itr_ = token_list_.begin();
store_token_itr_ = token_list_.begin();
}
inline void store()
{
store_token_itr_ = token_itr_;
}
inline void restore()
{
token_itr_ = store_token_itr_;
}
inline token_t& next_token()
{
if (token_list_.end() != token_itr_)
{
return *token_itr_++;
}
else
return eof_token_;
}
inline token_t& peek_next_token()
{
if (token_list_.end() != token_itr_)
{
return *token_itr_;
}
else
return eof_token_;
}
inline token_t& operator[](const std::size_t& index)
{
if (index < token_list_.size())
return token_list_[index];
else
return eof_token_;
}
inline token_t operator[](const std::size_t& index) const
{
if (index < token_list_.size())
return token_list_[index];
else
return eof_token_;
}
inline bool finished() const
{
return (token_list_.end() == token_itr_);
}
inline void insert_front(token_t::token_type tk_type)
{
if (
!token_list_.empty() &&
(token_list_.end() != token_itr_)
)
{
token_t t = *token_itr_;
t.type = tk_type;
token_itr_ = token_list_.insert(token_itr_,t);
}
}
inline std::string substr(const std::size_t& begin, const std::size_t& end)
{
const char_t* begin_itr = ((base_itr_ + begin) < s_end_) ? (base_itr_ + begin) : s_end_;
const char_t* end_itr = ((base_itr_ + end) < s_end_) ? (base_itr_ + end) : s_end_;
return std::string(begin_itr,end_itr);
}
inline std::string remaining() const
{
if (finished())
return "";
else if (token_list_.begin() != token_itr_)
return std::string(base_itr_ + (token_itr_ - 1)->position,s_end_);
else
return std::string(base_itr_ + token_itr_->position,s_end_);
}
private:
inline bool is_end(const char_t* itr)
{
return (s_end_ == itr);
}
inline void skip_whitespace()
{
while (!is_end(s_itr_) && details::is_whitespace(*s_itr_))
{
++s_itr_;
}
}
inline void skip_comments()
{
#ifndef exprtk_disable_comments
// The following comment styles are supported:
// 1. // .... \n
// 2. # .... \n
// 3. /* .... */
struct test
{
static inline bool comment_start(const char_t c0, const char_t c1, int& mode, int& incr)
{
mode = 0;
if ('#' == c0) { mode = 1; incr = 1; }
else if ('/' == c0)
{
if ('/' == c1) { mode = 1; incr = 2; }
else if ('*' == c1) { mode = 2; incr = 2; }
}
return (0 != mode);
}
static inline bool comment_end(const char_t c0, const char_t c1, const int mode)
{
return (
((1 == mode) && ('\n' == c0)) ||
((2 == mode) && ( '*' == c0) && ('/' == c1))
);
}
};
int mode = 0;
int increment = 0;
if (is_end(s_itr_) || is_end((s_itr_ + 1)))
return;
else if (!test::comment_start(*s_itr_, *(s_itr_ + 1), mode, increment))
return;
s_itr_ += increment;
while (!is_end(s_itr_) && !test::comment_end(*s_itr_, *(s_itr_ + 1), mode))
{
++s_itr_;
}
if (!is_end(s_itr_))
{
s_itr_ += mode;
skip_whitespace();
skip_comments ();
}
#endif
}
inline void scan_token()
{
skip_whitespace();
skip_comments ();
if (is_end(s_itr_))
{
return;
}
else if (details::is_operator_char(*s_itr_))
{
scan_operator();
return;
}
else if (details::is_letter(*s_itr_))
{
scan_symbol();
return;
}
else if (details::is_digit((*s_itr_)) || ('.' == (*s_itr_)))
{
scan_number();
return;
}
else if ('$' == (*s_itr_))
{
scan_special_function();
return;
}
#ifndef exprtk_disable_string_capabilities
else if ('\'' == (*s_itr_))
{
scan_string();
return;
}
#endif
else if ('~' == (*s_itr_))
{
token_t t;
t.set_symbol(s_itr_, s_itr_ + 1, base_itr_);
token_list_.push_back(t);
++s_itr_;
return;
}
else
{
token_t t;
t.set_error(token::e_error, s_itr_, s_itr_ + 2, base_itr_);
token_list_.push_back(t);
++s_itr_;
}
}
inline void scan_operator()
{
token_t t;
const char_t c0 = s_itr_[0];
if (!is_end(s_itr_ + 1))
{
const char_t c1 = s_itr_[1];
if (!is_end(s_itr_ + 2))
{
const char_t c2 = s_itr_[2];
if ((c0 == '<') && (c1 == '=') && (c2 == '>'))
{
t.set_operator(token_t::e_swap, s_itr_, s_itr_ + 3, base_itr_);
token_list_.push_back(t);
s_itr_ += 3;
return;
}
}
token_t::token_type ttype = token_t::e_none;
if ((c0 == '<') && (c1 == '=')) ttype = token_t::e_lte;
else if ((c0 == '>') && (c1 == '=')) ttype = token_t::e_gte;
else if ((c0 == '<') && (c1 == '>')) ttype = token_t::e_ne;
else if ((c0 == '!') && (c1 == '=')) ttype = token_t::e_ne;
else if ((c0 == '=') && (c1 == '=')) ttype = token_t::e_eq;
else if ((c0 == ':') && (c1 == '=')) ttype = token_t::e_assign;
else if ((c0 == '<') && (c1 == '<')) ttype = token_t::e_shl;
else if ((c0 == '>') && (c1 == '>')) ttype = token_t::e_shr;
else if ((c0 == '+') && (c1 == '=')) ttype = token_t::e_addass;
else if ((c0 == '-') && (c1 == '=')) ttype = token_t::e_subass;
else if ((c0 == '*') && (c1 == '=')) ttype = token_t::e_mulass;
else if ((c0 == '/') && (c1 == '=')) ttype = token_t::e_divass;
else if ((c0 == '%') && (c1 == '=')) ttype = token_t::e_modass;
if (token_t::e_none != ttype)
{
t.set_operator(ttype, s_itr_, s_itr_ + 2, base_itr_);
token_list_.push_back(t);
s_itr_ += 2;
return;
}
}
if ('<' == c0)
t.set_operator(token_t::e_lt , s_itr_, s_itr_ + 1, base_itr_);
else if ('>' == c0)
t.set_operator(token_t::e_gt , s_itr_, s_itr_ + 1, base_itr_);
else if (';' == c0)
t.set_operator(token_t::e_eof, s_itr_, s_itr_ + 1, base_itr_);
else if ('&' == c0)
t.set_symbol(s_itr_, s_itr_ + 1, base_itr_);
else if ('|' == c0)
t.set_symbol(s_itr_, s_itr_ + 1, base_itr_);
else
t.set_operator(token_t::token_type(c0), s_itr_, s_itr_ + 1, base_itr_);
token_list_.push_back(t);
++s_itr_;
}
inline void scan_symbol()
{
const char_t* initial_itr = s_itr_;
while (!is_end(s_itr_))
{
if (!details::is_letter_or_digit(*s_itr_) && ('_' != (*s_itr_)))
{
if ('.' != (*s_itr_))
break;
/*
Permit symbols that contain a 'dot'
Allowed : abc.xyz, a123.xyz, abc.123, abc_.xyz a123_.xyz abc._123
Disallowed: .abc, abc.<white-space>, abc.<eof>, abc.<operator +,-,*,/...>
*/
if (
(s_itr_ != initial_itr) &&
!is_end(s_itr_ + 1) &&
!details::is_letter_or_digit(*(s_itr_ + 1)) &&
('_' != (*(s_itr_ + 1)))
)
break;
}
++s_itr_;
}
token_t t;
t.set_symbol(initial_itr,s_itr_,base_itr_);
token_list_.push_back(t);
}
inline void scan_number()
{
/*
Attempt to match a valid numeric value in one of the following formats:
(01) 123456
(02) 123456.
(03) 123.456
(04) 123.456e3
(05) 123.456E3
(06) 123.456e+3
(07) 123.456E+3
(08) 123.456e-3
(09) 123.456E-3
(00) .1234
(11) .1234e3
(12) .1234E+3
(13) .1234e+3
(14) .1234E-3
(15) .1234e-3
*/
const char_t* initial_itr = s_itr_;
bool dot_found = false;
bool e_found = false;
bool post_e_sign_found = false;
bool post_e_digit_found = false;
token_t t;
while (!is_end(s_itr_))
{
if ('.' == (*s_itr_))
{
if (dot_found)
{
t.set_error(token::e_err_number, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
dot_found = true;
++s_itr_;
continue;
}
else if ('e' == std::tolower(*s_itr_))
{
const char_t& c = *(s_itr_ + 1);
if (is_end(s_itr_ + 1))
{
t.set_error(token::e_err_number, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
else if (
('+' != c) &&
('-' != c) &&
!details::is_digit(c)
)
{
t.set_error(token::e_err_number, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
e_found = true;
++s_itr_;
continue;
}
else if (e_found && details::is_sign(*s_itr_) && !post_e_digit_found)
{
if (post_e_sign_found)
{
t.set_error(token::e_err_number, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
post_e_sign_found = true;
++s_itr_;
continue;
}
else if (e_found && details::is_digit(*s_itr_))
{
post_e_digit_found = true;
++s_itr_;
continue;
}
else if (('.' != (*s_itr_)) && !details::is_digit(*s_itr_))
break;
else
++s_itr_;
}
t.set_numeric(initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
inline void scan_special_function()
{
const char_t* initial_itr = s_itr_;
token_t t;
// $fdd(x,x,x) = at least 11 chars
if (std::distance(s_itr_,s_end_) < 11)
{
t.set_error(token::e_err_sfunc, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
if (
!(('$' == *s_itr_) &&
(details::imatch ('f',*(s_itr_ + 1))) &&
(details::is_digit(*(s_itr_ + 2))) &&
(details::is_digit(*(s_itr_ + 3))))
)
{
t.set_error(token::e_err_sfunc, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
s_itr_ += 4; // $fdd = 4chars
t.set_symbol(initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
#ifndef exprtk_disable_string_capabilities
inline void scan_string()
{
const char_t* initial_itr = s_itr_ + 1;
token_t t;
if (std::distance(s_itr_,s_end_) < 2)
{
t.set_error(token::e_err_string, s_itr_, s_end_, base_itr_);
token_list_.push_back(t);
return;
}
++s_itr_;
bool escaped_found = false;
bool escaped = false;
while (!is_end(s_itr_))
{
if (!escaped && ('\\' == *s_itr_))
{
escaped_found = true;
escaped = true;
++s_itr_;
continue;
}
else if (!escaped)
{
if ('\'' == *s_itr_)
break;
}
else if (escaped)
{
if (!is_end(s_itr_) && ('0' == *(s_itr_)))
{
/*
Note: The following 'awkward' conditional is
due to various broken msvc compilers.
*/
#if _MSC_VER == 1600
const bool within_range = !is_end(s_itr_ + 2) &&
!is_end(s_itr_ + 3) ;
#else
const bool within_range = !is_end(s_itr_ + 1) &&
!is_end(s_itr_ + 2) &&
!is_end(s_itr_ + 3) ;
#endif
const bool x_seperator = ('x' == *(s_itr_ + 1)) ||
('X' == *(s_itr_ + 1)) ;
const bool both_digits = details::is_hex_digit(*(s_itr_ + 2)) &&
details::is_hex_digit(*(s_itr_ + 3)) ;
if (!within_range || !x_seperator || !both_digits)
{
t.set_error(token::e_err_string, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
else
s_itr_ += 3;
}
escaped = false;
}
++s_itr_;
}
if (is_end(s_itr_))
{
t.set_error(token::e_err_string, initial_itr, s_itr_, base_itr_);
token_list_.push_back(t);
return;
}
if (!escaped_found)
t.set_string(initial_itr, s_itr_, base_itr_);
else
{
std::string parsed_string(initial_itr,s_itr_);
details::cleanup_escapes(parsed_string);
t.set_string(
parsed_string,
static_cast<std::size_t>(std::distance(base_itr_,initial_itr)));
}
token_list_.push_back(t);
++s_itr_;
return;
}
#endif
private:
token_list_t token_list_;
token_list_itr_t token_itr_;
token_list_itr_t store_token_itr_;
token_t eof_token_;
const char_t* base_itr_;
const char_t* s_itr_;
const char_t* s_end_;
friend class token_scanner;
friend class token_modifier;
friend class token_inserter;
friend class token_joiner;
};
class helper_interface
{
public:
virtual void init() { }
virtual void reset() { }
virtual bool result() { return true; }
virtual std::size_t process(generator&) { return 0; }
virtual ~helper_interface() { }
};
class token_scanner : public helper_interface
{
public:
virtual ~token_scanner()
{}
explicit token_scanner(const std::size_t& stride)
: stride_(stride)
{
if (stride > 4)
{
throw std::invalid_argument("token_scanner() - Invalid stride value");
}
}
inline std::size_t process(generator& g)
{
if (g.token_list_.size() >= stride_)
{
for (std::size_t i = 0; i < (g.token_list_.size() - stride_ + 1); ++i)
{
token t;
switch (stride_)
{
case 1 :
{
const token& t0 = g.token_list_[i];
if (!operator()(t0))
{
return i;
}
}
break;
case 2 :
{
const token& t0 = g.token_list_[i ];
const token& t1 = g.token_list_[i + 1];
if (!operator()(t0, t1))
{
return i;
}
}
break;
case 3 :
{
const token& t0 = g.token_list_[i ];
const token& t1 = g.token_list_[i + 1];
const token& t2 = g.token_list_[i + 2];
if (!operator()(t0, t1, t2))
{
return i;
}
}
break;
case 4 :
{
const token& t0 = g.token_list_[i ];
const token& t1 = g.token_list_[i + 1];
const token& t2 = g.token_list_[i + 2];
const token& t3 = g.token_list_[i + 3];
if (!operator()(t0, t1, t2, t3))
{
return i;
}
}
break;
}
}
}
return (g.token_list_.size() - stride_ + 1);
}
virtual bool operator() (const token&)
{
return false;
}
virtual bool operator() (const token&, const token&)
{
return false;
}
virtual bool operator() (const token&, const token&, const token&)
{
return false;
}
virtual bool operator() (const token&, const token&, const token&, const token&)
{
return false;
}
private:
const std::size_t stride_;
};
class token_modifier : public helper_interface
{
public:
inline std::size_t process(generator& g)
{
std::size_t changes = 0;
for (std::size_t i = 0; i < g.token_list_.size(); ++i)
{
if (modify(g.token_list_[i])) changes++;
}
return changes;
}
virtual bool modify(token& t) = 0;
};
class token_inserter : public helper_interface
{
public:
explicit token_inserter(const std::size_t& stride)
: stride_(stride)
{
if (stride > 5)
{
throw std::invalid_argument("token_inserter() - Invalid stride value");
}
}
inline std::size_t process(generator& g)
{
if (g.token_list_.empty())
return 0;
else if (g.token_list_.size() < stride_)
return 0;
std::size_t changes = 0;
for (std::size_t i = 0; i < (g.token_list_.size() - stride_ + 1); ++i)
{
int insert_index = -1;
token t;
switch (stride_)
{
case 1 : insert_index = insert(g.token_list_[i],t);
break;
case 2 : insert_index = insert(g.token_list_[i], g.token_list_[i + 1], t);
break;
case 3 : insert_index = insert(g.token_list_[i], g.token_list_[i + 1], g.token_list_[i + 2], t);
break;
case 4 : insert_index = insert(g.token_list_[i], g.token_list_[i + 1], g.token_list_[i + 2], g.token_list_[i + 3], t);
break;
case 5 : insert_index = insert(g.token_list_[i], g.token_list_[i + 1], g.token_list_[i + 2], g.token_list_[i + 3], g.token_list_[i + 4], t);
break;
}
typedef std::iterator_traits<generator::token_list_t::iterator>::difference_type diff_t;
if ((insert_index >= 0) && (insert_index <= (static_cast<int>(stride_) + 1)))
{
g.token_list_.insert(
g.token_list_.begin() + static_cast<diff_t>(i + static_cast<std::size_t>(insert_index)), t);
changes++;
}
}
return changes;
}
#define token_inserter_empty_body \
{ \
return -1; \
} \
inline virtual int insert(const token&, token&)
token_inserter_empty_body
inline virtual int insert(const token&, const token&, token&)
token_inserter_empty_body
inline virtual int insert(const token&, const token&, const token&, token&)
token_inserter_empty_body
inline virtual int insert(const token&, const token&, const token&, const token&, token&)
token_inserter_empty_body
inline virtual int insert(const token&, const token&, const token&, const token&, const token&, token&)
token_inserter_empty_body
#undef token_inserter_empty_body
private:
const std::size_t stride_;
};
class token_joiner : public helper_interface
{
public:
token_joiner(const std::size_t& stride)
: stride_(stride)
{}
inline std::size_t process(generator& g)
{
if (g.token_list_.empty())
return 0;
switch (stride_)
{
case 2 : return process_stride_2(g);
case 3 : return process_stride_3(g);
default : return 0;
}
}
virtual bool join(const token&, const token&, token&) { return false; }
virtual bool join(const token&, const token&, const token&, token&) { return false; }
private:
inline std::size_t process_stride_2(generator& g)
{
typedef std::iterator_traits<generator::token_list_t::iterator>::difference_type diff_t;
if (g.token_list_.size() < 2)
return 0;
std::size_t changes = 0;
for (std::size_t i = 0; i < (g.token_list_.size() - 1); ++i)
{
token t;
while (join(g[i], g[i + 1], t))
{
g.token_list_[i] = t;
g.token_list_.erase(g.token_list_.begin() + static_cast<diff_t>(i + 1));
++changes;
}
}
return changes;
}
inline std::size_t process_stride_3(generator& g)
{
typedef std::iterator_traits<generator::token_list_t::iterator>::difference_type diff_t;
if (g.token_list_.size() < 3)
return 0;
std::size_t changes = 0;
for (std::size_t i = 0; i < (g.token_list_.size() - 2); ++i)
{
token t;
while (join(g[i], g[i + 1], g[i + 2], t))
{
g.token_list_[i] = t;
g.token_list_.erase(g.token_list_.begin() + static_cast<diff_t>(i + 1),
g.token_list_.begin() + static_cast<diff_t>(i + 3));
++changes;
}
}
return changes;
}
const std::size_t stride_;
};
namespace helper
{
inline void dump(lexer::generator& generator)
{
for (std::size_t i = 0; i < generator.size(); ++i)
{
lexer::token t = generator[i];
printf("Token[%02d] @ %03d %6s --> '%s'\n",
static_cast<int>(i),
static_cast<int>(t.position),
t.to_str(t.type).c_str(),
t.value.c_str());
}
}
class commutative_inserter : public lexer::token_inserter
{
public:
using lexer::token_inserter::insert;
commutative_inserter()
: lexer::token_inserter(2)
{}
inline void ignore_symbol(const std::string& symbol)
{
ignore_set_.insert(symbol);
}
inline int insert(const lexer::token& t0, const lexer::token& t1, lexer::token& new_token)
{
bool match = false;
new_token.type = lexer::token::e_mul;
new_token.value = "*";
new_token.position = t1.position;
if (t0.type == lexer::token::e_symbol)
{
if (ignore_set_.end() != ignore_set_.find(t0.value))
{
return -1;
}
else if (!t0.value.empty() && ('$' == t0.value[0]))
{
return -1;
}
}
if (t1.type == lexer::token::e_symbol)
{
if (ignore_set_.end() != ignore_set_.find(t1.value))
{
return -1;
}
}
if ((t0.type == lexer::token::e_number ) && (t1.type == lexer::token::e_symbol )) match = true;
else if ((t0.type == lexer::token::e_number ) && (t1.type == lexer::token::e_lbracket )) match = true;
else if ((t0.type == lexer::token::e_number ) && (t1.type == lexer::token::e_lcrlbracket)) match = true;
else if ((t0.type == lexer::token::e_number ) && (t1.type == lexer::token::e_lsqrbracket)) match = true;
else if ((t0.type == lexer::token::e_symbol ) && (t1.type == lexer::token::e_number )) match = true;
else if ((t0.type == lexer::token::e_rbracket ) && (t1.type == lexer::token::e_number )) match = true;
else if ((t0.type == lexer::token::e_rcrlbracket) && (t1.type == lexer::token::e_number )) match = true;
else if ((t0.type == lexer::token::e_rsqrbracket) && (t1.type == lexer::token::e_number )) match = true;
else if ((t0.type == lexer::token::e_rbracket ) && (t1.type == lexer::token::e_symbol )) match = true;
else if ((t0.type == lexer::token::e_rcrlbracket) && (t1.type == lexer::token::e_symbol )) match = true;
else if ((t0.type == lexer::token::e_rsqrbracket) && (t1.type == lexer::token::e_symbol )) match = true;
return (match) ? 1 : -1;
}
private:
std::set<std::string,details::ilesscompare> ignore_set_;
};
class operator_joiner : public token_joiner
{
public:
operator_joiner(const std::size_t& stride)
: token_joiner(stride)
{}
inline bool join(const lexer::token& t0, const lexer::token& t1, lexer::token& t)
{
// ': =' --> ':='
if ((t0.type == lexer::token::e_colon) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_assign;
t.value = ":=";
t.position = t0.position;
return true;
}
// '+ =' --> '+='
else if ((t0.type == lexer::token::e_add) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_addass;
t.value = "+=";
t.position = t0.position;
return true;
}
// '- =' --> '-='
else if ((t0.type == lexer::token::e_sub) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_subass;
t.value = "-=";
t.position = t0.position;
return true;
}
// '* =' --> '*='
else if ((t0.type == lexer::token::e_mul) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_mulass;
t.value = "*=";
t.position = t0.position;
return true;
}
// '/ =' --> '/='
else if ((t0.type == lexer::token::e_div) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_divass;
t.value = "/=";
t.position = t0.position;
return true;
}
// '% =' --> '%='
else if ((t0.type == lexer::token::e_mod) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_modass;
t.value = "%=";
t.position = t0.position;
return true;
}
// '> =' --> '>='
else if ((t0.type == lexer::token::e_gt) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_gte;
t.value = ">=";
t.position = t0.position;
return true;
}
// '< =' --> '<='
else if ((t0.type == lexer::token::e_lt) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_lte;
t.value = "<=";
t.position = t0.position;
return true;
}
// '= =' --> '=='
else if ((t0.type == lexer::token::e_eq) && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_eq;
t.value = "==";
t.position = t0.position;
return true;
}
// '! =' --> '!='
else if ((static_cast<char>(t0.type) == '!') && (t1.type == lexer::token::e_eq))
{
t.type = lexer::token::e_ne;
t.value = "!=";
t.position = t0.position;
return true;
}
// '< >' --> '<>'
else if ((t0.type == lexer::token::e_lt) && (t1.type == lexer::token::e_gt))
{
t.type = lexer::token::e_ne;
t.value = "<>";
t.position = t0.position;
return true;
}
// '<= >' --> '<=>'
else if ((t0.type == lexer::token::e_lte) && (t1.type == lexer::token::e_gt))
{
t.type = lexer::token::e_swap;
t.value = "<=>";
t.position = t0.position;
return true;
}
// '+ -' --> '-'
else if ((t0.type == lexer::token::e_add) && (t1.type == lexer::token::e_sub))
{
t.type = lexer::token::e_sub;
t.value = "-";
t.position = t0.position;
return true;
}
// '- +' --> '-'
else if ((t0.type == lexer::token::e_sub) && (t1.type == lexer::token::e_add))
{
t.type = lexer::token::e_sub;
t.value = "-";
t.position = t0.position;
return true;
}
// '- -' --> '-'
else if ((t0.type == lexer::token::e_sub) && (t1.type == lexer::token::e_sub))
{
/*
Note: May need to reconsider this when wanting to implement
pre/postfix decrement operator
*/
t.type = lexer::token::e_add;
t.value = "+";
t.position = t0.position;
return true;
}
else
return false;
}
inline bool join(const lexer::token& t0, const lexer::token& t1, const lexer::token& t2, lexer::token& t)
{
// '[ * ]' --> '[*]'
if (
(t0.type == lexer::token::e_lsqrbracket) &&
(t1.type == lexer::token::e_mul ) &&
(t2.type == lexer::token::e_rsqrbracket)
)
{
t.type = lexer::token::e_symbol;
t.value = "[*]";
t.position = t0.position;
return true;
}
else
return false;
}
};
class bracket_checker : public lexer::token_scanner
{
public:
using lexer::token_scanner::operator();
bracket_checker()
: token_scanner(1),
state_(true)
{}
bool result()
{
if (!stack_.empty())
{
lexer::token t;
t.value = stack_.top().first;
t.position = stack_.top().second;
error_token_ = t;
state_ = false;
return false;
}
else
return state_;
}
lexer::token error_token()
{
return error_token_;
}
void reset()
{
// Why? because msvc doesn't support swap properly.
stack_ = std::stack<std::pair<char,std::size_t> >();
state_ = true;
error_token_.clear();
}
bool operator() (const lexer::token& t)
{
if (
!t.value.empty() &&
(lexer::token::e_string != t.type) &&
(lexer::token::e_symbol != t.type) &&
exprtk::details::is_bracket(t.value[0])
)
{
details::char_t c = t.value[0];
if (t.type == lexer::token::e_lbracket ) stack_.push(std::make_pair(')',t.position));
else if (t.type == lexer::token::e_lcrlbracket) stack_.push(std::make_pair('}',t.position));
else if (t.type == lexer::token::e_lsqrbracket) stack_.push(std::make_pair(']',t.position));
else if (exprtk::details::is_right_bracket(c))
{
if (stack_.empty())
{
state_ = false;
error_token_ = t;
return false;
}
else if (c != stack_.top().first)
{
state_ = false;
error_token_ = t;
return false;
}
else
stack_.pop();
}
}
return true;
}
private:
bool state_;
std::stack<std::pair<char,std::size_t> > stack_;
lexer::token error_token_;
};
class numeric_checker : public lexer::token_scanner
{
public:
using lexer::token_scanner::operator();
numeric_checker()
: token_scanner (1),
current_index_(0)
{}
bool result()
{
return error_list_.empty();
}
void reset()
{
error_list_.clear();
current_index_ = 0;
}
bool operator() (const lexer::token& t)
{
if (token::e_number == t.type)
{
double v;
if (!exprtk::details::string_to_real(t.value,v))
{
error_list_.push_back(current_index_);
}
}
++current_index_;
return true;
}
std::size_t error_count() const
{
return error_list_.size();
}
std::size_t error_index(const std::size_t& i)
{
if (i < error_list_.size())
return error_list_[i];
else
return std::numeric_limits<std::size_t>::max();
}
void clear_errors()
{
error_list_.clear();
}
private:
std::size_t current_index_;
std::vector<std::size_t> error_list_;
};
class symbol_replacer : public lexer::token_modifier
{
private:
typedef std::map<std::string,std::pair<std::string,token::token_type>,details::ilesscompare> replace_map_t;
public:
bool remove(const std::string& target_symbol)
{
const replace_map_t::iterator itr = replace_map_.find(target_symbol);
if (replace_map_.end() == itr)
return false;
replace_map_.erase(itr);
return true;
}
bool add_replace(const std::string& target_symbol,
const std::string& replace_symbol,
const lexer::token::token_type token_type = lexer::token::e_symbol)
{
const replace_map_t::iterator itr = replace_map_.find(target_symbol);
if (replace_map_.end() != itr)
{
return false;
}
replace_map_[target_symbol] = std::make_pair(replace_symbol,token_type);
return true;
}
void clear()
{
replace_map_.clear();
}
private:
bool modify(lexer::token& t)
{
if (lexer::token::e_symbol == t.type)
{
if (replace_map_.empty())
return false;
const replace_map_t::iterator itr = replace_map_.find(t.value);
if (replace_map_.end() != itr)
{
t.value = itr->second.first;
t.type = itr->second.second;
return true;
}
}
return false;
}
replace_map_t replace_map_;
};
class sequence_validator : public lexer::token_scanner
{
private:
typedef std::pair<lexer::token::token_type,lexer::token::token_type> token_pair_t;
typedef std::set<token_pair_t> set_t;
public:
using lexer::token_scanner::operator();
sequence_validator()
: lexer::token_scanner(2)
{
add_invalid(lexer::token::e_number ,lexer::token::e_number );
add_invalid(lexer::token::e_string ,lexer::token::e_string );
add_invalid(lexer::token::e_number ,lexer::token::e_string );
add_invalid(lexer::token::e_string ,lexer::token::e_number );
add_invalid_set1(lexer::token::e_assign );
add_invalid_set1(lexer::token::e_shr );
add_invalid_set1(lexer::token::e_shl );
add_invalid_set1(lexer::token::e_lte );
add_invalid_set1(lexer::token::e_ne );
add_invalid_set1(lexer::token::e_gte );
add_invalid_set1(lexer::token::e_lt );
add_invalid_set1(lexer::token::e_gt );
add_invalid_set1(lexer::token::e_eq );
add_invalid_set1(lexer::token::e_comma );
add_invalid_set1(lexer::token::e_add );
add_invalid_set1(lexer::token::e_sub );
add_invalid_set1(lexer::token::e_div );
add_invalid_set1(lexer::token::e_mul );
add_invalid_set1(lexer::token::e_mod );
add_invalid_set1(lexer::token::e_pow );
add_invalid_set1(lexer::token::e_colon );
add_invalid_set1(lexer::token::e_ternary);
}
bool result()
{
return error_list_.empty();
}
bool operator() (const lexer::token& t0, const lexer::token& t1)
{
set_t::value_type p = std::make_pair(t0.type,t1.type);
if (invalid_bracket_check(t0.type,t1.type))
{
error_list_.push_back(std::make_pair(t0,t1));
}
else if (invalid_comb_.find(p) != invalid_comb_.end())
{
error_list_.push_back(std::make_pair(t0,t1));
}
return true;
}
std::size_t error_count()
{
return error_list_.size();
}
std::pair<lexer::token,lexer::token> error(const std::size_t index)
{
if (index < error_list_.size())
{
return error_list_[index];
}
else
{
static const lexer::token error_token;
return std::make_pair(error_token,error_token);
}
}
void clear_errors()
{
error_list_.clear();
}
private:
void add_invalid(lexer::token::token_type base, lexer::token::token_type t)
{
invalid_comb_.insert(std::make_pair(base,t));
}
void add_invalid_set1(lexer::token::token_type t)
{
add_invalid(t,lexer::token::e_assign);
add_invalid(t,lexer::token::e_shr );
add_invalid(t,lexer::token::e_shl );
add_invalid(t,lexer::token::e_lte );
add_invalid(t,lexer::token::e_ne );
add_invalid(t,lexer::token::e_gte );
add_invalid(t,lexer::token::e_lt );
add_invalid(t,lexer::token::e_gt );
add_invalid(t,lexer::token::e_eq );
add_invalid(t,lexer::token::e_comma );
add_invalid(t,lexer::token::e_div );
add_invalid(t,lexer::token::e_mul );
add_invalid(t,lexer::token::e_mod );
add_invalid(t,lexer::token::e_pow );
add_invalid(t,lexer::token::e_colon );
}
bool invalid_bracket_check(lexer::token::token_type base, lexer::token::token_type t)
{
if (details::is_right_bracket(static_cast<char>(base)))
{
switch (t)
{
case lexer::token::e_assign : return (']' != base);
case lexer::token::e_string : return true;
default : return false;
}
}
else if (details::is_left_bracket(static_cast<char>(base)))
{
if (details::is_right_bracket(static_cast<char>(t)))
return false;
else if (details::is_left_bracket(static_cast<char>(t)))
return false;
else
{
switch (t)
{
case lexer::token::e_number : return false;
case lexer::token::e_symbol : return false;
case lexer::token::e_string : return false;
case lexer::token::e_add : return false;
case lexer::token::e_sub : return false;
case lexer::token::e_colon : return false;
case lexer::token::e_ternary : return false;
default : return true;
}
}
}
else if (details::is_right_bracket(static_cast<char>(t)))
{
switch (base)
{
case lexer::token::e_number : return false;
case lexer::token::e_symbol : return false;
case lexer::token::e_string : return false;
case lexer::token::e_eof : return false;
case lexer::token::e_colon : return false;
case lexer::token::e_ternary : return false;
default : return true;
}
}
else if (details::is_left_bracket(static_cast<char>(t)))
{
switch (base)
{
case lexer::token::e_rbracket : return true;
case lexer::token::e_rsqrbracket : return true;
case lexer::token::e_rcrlbracket : return true;
default : return false;
}
}
return false;
}
set_t invalid_comb_;
std::vector<std::pair<lexer::token,lexer::token> > error_list_;
};
struct helper_assembly
{
inline bool register_scanner(lexer::token_scanner* scanner)
{
if (token_scanner_list.end() != std::find(token_scanner_list.begin(),
token_scanner_list.end (),
scanner))
{
return false;
}
token_scanner_list.push_back(scanner);
return true;
}
inline bool register_modifier(lexer::token_modifier* modifier)
{
if (token_modifier_list.end() != std::find(token_modifier_list.begin(),
token_modifier_list.end (),
modifier))
{
return false;
}
token_modifier_list.push_back(modifier);
return true;
}
inline bool register_joiner(lexer::token_joiner* joiner)
{
if (token_joiner_list.end() != std::find(token_joiner_list.begin(),
token_joiner_list.end (),
joiner))
{
return false;
}
token_joiner_list.push_back(joiner);
return true;
}
inline bool register_inserter(lexer::token_inserter* inserter)
{
if (token_inserter_list.end() != std::find(token_inserter_list.begin(),
token_inserter_list.end (),
inserter))
{
return false;
}
token_inserter_list.push_back(inserter);
return true;
}
inline bool run_modifiers(lexer::generator& g)
{
error_token_modifier = reinterpret_cast<lexer::token_modifier*>(0);
for (std::size_t i = 0; i < token_modifier_list.size(); ++i)
{
lexer::token_modifier& modifier = (*token_modifier_list[i]);
modifier.reset();
modifier.process(g);
if (!modifier.result())
{
error_token_modifier = token_modifier_list[i];
return false;
}
}
return true;
}
inline bool run_joiners(lexer::generator& g)
{
error_token_joiner = reinterpret_cast<lexer::token_joiner*>(0);
for (std::size_t i = 0; i < token_joiner_list.size(); ++i)
{
lexer::token_joiner& joiner = (*token_joiner_list[i]);
joiner.reset();
joiner.process(g);
if (!joiner.result())
{
error_token_joiner = token_joiner_list[i];
return false;
}
}
return true;
}
inline bool run_inserters(lexer::generator& g)
{
error_token_inserter = reinterpret_cast<lexer::token_inserter*>(0);
for (std::size_t i = 0; i < token_inserter_list.size(); ++i)
{
lexer::token_inserter& inserter = (*token_inserter_list[i]);
inserter.reset();
inserter.process(g);
if (!inserter.result())
{
error_token_inserter = token_inserter_list[i];
return false;
}
}
return true;
}
inline bool run_scanners(lexer::generator& g)
{
error_token_scanner = reinterpret_cast<lexer::token_scanner*>(0);
for (std::size_t i = 0; i < token_scanner_list.size(); ++i)
{
lexer::token_scanner& scanner = (*token_scanner_list[i]);
scanner.reset();
scanner.process(g);
if (!scanner.result())
{
error_token_scanner = token_scanner_list[i];
return false;
}
}
return true;
}
std::vector<lexer::token_scanner*> token_scanner_list;
std::vector<lexer::token_modifier*> token_modifier_list;
std::vector<lexer::token_joiner*> token_joiner_list;
std::vector<lexer::token_inserter*> token_inserter_list;
lexer::token_scanner* error_token_scanner;
lexer::token_modifier* error_token_modifier;
lexer::token_joiner* error_token_joiner;
lexer::token_inserter* error_token_inserter;
};
}
class parser_helper
{
public:
typedef token token_t;
typedef generator generator_t;
inline bool init(const std::string& str)
{
if (!lexer_.process(str))
{
return false;
}
lexer_.begin();
next_token();
return true;
}
inline generator_t& lexer()
{
return lexer_;
}
inline const generator_t& lexer() const
{
return lexer_;
}
inline void store_token()
{
lexer_.store();
store_current_token_ = current_token_;
}
inline void restore_token()
{
lexer_.restore();
current_token_ = store_current_token_;
}
inline void next_token()
{
current_token_ = lexer_.next_token();
}
inline const token_t& current_token() const
{
return current_token_;
}
enum token_advance_mode
{
e_hold = 0,
e_advance = 1
};
inline void advance_token(const token_advance_mode mode)
{
if (e_advance == mode)
{
next_token();
}
}
inline bool token_is(const token_t::token_type& ttype, const token_advance_mode mode = e_advance)
{
if (current_token().type != ttype)
{
return false;
}
advance_token(mode);
return true;
}
inline bool token_is(const token_t::token_type& ttype,
const std::string& value,
const token_advance_mode mode = e_advance)
{
if (
(current_token().type != ttype) ||
!exprtk::details::imatch(value,current_token().value)
)
{
return false;
}
advance_token(mode);
return true;
}
inline bool token_is_then_assign(const token_t::token_type& ttype,
std::string& token,
const token_advance_mode mode = e_advance)
{
if (current_token_.type != ttype)
{
return false;
}
token = current_token_.value;
advance_token(mode);
return true;
}
template <typename Allocator,
template <typename,typename> class Container>
inline bool token_is_then_assign(const token_t::token_type& ttype,
Container<std::string,Allocator>& token_list,
const token_advance_mode mode = e_advance)
{
if (current_token_.type != ttype)
{
return false;
}
token_list.push_back(current_token_.value);
advance_token(mode);
return true;
}
inline bool peek_token_is(const token_t::token_type& ttype)
{
return (lexer_.peek_next_token().type == ttype);
}
inline bool peek_token_is(const std::string& s)
{
return (exprtk::details::imatch(lexer_.peek_next_token().value,s));
}
private:
generator_t lexer_;
token_t current_token_;
token_t store_current_token_;
};
}
template <typename T>
class vector_view
{
public:
typedef T* data_ptr_t;
vector_view(data_ptr_t data, const std::size_t& size)
: size_(size),
data_(data),
data_ref_(0)
{}
vector_view(const vector_view<T>& vv)
: size_(vv.size_),
data_(vv.data_),
data_ref_(0)
{}
inline void rebase(data_ptr_t data)
{
data_ = data;
if (!data_ref_.empty())
{
for (std::size_t i = 0; i < data_ref_.size(); ++i)
{
(*data_ref_[i]) = data;
}
}
}
inline data_ptr_t data() const
{
return data_;
}
inline std::size_t size() const
{
return size_;
}
inline const T& operator[](const std::size_t index) const
{
return data_[index];
}
inline T& operator[](const std::size_t index)
{
return data_[index];
}
void set_ref(data_ptr_t* data_ref)
{
data_ref_.push_back(data_ref);
}
private:
const std::size_t size_;
data_ptr_t data_;
std::vector<data_ptr_t*> data_ref_;
};
template <typename T>
inline vector_view<T> make_vector_view(T* data,
const std::size_t size, const std::size_t offset = 0)
{
return vector_view<T>(data + offset,size);
}
template <typename T>
inline vector_view<T> make_vector_view(std::vector<T>& v,
const std::size_t size, const std::size_t offset = 0)
{
return vector_view<T>(v.data() + offset,size);
}
template <typename T> class results_context;
template <typename T>
struct type_store
{
enum store_type
{
e_unknown,
e_scalar ,
e_vector ,
e_string
};
type_store()
: size(0),
data(0),
type(e_unknown)
{}
std::size_t size;
void* data;
store_type type;
class parameter_list
{
public:
parameter_list(std::vector<type_store>& pl)
: parameter_list_(pl)
{}
inline bool empty() const
{
return parameter_list_.empty();
}
inline std::size_t size() const
{
return parameter_list_.size();
}
inline type_store& operator[](const std::size_t& index)
{
return parameter_list_[index];
}
inline const type_store& operator[](const std::size_t& index) const
{
return parameter_list_[index];
}
inline type_store& front()
{
return parameter_list_[0];
}
inline const type_store& front() const
{
return parameter_list_[0];
}
inline type_store& back()
{
return parameter_list_.back();
}
inline const type_store& back() const
{
return parameter_list_.back();
}
private:
std::vector<type_store>& parameter_list_;
friend class results_context<T>;
};
template <typename ViewType>
struct type_view
{
typedef type_store<T> type_store_t;
typedef ViewType value_t;
type_view(type_store_t& ts)
: ts_(ts),
data_(reinterpret_cast<value_t*>(ts_.data))
{}
type_view(const type_store_t& ts)
: ts_(const_cast<type_store_t&>(ts)),
data_(reinterpret_cast<value_t*>(ts_.data))
{}
inline std::size_t size() const
{
return ts_.size;
}
inline value_t& operator[](const std::size_t& i)
{
return data_[i];
}
inline const value_t& operator[](const std::size_t& i) const
{
return data_[i];
}
inline const value_t* begin() const { return data_; }
inline value_t* begin() { return data_; }
inline const value_t* end() const
{
return static_cast<value_t*>(data_ + ts_.size);
}
inline value_t* end()
{
return static_cast<value_t*>(data_ + ts_.size);
}
type_store_t& ts_;
value_t* data_;
};
typedef type_view<T> vector_view;
typedef type_view<char> string_view;
struct scalar_view
{
typedef type_store<T> type_store_t;
typedef T value_t;
scalar_view(type_store_t& ts)
: v_(*reinterpret_cast<value_t*>(ts.data))
{}
scalar_view(const type_store_t& ts)
: v_(*reinterpret_cast<value_t*>(const_cast<type_store_t&>(ts).data))
{}
inline value_t& operator() ()
{
return v_;
}
inline const value_t& operator() () const
{
return v_;
}
template <typename IntType>
inline bool to_int(IntType& i) const
{
if (!exprtk::details::numeric::is_integer(v_))
return false;
i = static_cast<IntType>(v_);
return true;
}
template <typename UIntType>
inline bool to_uint(UIntType& u) const
{
if (v_ < T(0))
return false;
else if (!exprtk::details::numeric::is_integer(v_))
return false;
u = static_cast<UIntType>(v_);
return true;
}
T& v_;
};
};
template <typename StringView>
inline std::string to_str(const StringView& view)
{
return std::string(view.begin(),view.size());
}
#ifndef exprtk_disable_return_statement
namespace details
{
template <typename T> class return_node;
template <typename T> class return_envelope_node;
}
#endif
template <typename T>
class results_context
{
public:
typedef type_store<T> type_store_t;
results_context()
: results_available_(false)
{}
inline std::size_t count() const
{
if (results_available_)
return parameter_list_.size();
else
return 0;
}
inline type_store_t& operator[](const std::size_t& index)
{
return parameter_list_[index];
}
inline const type_store_t& operator[](const std::size_t& index) const
{
return parameter_list_[index];
}
private:
inline void clear()
{
results_available_ = false;
}
typedef std::vector<type_store_t> ts_list_t;
typedef typename type_store_t::parameter_list parameter_list_t;
inline void assign(const parameter_list_t& pl)
{
parameter_list_ = pl.parameter_list_;
results_available_ = true;
}
bool results_available_;
ts_list_t parameter_list_;
#ifndef exprtk_disable_return_statement
friend class details::return_node<T>;
friend class details::return_envelope_node<T>;
#endif
};
namespace details
{
enum operator_type
{
e_default , e_null , e_add , e_sub ,
e_mul , e_div , e_mod , e_pow ,
e_atan2 , e_min , e_max , e_avg ,
e_sum , e_prod , e_lt , e_lte ,
e_eq , e_equal , e_ne , e_nequal ,
e_gte , e_gt , e_and , e_nand ,
e_or , e_nor , e_xor , e_xnor ,
e_mand , e_mor , e_scand , e_scor ,
e_shr , e_shl , e_abs , e_acos ,
e_acosh , e_asin , e_asinh , e_atan ,
e_atanh , e_ceil , e_cos , e_cosh ,
e_exp , e_expm1 , e_floor , e_log ,
e_log10 , e_log2 , e_log1p , e_logn ,
e_neg , e_pos , e_round , e_roundn ,
e_root , e_sqrt , e_sin , e_sinc ,
e_sinh , e_sec , e_csc , e_tan ,
e_tanh , e_cot , e_clamp , e_iclamp ,
e_inrange , e_sgn , e_r2d , e_d2r ,
e_d2g , e_g2d , e_hypot , e_notl ,
e_erf , e_erfc , e_ncdf , e_frac ,
e_trunc , e_assign , e_addass , e_subass ,
e_mulass , e_divass , e_modass , e_in ,
e_like , e_ilike , e_multi , e_smulti ,
e_swap ,
// Do not add new functions/operators after this point.
e_sf00 = 1000, e_sf01 = 1001, e_sf02 = 1002, e_sf03 = 1003,
e_sf04 = 1004, e_sf05 = 1005, e_sf06 = 1006, e_sf07 = 1007,
e_sf08 = 1008, e_sf09 = 1009, e_sf10 = 1010, e_sf11 = 1011,
e_sf12 = 1012, e_sf13 = 1013, e_sf14 = 1014, e_sf15 = 1015,
e_sf16 = 1016, e_sf17 = 1017, e_sf18 = 1018, e_sf19 = 1019,
e_sf20 = 1020, e_sf21 = 1021, e_sf22 = 1022, e_sf23 = 1023,
e_sf24 = 1024, e_sf25 = 1025, e_sf26 = 1026, e_sf27 = 1027,
e_sf28 = 1028, e_sf29 = 1029, e_sf30 = 1030, e_sf31 = 1031,
e_sf32 = 1032, e_sf33 = 1033, e_sf34 = 1034, e_sf35 = 1035,
e_sf36 = 1036, e_sf37 = 1037, e_sf38 = 1038, e_sf39 = 1039,
e_sf40 = 1040, e_sf41 = 1041, e_sf42 = 1042, e_sf43 = 1043,
e_sf44 = 1044, e_sf45 = 1045, e_sf46 = 1046, e_sf47 = 1047,
e_sf48 = 1048, e_sf49 = 1049, e_sf50 = 1050, e_sf51 = 1051,
e_sf52 = 1052, e_sf53 = 1053, e_sf54 = 1054, e_sf55 = 1055,
e_sf56 = 1056, e_sf57 = 1057, e_sf58 = 1058, e_sf59 = 1059,
e_sf60 = 1060, e_sf61 = 1061, e_sf62 = 1062, e_sf63 = 1063,
e_sf64 = 1064, e_sf65 = 1065, e_sf66 = 1066, e_sf67 = 1067,
e_sf68 = 1068, e_sf69 = 1069, e_sf70 = 1070, e_sf71 = 1071,
e_sf72 = 1072, e_sf73 = 1073, e_sf74 = 1074, e_sf75 = 1075,
e_sf76 = 1076, e_sf77 = 1077, e_sf78 = 1078, e_sf79 = 1079,
e_sf80 = 1080, e_sf81 = 1081, e_sf82 = 1082, e_sf83 = 1083,
e_sf84 = 1084, e_sf85 = 1085, e_sf86 = 1086, e_sf87 = 1087,
e_sf88 = 1088, e_sf89 = 1089, e_sf90 = 1090, e_sf91 = 1091,
e_sf92 = 1092, e_sf93 = 1093, e_sf94 = 1094, e_sf95 = 1095,
e_sf96 = 1096, e_sf97 = 1097, e_sf98 = 1098, e_sf99 = 1099,
e_sffinal = 1100,
e_sf4ext00 = 2000, e_sf4ext01 = 2001, e_sf4ext02 = 2002, e_sf4ext03 = 2003,
e_sf4ext04 = 2004, e_sf4ext05 = 2005, e_sf4ext06 = 2006, e_sf4ext07 = 2007,
e_sf4ext08 = 2008, e_sf4ext09 = 2009, e_sf4ext10 = 2010, e_sf4ext11 = 2011,
e_sf4ext12 = 2012, e_sf4ext13 = 2013, e_sf4ext14 = 2014, e_sf4ext15 = 2015,
e_sf4ext16 = 2016, e_sf4ext17 = 2017, e_sf4ext18 = 2018, e_sf4ext19 = 2019,
e_sf4ext20 = 2020, e_sf4ext21 = 2021, e_sf4ext22 = 2022, e_sf4ext23 = 2023,
e_sf4ext24 = 2024, e_sf4ext25 = 2025, e_sf4ext26 = 2026, e_sf4ext27 = 2027,
e_sf4ext28 = 2028, e_sf4ext29 = 2029, e_sf4ext30 = 2030, e_sf4ext31 = 2031,
e_sf4ext32 = 2032, e_sf4ext33 = 2033, e_sf4ext34 = 2034, e_sf4ext35 = 2035,
e_sf4ext36 = 2036, e_sf4ext37 = 2037, e_sf4ext38 = 2038, e_sf4ext39 = 2039,
e_sf4ext40 = 2040, e_sf4ext41 = 2041, e_sf4ext42 = 2042, e_sf4ext43 = 2043,
e_sf4ext44 = 2044, e_sf4ext45 = 2045, e_sf4ext46 = 2046, e_sf4ext47 = 2047,
e_sf4ext48 = 2048, e_sf4ext49 = 2049, e_sf4ext50 = 2050, e_sf4ext51 = 2051,
e_sf4ext52 = 2052, e_sf4ext53 = 2053, e_sf4ext54 = 2054, e_sf4ext55 = 2055,
e_sf4ext56 = 2056, e_sf4ext57 = 2057, e_sf4ext58 = 2058, e_sf4ext59 = 2059,
e_sf4ext60 = 2060, e_sf4ext61 = 2061
};
inline std::string to_str(const operator_type opr)
{
switch (opr)
{
case e_add : return "+";
case e_sub : return "-";
case e_mul : return "*";
case e_div : return "/";
case e_mod : return "%";
case e_pow : return "^";
case e_assign : return ":=";
case e_addass : return "+=";
case e_subass : return "-=";
case e_mulass : return "*=";
case e_divass : return "/=";
case e_modass : return "%=";
case e_lt : return "<";
case e_lte : return "<=";
case e_eq : return "==";
case e_equal : return "=";
case e_ne : return "!=";
case e_nequal : return "<>";
case e_gte : return ">=";
case e_gt : return ">";
default : return"N/A";
}
}
struct base_operation_t
{
base_operation_t(const operator_type t, const unsigned int& np)
: type(t),
num_params(np)
{}
operator_type type;
unsigned int num_params;
};
namespace loop_unroll
{
#ifndef exprtk_disable_superscalar_unroll
const unsigned int global_loop_batch_size = 16;
#else
const unsigned int global_loop_batch_size = 4;
#endif
struct details
{
details(const std::size_t& vsize,
const unsigned int loop_batch_size = global_loop_batch_size)
: batch_size(loop_batch_size ),
remainder (vsize % batch_size),
upper_bound(static_cast<int>(vsize - (remainder ? loop_batch_size : 0)))
{}
unsigned int batch_size;
int remainder;
int upper_bound;
};
}
#ifdef exprtk_enable_debugging
inline void dump_ptr(const std::string& s, const void* ptr, const std::size_t size = 0)
{
if (size)
exprtk_debug(("%s - addr: %p\n",s.c_str(),ptr));
else
exprtk_debug(("%s - addr: %p size: %d\n",
s.c_str(),
ptr,
static_cast<unsigned int>(size)));
}
#else
inline void dump_ptr(const std::string&, const void*) {}
inline void dump_ptr(const std::string&, const void*, const std::size_t) {}
#endif
template <typename T>
class vec_data_store
{
public:
typedef vec_data_store<T> type;
typedef T* data_t;
private:
struct control_block
{
control_block()
: ref_count(1),
size (0),
data (0),
destruct (true)
{}
control_block(const std::size_t& dsize)
: ref_count(1),
size (dsize),
data (0),
destruct (true)
{ create_data(); }
control_block(const std::size_t& dsize, data_t dptr, bool dstrct = false)
: ref_count(1),
size (dsize),
data (dptr ),
destruct (dstrct)
{}
~control_block()
{
if (data && destruct && (0 == ref_count))
{
dump_ptr("~control_block() data",data);
delete[] data;
data = reinterpret_cast<data_t>(0);
}
}
static inline control_block* create(const std::size_t& dsize, data_t data_ptr = data_t(0), bool dstrct = false)
{
if (dsize)
{
if (0 == data_ptr)
return (new control_block(dsize));
else
return (new control_block(dsize, data_ptr, dstrct));
}
else
return (new control_block);
}
static inline void destroy(control_block*& cntrl_blck)
{
if (cntrl_blck)
{
if (
(0 != cntrl_blck->ref_count) &&
(0 == --cntrl_blck->ref_count)
)
{
delete cntrl_blck;
}
cntrl_blck = 0;
}
}
std::size_t ref_count;
std::size_t size;
data_t data;
bool destruct;
private:
control_block(const control_block&);
control_block& operator=(const control_block&);
inline void create_data()
{
destruct = true;
data = new T[size];
std::fill_n(data,size,T(0));
dump_ptr("control_block::create_data() - data",data,size);
}
};
public:
vec_data_store()
: control_block_(control_block::create(0))
{}
vec_data_store(const std::size_t& size)
: control_block_(control_block::create(size,(data_t)(0),true))
{}
vec_data_store(const std::size_t& size, data_t data, bool dstrct = false)
: control_block_(control_block::create(size, data, dstrct))
{}
vec_data_store(const type& vds)
{
control_block_ = vds.control_block_;
control_block_->ref_count++;
}
~vec_data_store()
{
control_block::destroy(control_block_);
}
type& operator=(const type& vds)
{
if (this != &vds)
{
std::size_t final_size = min_size(control_block_, vds.control_block_);
vds.control_block_->size = final_size;
control_block_->size = final_size;
if (control_block_->destruct || (0 == control_block_->data))
{
control_block::destroy(control_block_);
control_block_ = vds.control_block_;
control_block_->ref_count++;
}
}
return (*this);
}
inline data_t data()
{
return control_block_->data;
}
inline data_t data() const
{
return control_block_->data;
}
inline std::size_t size()
{
return control_block_->size;
}
inline std::size_t size() const
{
return control_block_->size;
}
inline data_t& ref()
{
return control_block_->data;
}
inline void dump() const
{
#ifdef exprtk_enable_debugging
exprtk_debug(("size: %d\taddress:%p\tdestruct:%c\n",
size(),
data(),
(control_block_->destruct ? 'T' : 'F')));
for (std::size_t i = 0; i < size(); ++i)
{
if (5 == i)
exprtk_debug(("\n"));
exprtk_debug(("%15.10f ",data()[i]));
}
exprtk_debug(("\n"));
#endif
}
static inline void match_sizes(type& vds0, type& vds1)
{
std::size_t size = min_size(vds0.control_block_,vds1.control_block_);
vds0.control_block_->size = size;
vds1.control_block_->size = size;
}
private:
static inline std::size_t min_size(control_block* cb0, control_block* cb1)
{
std::size_t size0 = cb0->size;
std::size_t size1 = cb1->size;
if (size0 && size1)
return std::min(size0,size1);
else
return (size0) ? size0 : size1;
}
control_block* control_block_;
};
namespace numeric
{
namespace details
{
template <typename T>
inline T process_impl(const operator_type operation, const T arg)
{
switch (operation)
{
case e_abs : return numeric::abs (arg);
case e_acos : return numeric::acos (arg);
case e_acosh : return numeric::acosh(arg);
case e_asin : return numeric::asin (arg);
case e_asinh : return numeric::asinh(arg);
case e_atan : return numeric::atan (arg);
case e_atanh : return numeric::atanh(arg);
case e_ceil : return numeric::ceil (arg);
case e_cos : return numeric::cos (arg);
case e_cosh : return numeric::cosh (arg);
case e_exp : return numeric::exp (arg);
case e_expm1 : return numeric::expm1(arg);
case e_floor : return numeric::floor(arg);
case e_log : return numeric::log (arg);
case e_log10 : return numeric::log10(arg);
case e_log2 : return numeric::log2 (arg);
case e_log1p : return numeric::log1p(arg);
case e_neg : return numeric::neg (arg);
case e_pos : return numeric::pos (arg);
case e_round : return numeric::round(arg);
case e_sin : return numeric::sin (arg);
case e_sinc : return numeric::sinc (arg);
case e_sinh : return numeric::sinh (arg);
case e_sqrt : return numeric::sqrt (arg);
case e_tan : return numeric::tan (arg);
case e_tanh : return numeric::tanh (arg);
case e_cot : return numeric::cot (arg);
case e_sec : return numeric::sec (arg);
case e_csc : return numeric::csc (arg);
case e_r2d : return numeric::r2d (arg);
case e_d2r : return numeric::d2r (arg);
case e_d2g : return numeric::d2g (arg);
case e_g2d : return numeric::g2d (arg);
case e_notl : return numeric::notl (arg);
case e_sgn : return numeric::sgn (arg);
case e_erf : return numeric::erf (arg);
case e_erfc : return numeric::erfc (arg);
case e_ncdf : return numeric::ncdf (arg);
case e_frac : return numeric::frac (arg);
case e_trunc : return numeric::trunc(arg);
default : exprtk_debug(("numeric::details::process_impl<T> - Invalid unary operation.\n"));
return std::numeric_limits<T>::quiet_NaN();
}
}
template <typename T>
inline T process_impl(const operator_type operation, const T arg0, const T arg1)
{
switch (operation)
{
case e_add : return (arg0 + arg1);
case e_sub : return (arg0 - arg1);
case e_mul : return (arg0 * arg1);
case e_div : return (arg0 / arg1);
case e_mod : return modulus<T>(arg0,arg1);
case e_pow : return pow<T>(arg0,arg1);
case e_atan2 : return atan2<T>(arg0,arg1);
case e_min : return std::min<T>(arg0,arg1);
case e_max : return std::max<T>(arg0,arg1);
case e_logn : return logn<T>(arg0,arg1);
case e_lt : return (arg0 < arg1) ? T(1) : T(0);
case e_lte : return (arg0 <= arg1) ? T(1) : T(0);
case e_eq : return std::equal_to<T>()(arg0,arg1) ? T(1) : T(0);
case e_ne : return std::not_equal_to<T>()(arg0,arg1) ? T(1) : T(0);
case e_gte : return (arg0 >= arg1) ? T(1) : T(0);
case e_gt : return (arg0 > arg1) ? T(1) : T(0);
case e_and : return and_opr<T> (arg0,arg1);
case e_nand : return nand_opr<T>(arg0,arg1);
case e_or : return or_opr<T> (arg0,arg1);
case e_nor : return nor_opr<T> (arg0,arg1);
case e_xor : return xor_opr<T> (arg0,arg1);
case e_xnor : return xnor_opr<T>(arg0,arg1);
case e_root : return root<T> (arg0,arg1);
case e_roundn : return roundn<T> (arg0,arg1);
case e_equal : return equal (arg0,arg1);
case e_nequal : return nequal (arg0,arg1);
case e_hypot : return hypot<T> (arg0,arg1);
case e_shr : return shr<T> (arg0,arg1);
case e_shl : return shl<T> (arg0,arg1);
default : exprtk_debug(("numeric::details::process_impl<T> - Invalid binary operation.\n"));
return std::numeric_limits<T>::quiet_NaN();
}
}
template <typename T>
inline T process_impl(const operator_type operation, const T arg0, const T arg1, int_type_tag)
{
switch (operation)
{
case e_add : return (arg0 + arg1);
case e_sub : return (arg0 - arg1);
case e_mul : return (arg0 * arg1);
case e_div : return (arg0 / arg1);
case e_mod : return arg0 % arg1;
case e_pow : return pow<T>(arg0,arg1);
case e_min : return std::min<T>(arg0,arg1);
case e_max : return std::max<T>(arg0,arg1);
case e_logn : return logn<T>(arg0,arg1);
case e_lt : return (arg0 < arg1) ? T(1) : T(0);
case e_lte : return (arg0 <= arg1) ? T(1) : T(0);
case e_eq : return (arg0 == arg1) ? T(1) : T(0);
case e_ne : return (arg0 != arg1) ? T(1) : T(0);
case e_gte : return (arg0 >= arg1) ? T(1) : T(0);
case e_gt : return (arg0 > arg1) ? T(1) : T(0);
case e_and : return ((arg0 != T(0)) && (arg1 != T(0))) ? T(1) : T(0);
case e_nand : return ((arg0 != T(0)) && (arg1 != T(0))) ? T(0) : T(1);
case e_or : return ((arg0 != T(0)) || (arg1 != T(0))) ? T(1) : T(0);
case e_nor : return ((arg0 != T(0)) || (arg1 != T(0))) ? T(0) : T(1);
case e_xor : return arg0 ^ arg1;
case e_xnor : return !(arg0 ^ arg1);
case e_root : return root<T>(arg0,arg1);
case e_equal : return arg0 == arg1;
case e_nequal : return arg0 != arg1;
case e_hypot : return hypot<T>(arg0,arg1);
case e_shr : return arg0 >> arg1;
case e_shl : return arg0 << arg1;
default : exprtk_debug(("numeric::details::process_impl<IntType> - Invalid binary operation.\n"));
return std::numeric_limits<T>::quiet_NaN();
}
}
}
template <typename T>
inline T process(const operator_type operation, const T arg)
{
return exprtk::details::numeric::details::process_impl(operation,arg);
}
template <typename T>
inline T process(const operator_type operation, const T arg0, const T arg1)
{
return exprtk::details::numeric::details::process_impl(operation,arg0,arg1);
}
}
template <typename T>
class expression_node
{
public:
enum node_type
{
e_none , e_null , e_constant , e_unary ,
e_binary , e_binary_ext , e_trinary , e_quaternary ,
e_vararg , e_conditional , e_while , e_repeat ,
e_for , e_switch , e_mswitch , e_return ,
e_retenv , e_variable , e_stringvar , e_stringconst ,
e_stringvarrng , e_cstringvarrng, e_strgenrange , e_strconcat ,
e_stringvarsize, e_strswap , e_stringsize , e_stringvararg ,
e_function , e_vafunction , e_genfunction , e_strfunction ,
e_strcondition , e_strccondition, e_add , e_sub ,
e_mul , e_div , e_mod , e_pow ,
e_lt , e_lte , e_gt , e_gte ,
e_eq , e_ne , e_and , e_nand ,
e_or , e_nor , e_xor , e_xnor ,
e_in , e_like , e_ilike , e_inranges ,
e_ipow , e_ipowinv , e_abs , e_acos ,
e_acosh , e_asin , e_asinh , e_atan ,
e_atanh , e_ceil , e_cos , e_cosh ,
e_exp , e_expm1 , e_floor , e_log ,
e_log10 , e_log2 , e_log1p , e_neg ,
e_pos , e_round , e_sin , e_sinc ,
e_sinh , e_sqrt , e_tan , e_tanh ,
e_cot , e_sec , e_csc , e_r2d ,
e_d2r , e_d2g , e_g2d , e_notl ,
e_sgn , e_erf , e_erfc , e_ncdf ,
e_frac , e_trunc , e_uvouv , e_vov ,
e_cov , e_voc , e_vob , e_bov ,
e_cob , e_boc , e_vovov , e_vovoc ,
e_vocov , e_covov , e_covoc , e_vovovov ,
e_vovovoc , e_vovocov , e_vocovov , e_covovov ,
e_covocov , e_vocovoc , e_covovoc , e_vococov ,
e_sf3ext , e_sf4ext , e_nulleq , e_strass ,
e_vector , e_vecelem , e_rbvecelem , e_rbveccelem ,
e_vecdefass , e_vecvalass , e_vecvecass , e_vecopvalass ,
e_vecopvecass , e_vecfunc , e_vecvecswap , e_vecvecineq ,
e_vecvalineq , e_valvecineq , e_vecvecarith , e_vecvalarith ,
e_valvecarith , e_vecunaryop , e_break , e_continue ,
e_swap
};
typedef T value_type;
typedef expression_node<T>* expression_ptr;
virtual ~expression_node()
{}
inline virtual T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
inline virtual expression_node<T>* branch(const std::size_t& index = 0) const
{
return reinterpret_cast<expression_ptr>(index * 0);
}
inline virtual node_type type() const
{
return e_none;
}
};
template <typename T>
inline bool is_generally_string_node(const expression_node<T>* node);
inline bool is_true(const double v)
{
return std::not_equal_to<double>()(0.0,v);
}
inline bool is_true(const long double v)
{
return std::not_equal_to<long double>()(0.0L,v);
}
inline bool is_true(const float v)
{
return std::not_equal_to<float>()(0.0f,v);
}
template <typename T>
inline bool is_true(const std::complex<T>& v)
{
return std::not_equal_to<std::complex<T> >()(std::complex<T>(0),v);
}
template <typename T>
inline bool is_true(const expression_node<T>* node)
{
return std::not_equal_to<T>()(T(0),node->value());
}
template <typename T>
inline bool is_false(const expression_node<T>* node)
{
return std::equal_to<T>()(T(0),node->value());
}
template <typename T>
inline bool is_unary_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_unary == node->type());
}
template <typename T>
inline bool is_neg_unary_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_neg == node->type());
}
template <typename T>
inline bool is_binary_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_binary == node->type());
}
template <typename T>
inline bool is_variable_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_variable == node->type());
}
template <typename T>
inline bool is_ivariable_node(const expression_node<T>* node)
{
return node &&
(
details::expression_node<T>::e_variable == node->type() ||
details::expression_node<T>::e_vecelem == node->type() ||
details::expression_node<T>::e_rbvecelem == node->type() ||
details::expression_node<T>::e_rbveccelem == node->type()
);
}
template <typename T>
inline bool is_vector_elem_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_vecelem == node->type());
}
template <typename T>
inline bool is_rebasevector_elem_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_rbvecelem == node->type());
}
template <typename T>
inline bool is_rebasevector_celem_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_rbveccelem == node->type());
}
template <typename T>
inline bool is_vector_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_vector == node->type());
}
template <typename T>
inline bool is_ivector_node(const expression_node<T>* node)
{
if (node)
{
switch (node->type())
{
case details::expression_node<T>::e_vector :
case details::expression_node<T>::e_vecvalass :
case details::expression_node<T>::e_vecvecass :
case details::expression_node<T>::e_vecopvalass :
case details::expression_node<T>::e_vecopvecass :
case details::expression_node<T>::e_vecvecswap :
case details::expression_node<T>::e_vecvecarith :
case details::expression_node<T>::e_vecvalarith :
case details::expression_node<T>::e_valvecarith :
case details::expression_node<T>::e_vecunaryop : return true;
default : return false;
}
}
else
return false;
}
template <typename T>
inline bool is_constant_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_constant == node->type());
}
template <typename T>
inline bool is_null_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_null == node->type());
}
template <typename T>
inline bool is_break_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_break == node->type());
}
template <typename T>
inline bool is_continue_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_continue == node->type());
}
template <typename T>
inline bool is_swap_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_swap == node->type());
}
template <typename T>
inline bool is_function(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_function == node->type());
}
template <typename T>
inline bool is_return_node(const expression_node<T>* node)
{
return node && (details::expression_node<T>::e_return == node->type());
}
template <typename T> class unary_node;
template <typename T>
inline bool is_negate_node(const expression_node<T>* node)
{
if (node && is_unary_node(node))
{
return (details::e_neg == static_cast<const unary_node<T>*>(node)->operation());
}
else
return false;
}
template <typename T>
inline bool branch_deletable(expression_node<T>* node)
{
return !is_variable_node(node) &&
!is_string_node (node) ;
}
template <std::size_t N, typename T>
inline bool all_nodes_valid(expression_node<T>* (&b)[N])
{
for (std::size_t i = 0; i < N; ++i)
{
if (0 == b[i]) return false;
}
return true;
}
template <typename T,
typename Allocator,
template <typename,typename> class Sequence>
inline bool all_nodes_valid(const Sequence<expression_node<T>*,Allocator>& b)
{
for (std::size_t i = 0; i < b.size(); ++i)
{
if (0 == b[i]) return false;
}
return true;
}
template <std::size_t N, typename T>
inline bool all_nodes_variables(expression_node<T>* (&b)[N])
{
for (std::size_t i = 0; i < N; ++i)
{
if (0 == b[i])
return false;
else if (!is_variable_node(b[i]))
return false;
}
return true;
}
template <typename T,
typename Allocator,
template <typename,typename> class Sequence>
inline bool all_nodes_variables(Sequence<expression_node<T>*,Allocator>& b)
{
for (std::size_t i = 0; i < b.size(); ++i)
{
if (0 == b[i])
return false;
else if (!is_variable_node(b[i]))
return false;
}
return true;
}
template <typename NodeAllocator, typename T, std::size_t N>
inline void free_all_nodes(NodeAllocator& node_allocator, expression_node<T>* (&b)[N])
{
for (std::size_t i = 0; i < N; ++i)
{
free_node(node_allocator,b[i]);
}
}
template <typename NodeAllocator,
typename T,
typename Allocator,
template <typename,typename> class Sequence>
inline void free_all_nodes(NodeAllocator& node_allocator, Sequence<expression_node<T>*,Allocator>& b)
{
for (std::size_t i = 0; i < b.size(); ++i)
{
free_node(node_allocator,b[i]);
}
b.clear();
}
template <typename NodeAllocator, typename T>
inline void free_node(NodeAllocator& node_allocator, expression_node<T>*& node, const bool force_delete = false)
{
if (0 != node)
{
if (
(is_variable_node(node) || is_string_node(node)) ||
force_delete
)
return;
node_allocator.free(node);
node = reinterpret_cast<expression_node<T>*>(0);
}
}
template <typename T>
inline void destroy_node(expression_node<T>*& node)
{
delete node;
node = reinterpret_cast<expression_node<T>*>(0);
}
template <typename Type>
class vector_holder
{
private:
typedef Type value_type;
typedef value_type* value_ptr;
typedef const value_ptr const_value_ptr;
class vector_holder_base
{
public:
virtual ~vector_holder_base() {}
inline value_ptr operator[](const std::size_t& index) const
{
return value_at(index);
}
inline std::size_t size() const
{
return vector_size();
}
inline value_ptr data() const
{
return value_at(0);
}
virtual inline bool rebaseable() const
{
return false;
}
virtual void set_ref(value_ptr*) {}
protected:
virtual value_ptr value_at(const std::size_t&) const = 0;
virtual std::size_t vector_size() const = 0;
};
class array_vector_impl : public vector_holder_base
{
public:
array_vector_impl(const Type* vec, const std::size_t& vec_size)
: vec_(vec),
size_(vec_size)
{}
protected:
value_ptr value_at(const std::size_t& index) const
{
if (index < size_)
return const_cast<const_value_ptr>(vec_ + index);
else
return const_value_ptr(0);
}
std::size_t vector_size() const
{
return size_;
}
private:
array_vector_impl operator=(const array_vector_impl&);
const Type* vec_;
const std::size_t size_;
};
template <typename Allocator,
template <typename,typename> class Sequence>
class sequence_vector_impl : public vector_holder_base
{
public:
typedef Sequence<Type,Allocator> sequence_t;
sequence_vector_impl(sequence_t& seq)
: sequence_(seq)
{}
protected:
value_ptr value_at(const std::size_t& index) const
{
return (index < sequence_.size()) ? (&sequence_[index]) : const_value_ptr(0);
}
std::size_t vector_size() const
{
return sequence_.size();
}
private:
sequence_vector_impl operator=(const sequence_vector_impl&);
sequence_t& sequence_;
};
class vector_view_impl : public vector_holder_base
{
public:
typedef exprtk::vector_view<Type> vector_view_t;
vector_view_impl(vector_view_t& vec_view)
: vec_view_(vec_view)
{}
void set_ref(value_ptr* ref)
{
vec_view_.set_ref(ref);
}
virtual inline bool rebaseable() const
{
return true;
}
protected:
value_ptr value_at(const std::size_t& index) const
{
return (index < vec_view_.size()) ? (&vec_view_[index]) : const_value_ptr(0);
}
std::size_t vector_size() const
{
return vec_view_.size();
}
private:
vector_view_impl operator=(const vector_view_impl&);
vector_view_t& vec_view_;
};
public:
typedef typename details::vec_data_store<Type> vds_t;
vector_holder(Type* vec, const std::size_t& vec_size)
: vector_holder_base_(new(buffer)array_vector_impl(vec,vec_size))
{}
vector_holder(const vds_t& vds)
: vector_holder_base_(new(buffer)array_vector_impl(vds.data(),vds.size()))
{}
template <typename Allocator>
vector_holder(std::vector<Type,Allocator>& vec)
: vector_holder_base_(new(buffer)sequence_vector_impl<Allocator,std::vector>(vec))
{}
vector_holder(exprtk::vector_view<Type>& vec)
: vector_holder_base_(new(buffer)vector_view_impl(vec))
{}
inline value_ptr operator[](const std::size_t& index) const
{
return (*vector_holder_base_)[index];
}
inline std::size_t size() const
{
return vector_holder_base_->size();
}
inline value_ptr data() const
{
return vector_holder_base_->data();
}
void set_ref(value_ptr* ref)
{
vector_holder_base_->set_ref(ref);
}
bool rebaseable() const
{
return vector_holder_base_->rebaseable();
}
private:
mutable vector_holder_base* vector_holder_base_;
uchar_t buffer[64];
};
template <typename T>
class null_node : public expression_node<T>
{
public:
inline T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_null;
}
};
template <typename T>
class null_eq_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
null_eq_node(expression_ptr brnch, const bool equality = true)
: branch_(brnch),
branch_deletable_(branch_deletable(branch_)),
equality_(equality)
{}
~null_eq_node()
{
if (branch_ && branch_deletable_)
{
destroy_node(branch_);
}
}
inline T value() const
{
const T v = branch_->value();
const bool result = details::numeric::is_nan(v);
if (result)
return (equality_) ? T(1) : T(0);
else
return (equality_) ? T(0) : T(1);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_nulleq;
}
inline operator_type operation() const
{
return details::e_eq;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_;
}
private:
expression_ptr branch_;
const bool branch_deletable_;
bool equality_;
};
template <typename T>
class literal_node : public expression_node<T>
{
public:
explicit literal_node(const T& v)
: value_(v)
{}
inline T value() const
{
return value_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_constant;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return reinterpret_cast<expression_node<T>*>(0);
}
private:
literal_node(literal_node<T>&) {}
literal_node<T>& operator=(literal_node<T>&) { return (*this); }
const T value_;
};
template <typename T>
struct range_pack;
template <typename T>
struct range_data_type;
template <typename T>
class range_interface
{
public:
typedef range_pack<T> range_t;
virtual ~range_interface()
{}
virtual range_t& range_ref() = 0;
virtual const range_t& range_ref() const = 0;
};
#ifndef exprtk_disable_string_capabilities
template <typename T>
class string_base_node
{
public:
typedef range_data_type<T> range_data_type_t;
virtual ~string_base_node()
{}
virtual std::string str () const = 0;
virtual const char_t* base() const = 0;
virtual std::size_t size() const = 0;
};
template <typename T>
class string_literal_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef range_pack<T> range_t;
explicit string_literal_node(const std::string& v)
: value_(v)
{
rp_.n0_c = std::make_pair<bool,std::size_t>(true,0);
rp_.n1_c = std::make_pair<bool,std::size_t>(true,v.size() - 1);
rp_.cache.first = rp_.n0_c.second;
rp_.cache.second = rp_.n1_c.second;
}
inline T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringconst;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return reinterpret_cast<expression_node<T>*>(0);
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return value_.data();
}
std::size_t size() const
{
return value_.size();
}
range_t& range_ref()
{
return rp_;
}
const range_t& range_ref() const
{
return rp_;
}
private:
string_literal_node(const string_literal_node<T>&);
string_literal_node<T>& operator=(const string_literal_node<T>&);
const std::string value_;
range_t rp_;
};
#endif
template <typename T>
class unary_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
unary_node(const operator_type& opr,
expression_ptr brnch)
: operation_(opr),
branch_(brnch),
branch_deletable_(branch_deletable(branch_))
{}
~unary_node()
{
if (branch_ && branch_deletable_)
{
destroy_node(branch_);
}
}
inline T value() const
{
const T arg = branch_->value();
return numeric::process<T>(operation_,arg);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_unary;
}
inline operator_type operation() const
{
return operation_;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_;
}
inline void release()
{
branch_deletable_ = false;
}
protected:
operator_type operation_;
expression_ptr branch_;
bool branch_deletable_;
};
template <typename T, std::size_t D, bool B>
struct construct_branch_pair
{
template <std::size_t N>
static inline void process(std::pair<expression_node<T>*,bool> (&)[N], expression_node<T>*)
{}
};
template <typename T, std::size_t D>
struct construct_branch_pair<T,D,true>
{
template <std::size_t N>
static inline void process(std::pair<expression_node<T>*,bool> (&branch)[N], expression_node<T>* b)
{
if (b)
{
branch[D] = std::make_pair(b,branch_deletable(b));
}
}
};
template <std::size_t N, typename T>
inline void init_branches(std::pair<expression_node<T>*,bool> (&branch)[N],
expression_node<T>* b0,
expression_node<T>* b1 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b2 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b3 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b4 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b5 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b6 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b7 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b8 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b9 = reinterpret_cast<expression_node<T>*>(0))
{
construct_branch_pair<T,0,(N > 0)>::process(branch,b0);
construct_branch_pair<T,1,(N > 1)>::process(branch,b1);
construct_branch_pair<T,2,(N > 2)>::process(branch,b2);
construct_branch_pair<T,3,(N > 3)>::process(branch,b3);
construct_branch_pair<T,4,(N > 4)>::process(branch,b4);
construct_branch_pair<T,5,(N > 5)>::process(branch,b5);
construct_branch_pair<T,6,(N > 6)>::process(branch,b6);
construct_branch_pair<T,7,(N > 7)>::process(branch,b7);
construct_branch_pair<T,8,(N > 8)>::process(branch,b8);
construct_branch_pair<T,9,(N > 9)>::process(branch,b9);
}
struct cleanup_branches
{
template <typename T, std::size_t N>
static inline void execute(std::pair<expression_node<T>*,bool> (&branch)[N])
{
for (std::size_t i = 0; i < N; ++i)
{
if (branch[i].first && branch[i].second)
{
destroy_node(branch[i].first);
}
}
}
template <typename T,
typename Allocator,
template <typename,typename> class Sequence>
static inline void execute(Sequence<std::pair<expression_node<T>*,bool>,Allocator>& branch)
{
for (std::size_t i = 0; i < branch.size(); ++i)
{
if (branch[i].first && branch[i].second)
{
destroy_node(branch[i].first);
}
}
}
};
template <typename T>
class binary_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
binary_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: operation_(opr)
{
init_branches<2>(branch_, branch0, branch1);
}
~binary_node()
{
cleanup_branches::execute<T,2>(branch_);
}
inline T value() const
{
const T arg0 = branch_[0].first->value();
const T arg1 = branch_[1].first->value();
return numeric::process<T>(operation_,arg0,arg1);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_binary;
}
inline operator_type operation()
{
return operation_;
}
inline expression_node<T>* branch(const std::size_t& index = 0) const
{
if (0 == index)
return branch_[0].first;
else if (1 == index)
return branch_[1].first;
else
return reinterpret_cast<expression_ptr>(0);
}
protected:
operator_type operation_;
branch_t branch_[2];
};
template <typename T, typename Operation>
class binary_ext_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
binary_ext_node(expression_ptr branch0, expression_ptr branch1)
{
init_branches<2>(branch_, branch0, branch1);
}
~binary_ext_node()
{
cleanup_branches::execute<T,2>(branch_);
}
inline T value() const
{
const T arg0 = branch_[0].first->value();
const T arg1 = branch_[1].first->value();
return Operation::process(arg0,arg1);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_binary_ext;
}
inline operator_type operation()
{
return Operation::operation();
}
inline expression_node<T>* branch(const std::size_t& index = 0) const
{
if (0 == index)
return branch_[0].first;
else if (1 == index)
return branch_[1].first;
else
return reinterpret_cast<expression_ptr>(0);
}
protected:
branch_t branch_[2];
};
template <typename T>
class trinary_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
trinary_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1,
expression_ptr branch2)
: operation_(opr)
{
init_branches<3>(branch_, branch0, branch1, branch2);
}
~trinary_node()
{
cleanup_branches::execute<T,3>(branch_);
}
inline T value() const
{
const T arg0 = branch_[0].first->value();
const T arg1 = branch_[1].first->value();
const T arg2 = branch_[2].first->value();
switch (operation_)
{
case e_inrange : return (arg1 < arg0) ? T(0) : ((arg1 > arg2) ? T(0) : T(1));
case e_clamp : return (arg1 < arg0) ? arg0 : (arg1 > arg2 ? arg2 : arg1);
case e_iclamp : if ((arg1 <= arg0) || (arg1 >= arg2))
return arg1;
else
return ((T(2) * arg1 <= (arg2 + arg0)) ? arg0 : arg2);
default : {
exprtk_debug(("trinary_node::value() - Error: Invalid operation\n"));
return std::numeric_limits<T>::quiet_NaN();
}
}
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_trinary;
}
protected:
operator_type operation_;
branch_t branch_[3];
};
template <typename T>
class quaternary_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
quaternary_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1,
expression_ptr branch2,
expression_ptr branch3)
: operation_(opr)
{
init_branches<4>(branch_, branch0, branch1, branch2, branch3);
}
~quaternary_node()
{
cleanup_branches::execute<T,4>(branch_);
}
inline T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_quaternary;
}
protected:
operator_type operation_;
branch_t branch_[4];
};
template <typename T>
class conditional_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
conditional_node(expression_ptr test,
expression_ptr consequent,
expression_ptr alternative)
: test_(test),
consequent_(consequent),
alternative_(alternative),
test_deletable_(branch_deletable(test_)),
consequent_deletable_(branch_deletable(consequent_)),
alternative_deletable_(branch_deletable(alternative_))
{}
~conditional_node()
{
if (test_ && test_deletable_)
{
destroy_node(test_);
}
if (consequent_ && consequent_deletable_ )
{
destroy_node(consequent_);
}
if (alternative_ && alternative_deletable_)
{
destroy_node(alternative_);
}
}
inline T value() const
{
if (is_true(test_))
return consequent_->value();
else
return alternative_->value();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_conditional;
}
private:
expression_ptr test_;
expression_ptr consequent_;
expression_ptr alternative_;
const bool test_deletable_;
const bool consequent_deletable_;
const bool alternative_deletable_;
};
template <typename T>
class cons_conditional_node : public expression_node<T>
{
public:
// Consequent only conditional statement node
typedef expression_node<T>* expression_ptr;
cons_conditional_node(expression_ptr test,
expression_ptr consequent)
: test_(test),
consequent_(consequent),
test_deletable_(branch_deletable(test_)),
consequent_deletable_(branch_deletable(consequent_))
{}
~cons_conditional_node()
{
if (test_ && test_deletable_)
{
destroy_node(test_);
}
if (consequent_ && consequent_deletable_)
{
destroy_node(consequent_);
}
}
inline T value() const
{
if (is_true(test_))
return consequent_->value();
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_conditional;
}
private:
expression_ptr test_;
expression_ptr consequent_;
const bool test_deletable_;
const bool consequent_deletable_;
};
#ifndef exprtk_disable_break_continue
template <typename T>
class break_exception
{
public:
break_exception(const T& v)
: value(v)
{}
T value;
};
class continue_exception
{};
template <typename T>
class break_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
break_node(expression_ptr ret = expression_ptr(0))
: return_(ret),
return_deletable_(branch_deletable(return_))
{}
~break_node()
{
if (return_deletable_)
{
destroy_node(return_);
}
}
inline T value() const
{
throw break_exception<T>(return_ ? return_->value() : std::numeric_limits<T>::quiet_NaN());
#ifndef _MSC_VER
return std::numeric_limits<T>::quiet_NaN();
#endif
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_break;
}
private:
expression_ptr return_;
const bool return_deletable_;
};
template <typename T>
class continue_node : public expression_node<T>
{
public:
inline T value() const
{
throw continue_exception();
#ifndef _MSC_VER
return std::numeric_limits<T>::quiet_NaN();
#endif
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_break;
}
};
#endif
template <typename T>
class while_loop_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
while_loop_node(expression_ptr condition, expression_ptr loop_body)
: condition_(condition),
loop_body_(loop_body),
condition_deletable_(branch_deletable(condition_)),
loop_body_deletable_(branch_deletable(loop_body_))
{}
~while_loop_node()
{
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
while (is_true(condition_))
{
result = loop_body_->value();
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_while;
}
private:
expression_ptr condition_;
expression_ptr loop_body_;
const bool condition_deletable_;
const bool loop_body_deletable_;
};
template <typename T>
class repeat_until_loop_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
repeat_until_loop_node(expression_ptr condition, expression_ptr loop_body)
: condition_(condition),
loop_body_(loop_body),
condition_deletable_(branch_deletable(condition_)),
loop_body_deletable_(branch_deletable(loop_body_))
{}
~repeat_until_loop_node()
{
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
do
{
result = loop_body_->value();
}
while (is_false(condition_));
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_repeat;
}
private:
expression_ptr condition_;
expression_ptr loop_body_;
const bool condition_deletable_;
const bool loop_body_deletable_;
};
template <typename T>
class for_loop_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
for_loop_node(expression_ptr initialiser,
expression_ptr condition,
expression_ptr incrementor,
expression_ptr loop_body)
: initialiser_(initialiser),
condition_ (condition ),
incrementor_(incrementor),
loop_body_ (loop_body ),
initialiser_deletable_(branch_deletable(initialiser_)),
condition_deletable_ (branch_deletable(condition_ )),
incrementor_deletable_(branch_deletable(incrementor_)),
loop_body_deletable_ (branch_deletable(loop_body_ ))
{}
~for_loop_node()
{
if (initialiser_ && initialiser_deletable_)
{
destroy_node(initialiser_);
}
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (incrementor_ && incrementor_deletable_)
{
destroy_node(incrementor_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
if (initialiser_)
initialiser_->value();
if (incrementor_)
{
while (is_true(condition_))
{
result = loop_body_->value();
incrementor_->value();
}
}
else
{
while (is_true(condition_))
{
result = loop_body_->value();
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_for;
}
private:
expression_ptr initialiser_ ;
expression_ptr condition_ ;
expression_ptr incrementor_ ;
expression_ptr loop_body_ ;
const bool initialiser_deletable_;
const bool condition_deletable_ ;
const bool incrementor_deletable_;
const bool loop_body_deletable_ ;
};
#ifndef exprtk_disable_break_continue
template <typename T>
class while_loop_bc_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
while_loop_bc_node(expression_ptr condition, expression_ptr loop_body)
: condition_(condition),
loop_body_(loop_body),
condition_deletable_(branch_deletable(condition_)),
loop_body_deletable_(branch_deletable(loop_body_))
{}
~while_loop_bc_node()
{
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
while (is_true(condition_))
{
try
{
result = loop_body_->value();
}
catch(const break_exception<T>& e)
{
return e.value;
}
catch(const continue_exception&)
{}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_while;
}
private:
expression_ptr condition_;
expression_ptr loop_body_;
const bool condition_deletable_;
const bool loop_body_deletable_;
};
template <typename T>
class repeat_until_loop_bc_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
repeat_until_loop_bc_node(expression_ptr condition, expression_ptr loop_body)
: condition_(condition),
loop_body_(loop_body),
condition_deletable_(branch_deletable(condition_)),
loop_body_deletable_(branch_deletable(loop_body_))
{}
~repeat_until_loop_bc_node()
{
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
do
{
try
{
result = loop_body_->value();
}
catch(const break_exception<T>& e)
{
return e.value;
}
catch(const continue_exception&)
{}
}
while (is_false(condition_));
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_repeat;
}
private:
expression_ptr condition_;
expression_ptr loop_body_;
const bool condition_deletable_;
const bool loop_body_deletable_;
};
template <typename T>
class for_loop_bc_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
for_loop_bc_node(expression_ptr initialiser,
expression_ptr condition,
expression_ptr incrementor,
expression_ptr loop_body)
: initialiser_(initialiser),
condition_ (condition ),
incrementor_(incrementor),
loop_body_ (loop_body ),
initialiser_deletable_(branch_deletable(initialiser_)),
condition_deletable_ (branch_deletable(condition_ )),
incrementor_deletable_(branch_deletable(incrementor_)),
loop_body_deletable_ (branch_deletable(loop_body_ ))
{}
~for_loop_bc_node()
{
if (initialiser_ && initialiser_deletable_)
{
destroy_node(initialiser_);
}
if (condition_ && condition_deletable_)
{
destroy_node(condition_);
}
if (incrementor_ && incrementor_deletable_)
{
destroy_node(incrementor_);
}
if (loop_body_ && loop_body_deletable_)
{
destroy_node(loop_body_);
}
}
inline T value() const
{
T result = T(0);
if (initialiser_)
initialiser_->value();
if (incrementor_)
{
while (is_true(condition_))
{
try
{
result = loop_body_->value();
}
catch(const break_exception<T>& e)
{
return e.value;
}
catch(const continue_exception&)
{}
incrementor_->value();
}
}
else
{
while (is_true(condition_))
{
try
{
result = loop_body_->value();
}
catch(const break_exception<T>& e)
{
return e.value;
}
catch(const continue_exception&)
{}
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_for;
}
private:
expression_ptr initialiser_;
expression_ptr condition_ ;
expression_ptr incrementor_;
expression_ptr loop_body_ ;
const bool initialiser_deletable_;
const bool condition_deletable_ ;
const bool incrementor_deletable_;
const bool loop_body_deletable_ ;
};
#endif
template <typename T>
class switch_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
switch_node(const Sequence<expression_ptr,Allocator>& arg_list)
{
if (1 != (arg_list.size() & 1))
return;
arg_list_.resize(arg_list.size());
delete_branch_.resize(arg_list.size());
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (arg_list[i])
{
arg_list_[i] = arg_list[i];
delete_branch_[i] = static_cast<unsigned char>(branch_deletable(arg_list_[i]) ? 1 : 0);
}
else
{
arg_list_.clear();
delete_branch_.clear();
return;
}
}
}
~switch_node()
{
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
if (arg_list_[i] && delete_branch_[i])
{
destroy_node(arg_list_[i]);
}
}
}
inline T value() const
{
if (!arg_list_.empty())
{
const std::size_t upper_bound = (arg_list_.size() - 1);
for (std::size_t i = 0; i < upper_bound; i += 2)
{
expression_ptr condition = arg_list_[i ];
expression_ptr consequent = arg_list_[i + 1];
if (is_true(condition))
{
return consequent->value();
}
}
return arg_list_[upper_bound]->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_switch;
}
protected:
std::vector<expression_ptr> arg_list_;
std::vector<unsigned char> delete_branch_;
};
template <typename T, typename Switch_N>
class switch_n_node : public switch_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
switch_n_node(const Sequence<expression_ptr,Allocator>& arg_list)
: switch_node<T>(arg_list)
{}
inline T value() const
{
return Switch_N::process(switch_node<T>::arg_list_);
}
};
template <typename T>
class multi_switch_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
multi_switch_node(const Sequence<expression_ptr,Allocator>& arg_list)
{
if (0 != (arg_list.size() & 1))
return;
arg_list_.resize(arg_list.size());
delete_branch_.resize(arg_list.size());
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (arg_list[i])
{
arg_list_[i] = arg_list[i];
delete_branch_[i] = static_cast<unsigned char>(branch_deletable(arg_list_[i]) ? 1 : 0);
}
else
{
arg_list_.clear();
delete_branch_.clear();
return;
}
}
}
~multi_switch_node()
{
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
if (arg_list_[i] && delete_branch_[i])
{
destroy_node(arg_list_[i]);
}
}
}
inline T value() const
{
T result = T(0);
if (arg_list_.empty())
{
return std::numeric_limits<T>::quiet_NaN();
}
const std::size_t upper_bound = (arg_list_.size() - 1);
for (std::size_t i = 0; i < upper_bound; i += 2)
{
expression_ptr condition = arg_list_[i ];
expression_ptr consequent = arg_list_[i + 1];
if (is_true(condition))
{
result = consequent->value();
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_mswitch;
}
private:
std::vector<expression_ptr> arg_list_;
std::vector<unsigned char> delete_branch_;
};
template <typename T>
class ivariable
{
public:
virtual ~ivariable()
{}
virtual T& ref() = 0;
virtual const T& ref() const = 0;
};
template <typename T>
class variable_node : public expression_node<T>,
public ivariable <T>
{
public:
static T null_value;
explicit variable_node()
: value_(&null_value)
{}
variable_node(T& v)
: value_(&v)
{}
inline bool operator <(const variable_node<T>& v) const
{
return this < (&v);
}
inline T value() const
{
return (*value_);
}
inline T& ref()
{
return (*value_);
}
inline const T& ref() const
{
return (*value_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_variable;
}
private:
T* value_;
};
template <typename T>
T variable_node<T>::null_value = T(std::numeric_limits<T>::quiet_NaN());
template <typename T>
struct range_pack
{
typedef expression_node<T>* expression_node_ptr;
typedef std::pair<std::size_t,std::size_t> cached_range_t;
range_pack()
: n0_e (std::make_pair(false,expression_node_ptr(0))),
n1_e (std::make_pair(false,expression_node_ptr(0))),
n0_c (std::make_pair(false,0)),
n1_c (std::make_pair(false,0)),
cache(std::make_pair(0,0))
{}
void clear()
{
n0_e = std::make_pair(false,expression_node_ptr(0));
n1_e = std::make_pair(false,expression_node_ptr(0));
n0_c = std::make_pair(false,0);
n1_c = std::make_pair(false,0);
cache = std::make_pair(0,0);
}
void free()
{
if (n0_e.first && n0_e.second)
{
n0_e.first = false;
if (
!is_variable_node(n0_e.second) &&
!is_string_node (n0_e.second)
)
{
destroy_node(n0_e.second);
}
}
if (n1_e.first && n1_e.second)
{
n1_e.first = false;
if (
!is_variable_node(n1_e.second) &&
!is_string_node (n1_e.second)
)
{
destroy_node(n1_e.second);
}
}
}
bool const_range()
{
return ( n0_c.first && n1_c.first) &&
(!n0_e.first && !n1_e.first);
}
bool var_range()
{
return ( n0_e.first && n1_e.first) &&
(!n0_c.first && !n1_c.first);
}
bool operator() (std::size_t& r0, std::size_t& r1, const std::size_t& size = std::numeric_limits<std::size_t>::max()) const
{
if (n0_c.first)
r0 = n0_c.second;
else if (n0_e.first)
{
T r0_value = n0_e.second->value();
if (r0_value < 0)
return false;
else
r0 = static_cast<std::size_t>(details::numeric::to_int64(r0_value));
}
else
return false;
if (n1_c.first)
r1 = n1_c.second;
else if (n1_e.first)
{
T r1_value = n1_e.second->value();
if (r1_value < 0)
return false;
else
r1 = static_cast<std::size_t>(details::numeric::to_int64(r1_value));
}
else
return false;
if (
(std::numeric_limits<std::size_t>::max() != size) &&
(std::numeric_limits<std::size_t>::max() == r1 )
)
{
r1 = size - 1;
}
cache.first = r0;
cache.second = r1;
return (r0 <= r1);
}
inline std::size_t const_size() const
{
return (n1_c.second - n0_c.second + 1);
}
inline std::size_t cache_size() const
{
return (cache.second - cache.first + 1);
}
std::pair<bool,expression_node_ptr> n0_e;
std::pair<bool,expression_node_ptr> n1_e;
std::pair<bool,std::size_t > n0_c;
std::pair<bool,std::size_t > n1_c;
mutable cached_range_t cache;
};
template <typename T>
class string_base_node;
template <typename T>
struct range_data_type
{
typedef range_pack<T> range_t;
typedef string_base_node<T>* strbase_ptr_t;
range_data_type()
: range(0),
data (0),
size (0),
type_size(0),
str_node (0)
{}
range_t* range;
void* data;
std::size_t size;
std::size_t type_size;
strbase_ptr_t str_node;
};
template <typename T> class vector_node;
template <typename T>
class vector_interface
{
public:
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
virtual ~vector_interface()
{}
virtual std::size_t size () const = 0;
virtual vector_node_ptr vec() const = 0;
virtual vector_node_ptr vec() = 0;
virtual vds_t& vds () = 0;
virtual const vds_t& vds () const = 0;
virtual bool side_effect () const { return false; }
};
template <typename T>
class vector_node : public expression_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_holder<T> vector_holder_t;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
vector_node(vector_holder_t* vh)
: vector_holder_(vh),
vds_((*vector_holder_).size(),(*vector_holder_)[0])
{
vector_holder_->set_ref(&vds_.ref());
}
vector_node(const vds_t& vds, vector_holder_t* vh)
: vector_holder_(vh),
vds_(vds)
{}
inline T value() const
{
return vds().data()[0];
}
vector_node_ptr vec() const
{
return const_cast<vector_node_ptr>(this);
}
vector_node_ptr vec()
{
return this;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vector;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
inline vector_holder_t& vec_holder()
{
return (*vector_holder_);
}
private:
vector_holder_t* vector_holder_;
vds_t vds_;
};
template <typename T>
class vector_elem_node : public expression_node<T>,
public ivariable <T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_holder<T> vector_holder_t;
typedef vector_holder_t* vector_holder_ptr;
vector_elem_node(expression_ptr index, vector_holder_ptr vec_holder)
: index_(index),
vec_holder_(vec_holder),
vector_base_((*vec_holder)[0]),
index_deletable_(branch_deletable(index_))
{}
~vector_elem_node()
{
if (index_ && index_deletable_)
{
destroy_node(index_);
}
}
inline T value() const
{
return *(vector_base_ + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline T& ref()
{
return *(vector_base_ + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline const T& ref() const
{
return *(vector_base_ + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecelem;
}
inline vector_holder_t& vec_holder()
{
return (*vec_holder_);
}
private:
expression_ptr index_;
vector_holder_ptr vec_holder_;
T* vector_base_;
const bool index_deletable_;
};
template <typename T>
class rebasevector_elem_node : public expression_node<T>,
public ivariable <T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_holder<T> vector_holder_t;
typedef vector_holder_t* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
rebasevector_elem_node(expression_ptr index, vector_holder_ptr vec_holder)
: index_(index),
index_deletable_(branch_deletable(index_)),
vector_holder_(vec_holder),
vds_((*vector_holder_).size(),(*vector_holder_)[0])
{
vector_holder_->set_ref(&vds_.ref());
}
~rebasevector_elem_node()
{
if (index_ && index_deletable_)
{
destroy_node(index_);
}
}
inline T value() const
{
return *(vds_.data() + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline T& ref()
{
return *(vds_.data() + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline const T& ref() const
{
return *(vds_.data() + static_cast<std::size_t>(details::numeric::to_int64(index_->value())));
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_rbvecelem;
}
inline vector_holder_t& vec_holder()
{
return (*vector_holder_);
}
private:
expression_ptr index_;
const bool index_deletable_;
vector_holder_ptr vector_holder_;
vds_t vds_;
};
template <typename T>
class rebasevector_celem_node : public expression_node<T>,
public ivariable <T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_holder<T> vector_holder_t;
typedef vector_holder_t* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
rebasevector_celem_node(const std::size_t index, vector_holder_ptr vec_holder)
: index_(index),
vector_holder_(vec_holder),
vds_((*vector_holder_).size(),(*vector_holder_)[0])
{
vector_holder_->set_ref(&vds_.ref());
}
inline T value() const
{
return *(vds_.data() + index_);
}
inline T& ref()
{
return *(vds_.data() + index_);
}
inline const T& ref() const
{
return *(vds_.data() + index_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_rbveccelem;
}
inline vector_holder_t& vec_holder()
{
return (*vector_holder_);
}
private:
const std::size_t index_;
vector_holder_ptr vector_holder_;
vds_t vds_;
};
template <typename T>
class vector_assignment_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
vector_assignment_node(T* vector_base,
const std::size_t& size,
const std::vector<expression_ptr>& initialiser_list,
const bool single_value_initialse)
: vector_base_(vector_base),
initialiser_list_(initialiser_list),
size_(size),
single_value_initialse_(single_value_initialse)
{}
~vector_assignment_node()
{
for (std::size_t i = 0; i < initialiser_list_.size(); ++i)
{
if (branch_deletable(initialiser_list_[i]))
{
destroy_node(initialiser_list_[i]);
}
}
}
inline T value() const
{
if (single_value_initialse_)
{
for (std::size_t i = 0; i < size_; ++i)
{
*(vector_base_ + i) = initialiser_list_[0]->value();
}
}
else
{
std::size_t il_size = initialiser_list_.size();
for (std::size_t i = 0; i < il_size; ++i)
{
*(vector_base_ + i) = initialiser_list_[i]->value();
}
if (il_size < size_)
{
for (std::size_t i = il_size; i < size_; ++i)
{
*(vector_base_ + i) = T(0);
}
}
}
return *(vector_base_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecdefass;
}
private:
vector_assignment_node<T>& operator=(const vector_assignment_node<T>&);
mutable T* vector_base_;
std::vector<expression_ptr> initialiser_list_;
const std::size_t size_;
const bool single_value_initialse_;
};
template <typename T>
class swap_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef variable_node<T>* variable_node_ptr;
swap_node(variable_node_ptr var0, variable_node_ptr var1)
: var0_(var0),
var1_(var1)
{}
inline T value() const
{
std::swap(var0_->ref(),var1_->ref());
return var1_->ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_swap;
}
private:
variable_node_ptr var0_;
variable_node_ptr var1_;
};
template <typename T>
class swap_generic_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef ivariable<T>* ivariable_ptr;
swap_generic_node(expression_ptr var0, expression_ptr var1)
: binary_node<T>(details::e_swap, var0, var1),
var0_(dynamic_cast<ivariable_ptr>(var0)),
var1_(dynamic_cast<ivariable_ptr>(var1))
{}
inline T value() const
{
std::swap(var0_->ref(),var1_->ref());
return var1_->ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_swap;
}
private:
ivariable_ptr var0_;
ivariable_ptr var1_;
};
template <typename T>
class swap_vecvec_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
swap_vecvec_node(expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(details::e_swap, branch0, branch1),
vec0_node_ptr_(0),
vec1_node_ptr_(0),
vec_size_ (0),
initialised_ (false)
{
if (is_ivector_node(binary_node<T>::branch_[0].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[0].first)))
{
vec0_node_ptr_ = vi->vec();
vds() = vi->vds();
}
}
if (is_ivector_node(binary_node<T>::branch_[1].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[1].first)))
{
vec1_node_ptr_ = vi->vec();
}
}
if (vec0_node_ptr_ && vec1_node_ptr_)
{
vec_size_ = std::min(vec0_node_ptr_->vds().size(),
vec1_node_ptr_->vds().size());
initialised_ = true;
}
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vec1_node_ptr_->vds().data();
for (std::size_t i = 0; i < vec_size_; ++i)
{
std::swap(vec0[i],vec1[i]);
}
return vec1_node_ptr_->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return vec0_node_ptr_;
}
vector_node_ptr vec()
{
return vec0_node_ptr_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvecswap;
}
std::size_t size() const
{
return vec_size_;
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node<T>* vec0_node_ptr_;
vector_node<T>* vec1_node_ptr_;
std::size_t vec_size_;
bool initialised_;
vds_t vds_;
};
#ifndef exprtk_disable_string_capabilities
template <typename T>
class stringvar_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef range_pack<T> range_t;
static std::string null_value;
explicit stringvar_node()
: value_(&null_value)
{}
explicit stringvar_node(std::string& v)
: value_(&v)
{
rp_.n0_c = std::make_pair<bool,std::size_t>(true,0);
rp_.n1_c = std::make_pair<bool,std::size_t>(true,v.size() - 1);
rp_.cache.first = rp_.n0_c.second;
rp_.cache.second = rp_.n1_c.second;
}
inline bool operator <(const stringvar_node<T>& v) const
{
return this < (&v);
}
inline T value() const
{
rp_.n1_c.second = (*value_).size() - 1;
rp_.cache.second = rp_.n1_c.second;
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return ref();
}
const char_t* base() const
{
return &(*value_)[0];
}
std::size_t size() const
{
return ref().size();
}
std::string& ref()
{
return (*value_);
}
const std::string& ref() const
{
return (*value_);
}
range_t& range_ref()
{
return rp_;
}
const range_t& range_ref() const
{
return rp_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringvar;
}
private:
std::string* value_;
mutable range_t rp_;
};
template <typename T>
std::string stringvar_node<T>::null_value = std::string("");
template <typename T>
class string_range_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef range_pack<T> range_t;
static std::string null_value;
explicit string_range_node(std::string& v, const range_t& rp)
: value_(&v),
rp_(rp)
{}
virtual ~string_range_node()
{
rp_.free();
}
inline bool operator <(const string_range_node<T>& v) const
{
return this < (&v);
}
inline T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
inline std::string str() const
{
return (*value_);
}
const char_t* base() const
{
return &(*value_)[0];
}
std::size_t size() const
{
return ref().size();
}
inline range_t range() const
{
return rp_;
}
inline virtual std::string& ref()
{
return (*value_);
}
inline virtual const std::string& ref() const
{
return (*value_);
}
inline range_t& range_ref()
{
return rp_;
}
inline const range_t& range_ref() const
{
return rp_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringvarrng;
}
private:
std::string* value_;
range_t rp_;
};
template <typename T>
std::string string_range_node<T>::null_value = std::string("");
template <typename T>
class const_string_range_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef range_pack<T> range_t;
explicit const_string_range_node(const std::string& v, const range_t& rp)
: value_(v),
rp_(rp)
{}
~const_string_range_node()
{
rp_.free();
}
inline T value() const
{
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return value_.data();
}
std::size_t size() const
{
return value_.size();
}
range_t range() const
{
return rp_;
}
range_t& range_ref()
{
return rp_;
}
const range_t& range_ref() const
{
return rp_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_cstringvarrng;
}
private:
const_string_range_node<T>& operator=(const const_string_range_node<T>&);
const std::string value_;
range_t rp_;
};
template <typename T>
class generic_string_range_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef stringvar_node <T>* strvar_node_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
generic_string_range_node(expression_ptr str_branch, const range_t& brange)
: initialised_(false),
branch_(str_branch),
branch_deletable_(branch_deletable(branch_)),
str_base_ptr_ (0),
str_range_ptr_(0),
base_range_(brange)
{
range_.n0_c = std::make_pair<bool,std::size_t>(true,0);
range_.n1_c = std::make_pair<bool,std::size_t>(true,0);
range_.cache.first = range_.n0_c.second;
range_.cache.second = range_.n1_c.second;
if (is_generally_string_node(branch_))
{
str_base_ptr_ = dynamic_cast<str_base_ptr>(branch_);
if (0 == str_base_ptr_)
return;
str_range_ptr_ = dynamic_cast<irange_ptr>(branch_);
if (0 == str_range_ptr_)
return;
}
initialised_ = (str_base_ptr_ && str_range_ptr_);
}
~generic_string_range_node()
{
base_range_.free();
if (branch_ && branch_deletable_)
{
destroy_node(branch_);
}
}
inline T value() const
{
if (initialised_)
{
branch_->value();
std::size_t str_r0 = 0;
std::size_t str_r1 = 0;
std::size_t r0 = 0;
std::size_t r1 = 0;
range_t& range = str_range_ptr_->range_ref();
const std::size_t base_str_size = str_base_ptr_->size();
if (
range (str_r0,str_r1,base_str_size) &&
base_range_( r0, r1,base_str_size)
)
{
const std::size_t size = (r1 - r0) + 1;
range_.n1_c.second = size - 1;
range_.cache.second = range_.n1_c.second;
value_.assign(str_base_ptr_->base() + str_r0 + r0, size);
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return &value_[0];
}
std::size_t size() const
{
return value_.size();
}
range_t& range_ref()
{
return range_;
}
const range_t& range_ref() const
{
return range_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strgenrange;
}
private:
bool initialised_;
expression_ptr branch_;
const bool branch_deletable_;
str_base_ptr str_base_ptr_;
irange_ptr str_range_ptr_;
mutable range_t base_range_;
mutable range_t range_;
mutable std::string value_;
};
template <typename T>
class string_concat_node : public binary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
string_concat_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
initialised_(false),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_range_ptr_(0),
str1_range_ptr_(0)
{
range_.n0_c = std::make_pair<bool,std::size_t>(true,0);
range_.n1_c = std::make_pair<bool,std::size_t>(true,0);
range_.cache.first = range_.n0_c.second;
range_.cache.second = range_.n1_c.second;
if (is_generally_string_node(binary_node<T>::branch_[0].first))
{
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_base_ptr_)
return;
str0_range_ptr_ = dynamic_cast<irange_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_range_ptr_)
return;
}
if (is_generally_string_node(binary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
str1_range_ptr_ = dynamic_cast<irange_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_range_ptr_)
return;
}
initialised_ = str0_base_ptr_ &&
str1_base_ptr_ &&
str0_range_ptr_ &&
str1_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
std::size_t str0_r0 = 0;
std::size_t str0_r1 = 0;
std::size_t str1_r0 = 0;
std::size_t str1_r1 = 0;
range_t& range0 = str0_range_ptr_->range_ref();
range_t& range1 = str1_range_ptr_->range_ref();
if (
range0(str0_r0,str0_r1,str0_base_ptr_->size()) &&
range1(str1_r0,str1_r1,str1_base_ptr_->size())
)
{
const std::size_t size0 = (str0_r1 - str0_r0) + 1;
const std::size_t size1 = (str1_r1 - str1_r0) + 1;
value_.assign(str0_base_ptr_->base() + str0_r0, size0);
value_.append(str1_base_ptr_->base() + str1_r0, size1);
range_.n1_c.second = value_.size() - 1;
range_.cache.second = range_.n1_c.second;
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return &value_[0];
}
std::size_t size() const
{
return value_.size();
}
range_t& range_ref()
{
return range_;
}
const range_t& range_ref() const
{
return range_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strconcat;
}
private:
bool initialised_;
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
irange_ptr str0_range_ptr_;
irange_ptr str1_range_ptr_;
mutable range_t range_;
mutable std::string value_;
};
template <typename T>
class swap_string_node : public binary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef stringvar_node <T>* strvar_node_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
swap_string_node(expression_ptr branch0, expression_ptr branch1)
: binary_node<T>(details::e_swap, branch0, branch1),
initialised_(false),
str0_node_ptr_(0),
str1_node_ptr_(0)
{
if (is_string_node(binary_node<T>::branch_[0].first))
{
str0_node_ptr_ = static_cast<strvar_node_ptr>(binary_node<T>::branch_[0].first);
}
if (is_string_node(binary_node<T>::branch_[1].first))
{
str1_node_ptr_ = static_cast<strvar_node_ptr>(binary_node<T>::branch_[1].first);
}
initialised_ = (str0_node_ptr_ && str1_node_ptr_);
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
std::swap(str0_node_ptr_->ref(),str1_node_ptr_->ref());
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return str0_node_ptr_->str();
}
const char_t* base() const
{
return str0_node_ptr_->base();
}
std::size_t size() const
{
return str0_node_ptr_->size();
}
range_t& range_ref()
{
return str0_node_ptr_->range_ref();
}
const range_t& range_ref() const
{
return str0_node_ptr_->range_ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strswap;
}
private:
bool initialised_;
strvar_node_ptr str0_node_ptr_;
strvar_node_ptr str1_node_ptr_;
};
template <typename T>
class swap_genstrings_node : public binary_node<T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
swap_genstrings_node(expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(details::e_default, branch0, branch1),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_range_ptr_(0),
str1_range_ptr_(0),
initialised_(false)
{
if (is_generally_string_node(binary_node<T>::branch_[0].first))
{
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[0].first);
if (0 == range_ptr)
return;
str0_range_ptr_ = &(range_ptr->range_ref());
}
if (is_generally_string_node(binary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[1].first);
if (0 == range_ptr)
return;
str1_range_ptr_ = &(range_ptr->range_ref());
}
initialised_ = str0_base_ptr_ &&
str1_base_ptr_ &&
str0_range_ptr_ &&
str1_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
std::size_t str0_r0 = 0;
std::size_t str0_r1 = 0;
std::size_t str1_r0 = 0;
std::size_t str1_r1 = 0;
range_t& range0 = (*str0_range_ptr_);
range_t& range1 = (*str1_range_ptr_);
if (
range0(str0_r0,str0_r1,str0_base_ptr_->size()) &&
range1(str1_r0,str1_r1,str1_base_ptr_->size())
)
{
const std::size_t size0 = range0.cache_size();
const std::size_t size1 = range1.cache_size();
const std::size_t max_size = std::min(size0,size1);
char_t* s0 = const_cast<char_t*>(str0_base_ptr_->base() + str0_r0);
char_t* s1 = const_cast<char_t*>(str1_base_ptr_->base() + str1_r0);
loop_unroll::details lud(max_size);
const char_t* upper_bound = s0 + lud.upper_bound;
while (s0 < upper_bound)
{
#define exprtk_loop(N) \
std::swap(s0[N], s1[N]); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
s0 += lud.batch_size;
s1 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { std::swap(s0[i],s1[i]); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
}
}
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strswap;
}
private:
swap_genstrings_node(swap_genstrings_node<T>&);
swap_genstrings_node<T>& operator=(swap_genstrings_node<T>&);
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
range_ptr str0_range_ptr_;
range_ptr str1_range_ptr_;
bool initialised_;
};
template <typename T>
class stringvar_size_node : public expression_node<T>
{
public:
static std::string null_value;
explicit stringvar_size_node()
: value_(&null_value)
{}
explicit stringvar_size_node(std::string& v)
: value_(&v)
{}
inline T value() const
{
return T((*value_).size());
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringvarsize;
}
private:
std::string* value_;
};
template <typename T>
std::string stringvar_size_node<T>::null_value = std::string("");
template <typename T>
class string_size_node : public expression_node<T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
string_size_node(expression_ptr brnch)
: branch_(brnch),
branch_deletable_(branch_deletable(branch_)),
str_base_ptr_(0)
{
if (is_generally_string_node(branch_))
{
str_base_ptr_ = dynamic_cast<str_base_ptr>(branch_);
if (0 == str_base_ptr_)
return;
}
}
~string_size_node()
{
if (branch_ && branch_deletable_)
{
destroy_node(branch_);
}
}
inline T value() const
{
T result = std::numeric_limits<T>::quiet_NaN();
if (str_base_ptr_)
{
branch_->value();
result = T(str_base_ptr_->size());
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringsize;
}
private:
expression_ptr branch_;
const bool branch_deletable_;
str_base_ptr str_base_ptr_;
};
struct asn_assignment
{
static inline void execute(std::string& s, const char_t* data, const std::size_t size)
{ s.assign(data,size); }
};
struct asn_addassignment
{
static inline void execute(std::string& s, const char_t* data, const std::size_t size)
{ s.append(data,size); }
};
template <typename T, typename AssignmentProcess = asn_assignment>
class assignment_string_node : public binary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef stringvar_node <T>* strvar_node_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
assignment_string_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
initialised_(false),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_node_ptr_ (0),
str1_range_ptr_(0)
{
if (is_string_node(binary_node<T>::branch_[0].first))
{
str0_node_ptr_ = static_cast<strvar_node_ptr>(binary_node<T>::branch_[0].first);
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
}
if (is_generally_string_node(binary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[1].first);
if (0 == range_ptr)
return;
str1_range_ptr_ = &(range_ptr->range_ref());
}
initialised_ = str0_base_ptr_ &&
str1_base_ptr_ &&
str0_node_ptr_ &&
str1_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[1].first->value();
std::size_t r0 = 0;
std::size_t r1 = 0;
range_t& range = (*str1_range_ptr_);
if (range(r0, r1, str1_base_ptr_->size()))
{
AssignmentProcess::execute(str0_node_ptr_->ref(),
str1_base_ptr_->base() + r0,
(r1 - r0) + 1);
binary_node<T>::branch_[0].first->value();
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return str0_node_ptr_->str();
}
const char_t* base() const
{
return str0_node_ptr_->base();
}
std::size_t size() const
{
return str0_node_ptr_->size();
}
range_t& range_ref()
{
return str0_node_ptr_->range_ref();
}
const range_t& range_ref() const
{
return str0_node_ptr_->range_ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strass;
}
private:
bool initialised_;
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
strvar_node_ptr str0_node_ptr_;
range_ptr str1_range_ptr_;
};
template <typename T, typename AssignmentProcess = asn_assignment>
class assignment_string_range_node : public binary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef stringvar_node <T>* strvar_node_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
assignment_string_range_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
initialised_(false),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_node_ptr_ (0),
str0_range_ptr_(0),
str1_range_ptr_(0)
{
if (is_string_range_node(binary_node<T>::branch_[0].first))
{
str0_node_ptr_ = static_cast<strvar_node_ptr>(binary_node<T>::branch_[0].first);
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[0].first);
if (0 == range_ptr)
return;
str0_range_ptr_ = &(range_ptr->range_ref());
}
if (is_generally_string_node(binary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[1].first);
if (0 == range_ptr)
return;
str1_range_ptr_ = &(range_ptr->range_ref());
}
initialised_ = str0_base_ptr_ &&
str1_base_ptr_ &&
str0_node_ptr_ &&
str0_range_ptr_ &&
str1_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
std::size_t s0_r0 = 0;
std::size_t s0_r1 = 0;
std::size_t s1_r0 = 0;
std::size_t s1_r1 = 0;
range_t& range0 = (*str0_range_ptr_);
range_t& range1 = (*str1_range_ptr_);
if (
range0(s0_r0, s0_r1, str0_base_ptr_->size()) &&
range1(s1_r0, s1_r1, str1_base_ptr_->size())
)
{
std::size_t size = std::min((s0_r1 - s0_r0),(s1_r1 - s1_r0)) + 1;
std::copy(str1_base_ptr_->base() + s1_r0,
str1_base_ptr_->base() + s1_r0 + size,
const_cast<char_t*>(base() + s0_r0));
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return str0_node_ptr_->str();
}
const char_t* base() const
{
return str0_node_ptr_->base();
}
std::size_t size() const
{
return str0_node_ptr_->size();
}
range_t& range_ref()
{
return str0_node_ptr_->range_ref();
}
const range_t& range_ref() const
{
return str0_node_ptr_->range_ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strass;
}
private:
bool initialised_;
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
strvar_node_ptr str0_node_ptr_;
range_ptr str0_range_ptr_;
range_ptr str1_range_ptr_;
};
template <typename T>
class conditional_string_node : public trinary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
conditional_string_node(expression_ptr test,
expression_ptr consequent,
expression_ptr alternative)
: trinary_node<T>(details::e_default,consequent,alternative,test),
initialised_(false),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_range_ptr_(0),
str1_range_ptr_(0),
test_ (test),
consequent_ (consequent),
alternative_(alternative)
{
range_.n0_c = std::make_pair<bool,std::size_t>(true,0);
range_.n1_c = std::make_pair<bool,std::size_t>(true,0);
range_.cache.first = range_.n0_c.second;
range_.cache.second = range_.n1_c.second;
if (is_generally_string_node(trinary_node<T>::branch_[0].first))
{
str0_base_ptr_ = dynamic_cast<str_base_ptr>(trinary_node<T>::branch_[0].first);
if (0 == str0_base_ptr_)
return;
str0_range_ptr_ = dynamic_cast<irange_ptr>(trinary_node<T>::branch_[0].first);
if (0 == str0_range_ptr_)
return;
}
if (is_generally_string_node(trinary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(trinary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
str1_range_ptr_ = dynamic_cast<irange_ptr>(trinary_node<T>::branch_[1].first);
if (0 == str1_range_ptr_)
return;
}
initialised_ = str0_base_ptr_ &&
str1_base_ptr_ &&
str0_range_ptr_ &&
str1_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
std::size_t r0 = 0;
std::size_t r1 = 0;
if (is_true(test_))
{
consequent_->value();
range_t& range = str0_range_ptr_->range_ref();
if (range(r0,r1,str0_base_ptr_->size()))
{
const std::size_t size = (r1 - r0) + 1;
value_.assign(str0_base_ptr_->base() + r0, size);
range_.n1_c.second = value_.size() - 1;
range_.cache.second = range_.n1_c.second;
return T(1);
}
}
else
{
alternative_->value();
range_t& range = str1_range_ptr_->range_ref();
if (range(r0,r1,str1_base_ptr_->size()))
{
const std::size_t size = (r1 - r0) + 1;
value_.assign(str1_base_ptr_->base() + r0, size);
range_.n1_c.second = value_.size() - 1;
range_.cache.second = range_.n1_c.second;
return T(0);
}
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return &value_[0];
}
std::size_t size() const
{
return value_.size();
}
range_t& range_ref()
{
return range_;
}
const range_t& range_ref() const
{
return range_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strcondition;
}
private:
bool initialised_;
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
irange_ptr str0_range_ptr_;
irange_ptr str1_range_ptr_;
mutable range_t range_;
mutable std::string value_;
expression_ptr test_;
expression_ptr consequent_;
expression_ptr alternative_;
};
template <typename T>
class cons_conditional_str_node : public binary_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
cons_conditional_str_node(expression_ptr test,
expression_ptr consequent)
: binary_node<T>(details::e_default, consequent, test),
initialised_(false),
str0_base_ptr_ (0),
str0_range_ptr_(0),
test_ (test),
consequent_(consequent)
{
range_.n0_c = std::make_pair<bool,std::size_t>(true,0);
range_.n1_c = std::make_pair<bool,std::size_t>(true,0);
range_.cache.first = range_.n0_c.second;
range_.cache.second = range_.n1_c.second;
if (is_generally_string_node(binary_node<T>::branch_[0].first))
{
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_base_ptr_)
return;
str0_range_ptr_ = dynamic_cast<irange_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_range_ptr_)
return;
}
initialised_ = str0_base_ptr_ && str0_range_ptr_ ;
}
inline T value() const
{
if (initialised_)
{
if (is_true(test_))
{
consequent_->value();
range_t& range = str0_range_ptr_->range_ref();
std::size_t r0 = 0;
std::size_t r1 = 0;
if (range(r0,r1,str0_base_ptr_->size()))
{
const std::size_t size = (r1 - r0) + 1;
value_.assign(str0_base_ptr_->base() + r0, size);
range_.n1_c.second = value_.size() - 1;
range_.cache.second = range_.n1_c.second;
return T(1);
}
}
}
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return value_;
}
const char_t* base() const
{
return &value_[0];
}
std::size_t size() const
{
return value_.size();
}
range_t& range_ref()
{
return range_;
}
const range_t& range_ref() const
{
return range_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strccondition;
}
private:
bool initialised_;
str_base_ptr str0_base_ptr_;
irange_ptr str0_range_ptr_;
mutable range_t range_;
mutable std::string value_;
expression_ptr test_;
expression_ptr consequent_;
};
template <typename T, typename VarArgFunction>
class str_vararg_node : public expression_node <T>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
str_vararg_node(const Sequence<expression_ptr,Allocator>& arg_list)
: final_node_(arg_list.back()),
final_deletable_(branch_deletable(final_node_)),
initialised_(false),
str_base_ptr_ (0),
str_range_ptr_(0)
{
if (0 == final_node_)
return;
else if (!is_generally_string_node(final_node_))
return;
str_base_ptr_ = dynamic_cast<str_base_ptr>(final_node_);
if (0 == str_base_ptr_)
return;
str_range_ptr_ = dynamic_cast<irange_ptr>(final_node_);
if (0 == str_range_ptr_)
return;
initialised_ = str_base_ptr_ && str_range_ptr_;
if (arg_list.size() > 1)
{
const std::size_t arg_list_size = arg_list.size() - 1;
arg_list_.resize(arg_list_size);
delete_branch_.resize(arg_list_size);
for (std::size_t i = 0; i < arg_list_size; ++i)
{
if (arg_list[i])
{
arg_list_[i] = arg_list[i];
delete_branch_[i] = static_cast<unsigned char>(branch_deletable(arg_list_[i]) ? 1 : 0);
}
else
{
arg_list_.clear();
delete_branch_.clear();
return;
}
}
}
}
~str_vararg_node()
{
if (final_node_ && final_deletable_)
{
destroy_node(final_node_);
}
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
if (arg_list_[i] && delete_branch_[i])
{
destroy_node(arg_list_[i]);
}
}
}
inline T value() const
{
if (!arg_list_.empty())
{
VarArgFunction::process(arg_list_);
}
final_node_->value();
return std::numeric_limits<T>::quiet_NaN();
}
std::string str() const
{
return str_base_ptr_->str();
}
const char_t* base() const
{
return str_base_ptr_->base();
}
std::size_t size() const
{
return str_base_ptr_->size();
}
range_t& range_ref()
{
return str_range_ptr_->range_ref();
}
const range_t& range_ref() const
{
return str_range_ptr_->range_ref();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_stringvararg;
}
private:
expression_ptr final_node_;
bool final_deletable_;
bool initialised_;
str_base_ptr str_base_ptr_;
irange_ptr str_range_ptr_;
std::vector<expression_ptr> arg_list_;
std::vector<unsigned char> delete_branch_;
};
#endif
template <typename T, std::size_t N>
inline T axn(T a, T x)
{
// a*x^n
return a * exprtk::details::numeric::fast_exp<T,N>::result(x);
}
template <typename T, std::size_t N>
inline T axnb(T a, T x, T b)
{
// a*x^n+b
return a * exprtk::details::numeric::fast_exp<T,N>::result(x) + b;
}
template <typename T>
struct sf_base
{
typedef typename details::functor_t<T>::Type Type;
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::qfunc_t quaternary_functor_t;
typedef typename functor_t::tfunc_t trinary_functor_t;
typedef typename functor_t::bfunc_t binary_functor_t;
typedef typename functor_t::ufunc_t unary_functor_t;
};
#define define_sfop3(NN,OP0,OP1) \
template <typename T> \
struct sf##NN##_op : public sf_base<T> \
{ \
typedef typename sf_base<T>::Type Type; \
static inline T process(Type x, Type y, Type z) \
{ \
return (OP0); \
} \
static inline std::string id() \
{ \
return OP1; \
} \
}; \
define_sfop3(00,(x + y) / z ,"(t+t)/t")
define_sfop3(01,(x + y) * z ,"(t+t)*t")
define_sfop3(02,(x + y) - z ,"(t+t)-t")
define_sfop3(03,(x + y) + z ,"(t+t)+t")
define_sfop3(04,(x - y) + z ,"(t-t)+t")
define_sfop3(05,(x - y) / z ,"(t-t)/t")
define_sfop3(06,(x - y) * z ,"(t-t)*t")
define_sfop3(07,(x * y) + z ,"(t*t)+t")
define_sfop3(08,(x * y) - z ,"(t*t)-t")
define_sfop3(09,(x * y) / z ,"(t*t)/t")
define_sfop3(10,(x * y) * z ,"(t*t)*t")
define_sfop3(11,(x / y) + z ,"(t/t)+t")
define_sfop3(12,(x / y) - z ,"(t/t)-t")
define_sfop3(13,(x / y) / z ,"(t/t)/t")
define_sfop3(14,(x / y) * z ,"(t/t)*t")
define_sfop3(15,x / (y + z) ,"t/(t+t)")
define_sfop3(16,x / (y - z) ,"t/(t-t)")
define_sfop3(17,x / (y * z) ,"t/(t*t)")
define_sfop3(18,x / (y / z) ,"t/(t/t)")
define_sfop3(19,x * (y + z) ,"t*(t+t)")
define_sfop3(20,x * (y - z) ,"t*(t-t)")
define_sfop3(21,x * (y * z) ,"t*(t*t)")
define_sfop3(22,x * (y / z) ,"t*(t/t)")
define_sfop3(23,x - (y + z) ,"t-(t+t)")
define_sfop3(24,x - (y - z) ,"t-(t-t)")
define_sfop3(25,x - (y / z) ,"t-(t/t)")
define_sfop3(26,x - (y * z) ,"t-(t*t)")
define_sfop3(27,x + (y * z) ,"t+(t*t)")
define_sfop3(28,x + (y / z) ,"t+(t/t)")
define_sfop3(29,x + (y + z) ,"t+(t+t)")
define_sfop3(30,x + (y - z) ,"t+(t-t)")
define_sfop3(31,(axnb<T,2>(x,y,z))," ")
define_sfop3(32,(axnb<T,3>(x,y,z))," ")
define_sfop3(33,(axnb<T,4>(x,y,z))," ")
define_sfop3(34,(axnb<T,5>(x,y,z))," ")
define_sfop3(35,(axnb<T,6>(x,y,z))," ")
define_sfop3(36,(axnb<T,7>(x,y,z))," ")
define_sfop3(37,(axnb<T,8>(x,y,z))," ")
define_sfop3(38,(axnb<T,9>(x,y,z))," ")
define_sfop3(39,x * numeric::log(y) + z,"")
define_sfop3(40,x * numeric::log(y) - z,"")
define_sfop3(41,x * numeric::log10(y) + z,"")
define_sfop3(42,x * numeric::log10(y) - z,"")
define_sfop3(43,x * numeric::sin(y) + z ,"")
define_sfop3(44,x * numeric::sin(y) - z ,"")
define_sfop3(45,x * numeric::cos(y) + z ,"")
define_sfop3(46,x * numeric::cos(y) - z ,"")
define_sfop3(47,details::is_true(x) ? y : z,"")
#define define_sfop4(NN,OP0,OP1) \
template <typename T> \
struct sf##NN##_op : public sf_base<T> \
{ \
typedef typename sf_base<T>::Type Type; \
static inline T process(Type x, Type y, Type z, Type w) \
{ \
return (OP0); \
} \
static inline std::string id() { return OP1; } \
}; \
define_sfop4(48,(x + ((y + z) / w)),"t+((t+t)/t)")
define_sfop4(49,(x + ((y + z) * w)),"t+((t+t)*t)")
define_sfop4(50,(x + ((y - z) / w)),"t+((t-t)/t)")
define_sfop4(51,(x + ((y - z) * w)),"t+((t-t)*t)")
define_sfop4(52,(x + ((y * z) / w)),"t+((t*t)/t)")
define_sfop4(53,(x + ((y * z) * w)),"t+((t*t)*t)")
define_sfop4(54,(x + ((y / z) + w)),"t+((t/t)+t)")
define_sfop4(55,(x + ((y / z) / w)),"t+((t/t)/t)")
define_sfop4(56,(x + ((y / z) * w)),"t+((t/t)*t)")
define_sfop4(57,(x - ((y + z) / w)),"t-((t+t)/t)")
define_sfop4(58,(x - ((y + z) * w)),"t-((t+t)*t)")
define_sfop4(59,(x - ((y - z) / w)),"t-((t-t)/t)")
define_sfop4(60,(x - ((y - z) * w)),"t-((t-t)*t)")
define_sfop4(61,(x - ((y * z) / w)),"t-((t*t)/t)")
define_sfop4(62,(x - ((y * z) * w)),"t-((t*t)*t)")
define_sfop4(63,(x - ((y / z) / w)),"t-((t/t)/t)")
define_sfop4(64,(x - ((y / z) * w)),"t-((t/t)*t)")
define_sfop4(65,(((x + y) * z) - w),"((t+t)*t)-t")
define_sfop4(66,(((x - y) * z) - w),"((t-t)*t)-t")
define_sfop4(67,(((x * y) * z) - w),"((t*t)*t)-t")
define_sfop4(68,(((x / y) * z) - w),"((t/t)*t)-t")
define_sfop4(69,(((x + y) / z) - w),"((t+t)/t)-t")
define_sfop4(70,(((x - y) / z) - w),"((t-t)/t)-t")
define_sfop4(71,(((x * y) / z) - w),"((t*t)/t)-t")
define_sfop4(72,(((x / y) / z) - w),"((t/t)/t)-t")
define_sfop4(73,((x * y) + (z * w)),"(t*t)+(t*t)")
define_sfop4(74,((x * y) - (z * w)),"(t*t)-(t*t)")
define_sfop4(75,((x * y) + (z / w)),"(t*t)+(t/t)")
define_sfop4(76,((x * y) - (z / w)),"(t*t)-(t/t)")
define_sfop4(77,((x / y) + (z / w)),"(t/t)+(t/t)")
define_sfop4(78,((x / y) - (z / w)),"(t/t)-(t/t)")
define_sfop4(79,((x / y) - (z * w)),"(t/t)-(t*t)")
define_sfop4(80,(x / (y + (z * w))),"t/(t+(t*t))")
define_sfop4(81,(x / (y - (z * w))),"t/(t-(t*t))")
define_sfop4(82,(x * (y + (z * w))),"t*(t+(t*t))")
define_sfop4(83,(x * (y - (z * w))),"t*(t-(t*t))")
define_sfop4(84,(axn<T,2>(x,y) + axn<T,2>(z,w)),"")
define_sfop4(85,(axn<T,3>(x,y) + axn<T,3>(z,w)),"")
define_sfop4(86,(axn<T,4>(x,y) + axn<T,4>(z,w)),"")
define_sfop4(87,(axn<T,5>(x,y) + axn<T,5>(z,w)),"")
define_sfop4(88,(axn<T,6>(x,y) + axn<T,6>(z,w)),"")
define_sfop4(89,(axn<T,7>(x,y) + axn<T,7>(z,w)),"")
define_sfop4(90,(axn<T,8>(x,y) + axn<T,8>(z,w)),"")
define_sfop4(91,(axn<T,9>(x,y) + axn<T,9>(z,w)),"")
define_sfop4(92,((details::is_true(x) && details::is_true(y)) ? z : w),"")
define_sfop4(93,((details::is_true(x) || details::is_true(y)) ? z : w),"")
define_sfop4(94,((x < y) ? z : w),"")
define_sfop4(95,((x <= y) ? z : w),"")
define_sfop4(96,((x > y) ? z : w),"")
define_sfop4(97,((x >= y) ? z : w),"")
define_sfop4(98,(details::is_true(numeric::equal(x,y)) ? z : w),"")
define_sfop4(99,(x * numeric::sin(y) + z * numeric::cos(w)),"")
define_sfop4(ext00,((x + y) - (z * w)),"(t+t)-(t*t)")
define_sfop4(ext01,((x + y) - (z / w)),"(t+t)-(t/t)")
define_sfop4(ext02,((x + y) + (z * w)),"(t+t)+(t*t)")
define_sfop4(ext03,((x + y) + (z / w)),"(t+t)+(t/t)")
define_sfop4(ext04,((x - y) + (z * w)),"(t-t)+(t*t)")
define_sfop4(ext05,((x - y) + (z / w)),"(t-t)+(t/t)")
define_sfop4(ext06,((x - y) - (z * w)),"(t-t)-(t*t)")
define_sfop4(ext07,((x - y) - (z / w)),"(t-t)-(t/t)")
define_sfop4(ext08,((x + y) - (z - w)),"(t+t)-(t-t)")
define_sfop4(ext09,((x + y) + (z - w)),"(t+t)+(t-t)")
define_sfop4(ext10,((x + y) + (z + w)),"(t+t)+(t+t)")
define_sfop4(ext11,((x + y) * (z - w)),"(t+t)*(t-t)")
define_sfop4(ext12,((x + y) / (z - w)),"(t+t)/(t-t)")
define_sfop4(ext13,((x - y) - (z + w)),"(t-t)-(t+t)")
define_sfop4(ext14,((x - y) + (z + w)),"(t-t)+(t+t)")
define_sfop4(ext15,((x - y) * (z + w)),"(t-t)*(t+t)")
define_sfop4(ext16,((x - y) / (z + w)),"(t-t)/(t+t)")
define_sfop4(ext17,((x * y) - (z + w)),"(t*t)-(t+t)")
define_sfop4(ext18,((x / y) - (z + w)),"(t/t)-(t+t)")
define_sfop4(ext19,((x * y) + (z + w)),"(t*t)+(t+t)")
define_sfop4(ext20,((x / y) + (z + w)),"(t/t)+(t+t)")
define_sfop4(ext21,((x * y) + (z - w)),"(t*t)+(t-t)")
define_sfop4(ext22,((x / y) + (z - w)),"(t/t)+(t-t)")
define_sfop4(ext23,((x * y) - (z - w)),"(t*t)-(t-t)")
define_sfop4(ext24,((x / y) - (z - w)),"(t/t)-(t-t)")
define_sfop4(ext25,((x + y) * (z * w)),"(t+t)*(t*t)")
define_sfop4(ext26,((x + y) * (z / w)),"(t+t)*(t/t)")
define_sfop4(ext27,((x + y) / (z * w)),"(t+t)/(t*t)")
define_sfop4(ext28,((x + y) / (z / w)),"(t+t)/(t/t)")
define_sfop4(ext29,((x - y) / (z * w)),"(t-t)/(t*t)")
define_sfop4(ext30,((x - y) / (z / w)),"(t-t)/(t/t)")
define_sfop4(ext31,((x - y) * (z * w)),"(t-t)*(t*t)")
define_sfop4(ext32,((x - y) * (z / w)),"(t-t)*(t/t)")
define_sfop4(ext33,((x * y) * (z + w)),"(t*t)*(t+t)")
define_sfop4(ext34,((x / y) * (z + w)),"(t/t)*(t+t)")
define_sfop4(ext35,((x * y) / (z + w)),"(t*t)/(t+t)")
define_sfop4(ext36,((x / y) / (z + w)),"(t/t)/(t+t)")
define_sfop4(ext37,((x * y) / (z - w)),"(t*t)/(t-t)")
define_sfop4(ext38,((x / y) / (z - w)),"(t/t)/(t-t)")
define_sfop4(ext39,((x * y) * (z - w)),"(t*t)*(t-t)")
define_sfop4(ext40,((x * y) / (z * w)),"(t*t)/(t*t)")
define_sfop4(ext41,((x / y) * (z / w)),"(t/t)*(t/t)")
define_sfop4(ext42,((x / y) * (z - w)),"(t/t)*(t-t)")
define_sfop4(ext43,((x * y) * (z * w)),"(t*t)*(t*t)")
define_sfop4(ext44,(x + (y * (z / w))),"t+(t*(t/t))")
define_sfop4(ext45,(x - (y * (z / w))),"t-(t*(t/t))")
define_sfop4(ext46,(x + (y / (z * w))),"t+(t/(t*t))")
define_sfop4(ext47,(x - (y / (z * w))),"t-(t/(t*t))")
define_sfop4(ext48,(((x - y) - z) * w),"((t-t)-t)*t")
define_sfop4(ext49,(((x - y) - z) / w),"((t-t)-t)/t")
define_sfop4(ext50,(((x - y) + z) * w),"((t-t)+t)*t")
define_sfop4(ext51,(((x - y) + z) / w),"((t-t)+t)/t")
define_sfop4(ext52,((x + (y - z)) * w),"(t+(t-t))*t")
define_sfop4(ext53,((x + (y - z)) / w),"(t+(t-t))/t")
define_sfop4(ext54,((x + y) / (z + w)),"(t+t)/(t+t)")
define_sfop4(ext55,((x - y) / (z - w)),"(t-t)/(t-t)")
define_sfop4(ext56,((x + y) * (z + w)),"(t+t)*(t+t)")
define_sfop4(ext57,((x - y) * (z - w)),"(t-t)*(t-t)")
define_sfop4(ext58,((x - y) + (z - w)),"(t-t)+(t-t)")
define_sfop4(ext59,((x - y) - (z - w)),"(t-t)-(t-t)")
define_sfop4(ext60,((x / y) + (z * w)),"(t/t)+(t*t)")
define_sfop4(ext61,(((x * y) * z) / w),"((t*t)*t)/t")
#undef define_sfop3
#undef define_sfop4
template <typename T, typename SpecialFunction>
class sf3_node : public trinary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
sf3_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1,
expression_ptr branch2)
: trinary_node<T>(opr, branch0, branch1, branch2)
{}
inline T value() const
{
const T x = trinary_node<T>::branch_[0].first->value();
const T y = trinary_node<T>::branch_[1].first->value();
const T z = trinary_node<T>::branch_[2].first->value();
return SpecialFunction::process(x, y, z);
}
};
template <typename T, typename SpecialFunction>
class sf4_node : public quaternary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
sf4_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1,
expression_ptr branch2,
expression_ptr branch3)
: quaternary_node<T>(opr, branch0, branch1, branch2, branch3)
{}
inline T value() const
{
const T x = quaternary_node<T>::branch_[0].first->value();
const T y = quaternary_node<T>::branch_[1].first->value();
const T z = quaternary_node<T>::branch_[2].first->value();
const T w = quaternary_node<T>::branch_[3].first->value();
return SpecialFunction::process(x, y, z, w);
}
};
template <typename T, typename SpecialFunction>
class sf3_var_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
sf3_var_node(const T& v0, const T& v1, const T& v2)
: v0_(v0),
v1_(v1),
v2_(v2)
{}
inline T value() const
{
return SpecialFunction::process(v0_, v1_, v2_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_trinary;
}
private:
sf3_var_node(sf3_var_node<T,SpecialFunction>&);
sf3_var_node<T,SpecialFunction>& operator=(sf3_var_node<T,SpecialFunction>&);
const T& v0_;
const T& v1_;
const T& v2_;
};
template <typename T, typename SpecialFunction>
class sf4_var_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
sf4_var_node(const T& v0, const T& v1, const T& v2, const T& v3)
: v0_(v0),
v1_(v1),
v2_(v2),
v3_(v3)
{}
inline T value() const
{
return SpecialFunction::process(v0_, v1_, v2_, v3_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_trinary;
}
private:
sf4_var_node(sf4_var_node<T,SpecialFunction>&);
sf4_var_node<T,SpecialFunction>& operator=(sf4_var_node<T,SpecialFunction>&);
const T& v0_;
const T& v1_;
const T& v2_;
const T& v3_;
};
template <typename T, typename VarArgFunction>
class vararg_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
vararg_node(const Sequence<expression_ptr,Allocator>& arg_list)
{
arg_list_ .resize(arg_list.size());
delete_branch_.resize(arg_list.size());
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (arg_list[i])
{
arg_list_[i] = arg_list[i];
delete_branch_[i] = static_cast<unsigned char>(branch_deletable(arg_list_[i]) ? 1 : 0);
}
else
{
arg_list_.clear();
delete_branch_.clear();
return;
}
}
}
~vararg_node()
{
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
if (arg_list_[i] && delete_branch_[i])
{
destroy_node(arg_list_[i]);
}
}
}
inline T value() const
{
if (!arg_list_.empty())
return VarArgFunction::process(arg_list_);
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vararg;
}
private:
std::vector<expression_ptr> arg_list_;
std::vector<unsigned char> delete_branch_;
};
template <typename T, typename VarArgFunction>
class vararg_varnode : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
template <typename Allocator,
template <typename,typename> class Sequence>
vararg_varnode(const Sequence<expression_ptr,Allocator>& arg_list)
{
arg_list_.resize(arg_list.size());
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (arg_list[i] && is_variable_node(arg_list[i]))
{
variable_node<T>* var_node_ptr = static_cast<variable_node<T>*>(arg_list[i]);
arg_list_[i] = (&var_node_ptr->ref());
}
else
{
arg_list_.clear();
return;
}
}
}
inline T value() const
{
if (!arg_list_.empty())
return VarArgFunction::process(arg_list_);
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vararg;
}
private:
std::vector<const T*> arg_list_;
};
template <typename T, typename VecFunction>
class vectorize_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
vectorize_node(const expression_ptr v)
: ivec_ptr_(0),
v_(v),
v_deletable_(branch_deletable(v_))
{
if (is_ivector_node(v))
{
ivec_ptr_ = dynamic_cast<vector_interface<T>*>(v);
}
else
ivec_ptr_ = 0;
}
~vectorize_node()
{
if (v_ && v_deletable_)
{
destroy_node(v_);
}
}
inline T value() const
{
if (ivec_ptr_)
{
v_->value();
return VecFunction::process(ivec_ptr_);
}
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecfunc;
}
private:
vector_interface<T>* ivec_ptr_;
expression_ptr v_;
const bool v_deletable_;
};
template <typename T>
class assignment_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
var_node_ptr_(0)
{
if (is_variable_node(binary_node<T>::branch_[0].first))
{
var_node_ptr_ = static_cast<variable_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (var_node_ptr_)
{
T& result = var_node_ptr_->ref();
result = binary_node<T>::branch_[1].first->value();
return result;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
variable_node<T>* var_node_ptr_;
};
template <typename T>
class assignment_vec_elem_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_vec_elem_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec_node_ptr_(0)
{
if (is_vector_elem_node(binary_node<T>::branch_[0].first))
{
vec_node_ptr_ = static_cast<vector_elem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (vec_node_ptr_)
{
T& result = vec_node_ptr_->ref();
result = binary_node<T>::branch_[1].first->value();
return result;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
vector_elem_node<T>* vec_node_ptr_;
};
template <typename T>
class assignment_rebasevec_elem_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_rebasevec_elem_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
rbvec_node_ptr_(0)
{
if (is_rebasevector_elem_node(binary_node<T>::branch_[0].first))
{
rbvec_node_ptr_ = static_cast<rebasevector_elem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (rbvec_node_ptr_)
{
T& result = rbvec_node_ptr_->ref();
result = binary_node<T>::branch_[1].first->value();
return result;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
rebasevector_elem_node<T>* rbvec_node_ptr_;
};
template <typename T>
class assignment_rebasevec_celem_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_rebasevec_celem_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
rbvec_node_ptr_(0)
{
if (is_rebasevector_celem_node(binary_node<T>::branch_[0].first))
{
rbvec_node_ptr_ = static_cast<rebasevector_celem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (rbvec_node_ptr_)
{
T& result = rbvec_node_ptr_->ref();
result = binary_node<T>::branch_[1].first->value();
return result;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
rebasevector_celem_node<T>* rbvec_node_ptr_;
};
template <typename T>
class assignment_vec_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
assignment_vec_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec_node_ptr_(0)
{
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[0].first);
vds() = vec_node_ptr_->vds();
}
}
inline T value() const
{
if (vec_node_ptr_)
{
const T v = binary_node<T>::branch_[1].first->value();
T* vec = vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec + lud.upper_bound;
while (vec < upper_bound)
{
#define exprtk_loop(N) \
vec[N] = v; \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec += lud.batch_size;
}
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : *vec++ = v; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return vec_node_ptr_->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return vec_node_ptr_;
}
vector_node_ptr vec()
{
return vec_node_ptr_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvalass;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node<T>* vec_node_ptr_;
vds_t vds_;
};
template <typename T>
class assignment_vecvec_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
assignment_vecvec_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec0_node_ptr_(0),
vec1_node_ptr_(0),
initialised_(false),
src_is_ivec_(false)
{
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec0_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[0].first);
vds() = vec0_node_ptr_->vds();
}
if (is_vector_node(binary_node<T>::branch_[1].first))
{
vec1_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[1].first);
vds_t::match_sizes(vds(),vec1_node_ptr_->vds());
}
else if (is_ivector_node(binary_node<T>::branch_[1].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[1].first)))
{
vec1_node_ptr_ = vi->vec();
if (!vi->side_effect())
{
vi->vds() = vds();
src_is_ivec_ = true;
}
else
vds_t::match_sizes(vds(),vi->vds());
}
}
initialised_ = (vec0_node_ptr_ && vec1_node_ptr_);
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[1].first->value();
if (src_is_ivec_)
return vec0_node_ptr_->value();
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vec1_node_ptr_->vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec0 + lud.upper_bound;
while (vec0 < upper_bound)
{
#define exprtk_loop(N) \
vec0[N] = vec1[N]; \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
}
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : *vec0++ = *vec1++; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return vec0_node_ptr_->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return vec0_node_ptr_;
}
vector_node_ptr vec()
{
return vec0_node_ptr_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvecass;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node<T>* vec0_node_ptr_;
vector_node<T>* vec1_node_ptr_;
bool initialised_;
bool src_is_ivec_;
vds_t vds_;
};
template <typename T, typename Operation>
class assignment_op_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
var_node_ptr_(0)
{
if (is_variable_node(binary_node<T>::branch_[0].first))
{
var_node_ptr_ = static_cast<variable_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (var_node_ptr_)
{
T& v = var_node_ptr_->ref();
v = Operation::process(v,binary_node<T>::branch_[1].first->value());
return v;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
variable_node<T>* var_node_ptr_;
};
template <typename T, typename Operation>
class assignment_vec_elem_op_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_vec_elem_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec_node_ptr_(0)
{
if (is_vector_elem_node(binary_node<T>::branch_[0].first))
{
vec_node_ptr_ = static_cast<vector_elem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (vec_node_ptr_)
{
T& v = vec_node_ptr_->ref();
v = Operation::process(v,binary_node<T>::branch_[1].first->value());
return v;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
vector_elem_node<T>* vec_node_ptr_;
};
template <typename T, typename Operation>
class assignment_rebasevec_elem_op_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_rebasevec_elem_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
rbvec_node_ptr_(0)
{
if (is_rebasevector_elem_node(binary_node<T>::branch_[0].first))
{
rbvec_node_ptr_ = static_cast<rebasevector_elem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (rbvec_node_ptr_)
{
T& v = rbvec_node_ptr_->ref();
v = Operation::process(v,binary_node<T>::branch_[1].first->value());
return v;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
rebasevector_elem_node<T>* rbvec_node_ptr_;
};
template <typename T, typename Operation>
class assignment_rebasevec_celem_op_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
assignment_rebasevec_celem_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
rbvec_node_ptr_(0)
{
if (is_rebasevector_celem_node(binary_node<T>::branch_[0].first))
{
rbvec_node_ptr_ = static_cast<rebasevector_celem_node<T>*>(binary_node<T>::branch_[0].first);
}
}
inline T value() const
{
if (rbvec_node_ptr_)
{
T& v = rbvec_node_ptr_->ref();
v = Operation::process(v,binary_node<T>::branch_[1].first->value());
return v;
}
else
return std::numeric_limits<T>::quiet_NaN();
}
private:
rebasevector_celem_node<T>* rbvec_node_ptr_;
};
template <typename T, typename Operation>
class assignment_vec_op_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
assignment_vec_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec_node_ptr_(0)
{
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[0].first);
vds() = vec_node_ptr_->vds();
}
}
inline T value() const
{
if (vec_node_ptr_)
{
const T v = binary_node<T>::branch_[1].first->value();
T* vec = vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec + lud.upper_bound;
while (vec < upper_bound)
{
#define exprtk_loop(N) \
Operation::assign(vec[N],v); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec += lud.batch_size;
}
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : Operation::assign(*vec++,v); \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return vec_node_ptr_->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return vec_node_ptr_;
}
vector_node_ptr vec()
{
return vec_node_ptr_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecopvalass;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
bool side_effect() const
{
return true;
}
private:
vector_node<T>* vec_node_ptr_;
vds_t vds_;
};
template <typename T, typename Operation>
class assignment_vecvec_op_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vec_data_store<T> vds_t;
assignment_vecvec_op_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec0_node_ptr_(0),
vec1_node_ptr_(0),
initialised_(false)
{
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec0_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[0].first);
vds() = vec0_node_ptr_->vds();
}
if (is_vector_node(binary_node<T>::branch_[1].first))
{
vec1_node_ptr_ = static_cast<vector_node<T>*>(binary_node<T>::branch_[1].first);
vec1_node_ptr_->vds() = vds();
}
else if (is_ivector_node(binary_node<T>::branch_[1].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[1].first)))
{
vec1_node_ptr_ = vi->vec();
vec1_node_ptr_->vds() = vds();
}
else
vds_t::match_sizes(vds(),vec1_node_ptr_->vds());
}
initialised_ = (vec0_node_ptr_ && vec1_node_ptr_);
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vec1_node_ptr_->vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec0 + lud.upper_bound;
while (vec0 < upper_bound)
{
#define exprtk_loop(N) \
vec0[N] = Operation::process(vec0[N],vec1[N]); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { vec0[i] = Operation::process(vec0[i],vec1[i]); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return vec0_node_ptr_->value();
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return vec0_node_ptr_;
}
vector_node_ptr vec()
{
return vec0_node_ptr_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecopvecass;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
bool side_effect() const
{
return true;
}
private:
vector_node<T>* vec0_node_ptr_;
vector_node<T>* vec1_node_ptr_;
bool initialised_;
vds_t vds_;
};
template <typename T, typename Operation>
class vec_binop_vecvec_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vector_holder<T>* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
vec_binop_vecvec_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec0_node_ptr_(0),
vec1_node_ptr_(0),
temp_ (0),
temp_vec_node_(0),
initialised_(false)
{
bool v0_is_ivec = false;
bool v1_is_ivec = false;
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec0_node_ptr_ = static_cast<vector_node_ptr>(binary_node<T>::branch_[0].first);
}
else if (is_ivector_node(binary_node<T>::branch_[0].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[0].first)))
{
vec0_node_ptr_ = vi->vec();
v0_is_ivec = true;
}
}
if (is_vector_node(binary_node<T>::branch_[1].first))
{
vec1_node_ptr_ = static_cast<vector_node_ptr>(binary_node<T>::branch_[1].first);
}
else if (is_ivector_node(binary_node<T>::branch_[1].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[1].first)))
{
vec1_node_ptr_ = vi->vec();
v1_is_ivec = true;
}
}
if (vec0_node_ptr_ && vec1_node_ptr_)
{
vector_holder<T>& vec0 = vec0_node_ptr_->vec_holder();
vector_holder<T>& vec1 = vec1_node_ptr_->vec_holder();
if (v0_is_ivec && (vec0.size() <= vec1.size()))
vds_ = vds_t(vec0_node_ptr_->vds());
else if (v1_is_ivec && (vec1.size() <= vec0.size()))
vds_ = vds_t(vec1_node_ptr_->vds());
else
vds_ = vds_t(std::min(vec0.size(),vec1.size()));
temp_ = new vector_holder<T>(vds().data(),vds().size());
temp_vec_node_ = new vector_node<T> (vds(),temp_);
initialised_ = true;
}
}
~vec_binop_vecvec_node()
{
delete temp_;
delete temp_vec_node_;
}
inline T value() const
{
if (initialised_)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vec1_node_ptr_->vds().data();
T* vec2 = vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec2 + lud.upper_bound;
while (vec2 < upper_bound)
{
#define exprtk_loop(N) \
vec2[N] = Operation::process(vec0[N],vec1[N]); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
vec2 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { vec2[i] = Operation::process(vec0[i],vec1[i]); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (vds().data())[0];
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return temp_vec_node_;
}
vector_node_ptr vec()
{
return temp_vec_node_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvecarith;
}
std::size_t size() const
{
return vds_.size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node_ptr vec0_node_ptr_;
vector_node_ptr vec1_node_ptr_;
vector_holder_ptr temp_;
vector_node_ptr temp_vec_node_;
bool initialised_;
vds_t vds_;
};
template <typename T, typename Operation>
class vec_binop_vecval_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vector_holder<T>* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
vec_binop_vecval_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec0_node_ptr_(0),
temp_ (0),
temp_vec_node_(0)
{
bool v0_is_ivec = false;
if (is_vector_node(binary_node<T>::branch_[0].first))
{
vec0_node_ptr_ = static_cast<vector_node_ptr>(binary_node<T>::branch_[0].first);
}
else if (is_ivector_node(binary_node<T>::branch_[0].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[0].first)))
{
vec0_node_ptr_ = vi->vec();
v0_is_ivec = true;
}
}
if (vec0_node_ptr_)
{
if (v0_is_ivec)
vds() = vec0_node_ptr_->vds();
else
vds() = vds_t(vec0_node_ptr_->size());
temp_ = new vector_holder<T>(vds());
temp_vec_node_ = new vector_node<T> (vds(),temp_);
}
}
~vec_binop_vecval_node()
{
delete temp_;
delete temp_vec_node_;
}
inline T value() const
{
if (vec0_node_ptr_)
{
binary_node<T>::branch_[0].first->value();
const T v = binary_node<T>::branch_[1].first->value();
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec0 + lud.upper_bound;
while (vec0 < upper_bound)
{
#define exprtk_loop(N) \
vec1[N] = Operation::process(vec0[N],v); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { vec1[i] = Operation::process(vec0[i],v); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (vds().data())[0];
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return temp_vec_node_;
}
vector_node_ptr vec()
{
return temp_vec_node_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvalarith;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node_ptr vec0_node_ptr_;
vector_holder_ptr temp_;
vector_node_ptr temp_vec_node_;
vds_t vds_;
};
template <typename T, typename Operation>
class vec_binop_valvec_node : public binary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vector_holder<T>* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
vec_binop_valvec_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
vec1_node_ptr_(0),
temp_ (0),
temp_vec_node_(0)
{
bool v1_is_ivec = false;
if (is_vector_node(binary_node<T>::branch_[1].first))
{
vec1_node_ptr_ = static_cast<vector_node_ptr>(binary_node<T>::branch_[1].first);
}
else if (is_ivector_node(binary_node<T>::branch_[1].first))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(binary_node<T>::branch_[1].first)))
{
vec1_node_ptr_ = vi->vec();
v1_is_ivec = true;
}
}
if (vec1_node_ptr_)
{
if (v1_is_ivec)
vds() = vec1_node_ptr_->vds();
else
vds() = vds_t(vec1_node_ptr_->size());
temp_ = new vector_holder<T>(vds());
temp_vec_node_ = new vector_node<T> (vds(),temp_);
}
}
~vec_binop_valvec_node()
{
delete temp_;
delete temp_vec_node_;
}
inline T value() const
{
if (vec1_node_ptr_)
{
const T v = binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
T* vec0 = vds().data();
T* vec1 = vec1_node_ptr_->vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec0 + lud.upper_bound;
while (vec0 < upper_bound)
{
#define exprtk_loop(N) \
vec0[N] = Operation::process(v,vec1[N]); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { vec0[i] = Operation::process(v,vec1[i]); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (vds().data())[0];
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return temp_vec_node_;
}
vector_node_ptr vec()
{
return temp_vec_node_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecvalarith;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node_ptr vec1_node_ptr_;
vector_holder_ptr temp_;
vector_node_ptr temp_vec_node_;
vds_t vds_;
};
template <typename T, typename Operation>
class unary_vector_node : public unary_node <T>,
public vector_interface<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef vector_node<T>* vector_node_ptr;
typedef vector_holder<T>* vector_holder_ptr;
typedef vec_data_store<T> vds_t;
unary_vector_node(const operator_type& opr, expression_ptr branch0)
: unary_node<T>(opr, branch0),
vec0_node_ptr_(0),
temp_ (0),
temp_vec_node_(0)
{
bool vec0_is_ivec = false;
if (is_vector_node(unary_node<T>::branch_))
{
vec0_node_ptr_ = static_cast<vector_node_ptr>(unary_node<T>::branch_);
}
else if (is_ivector_node(unary_node<T>::branch_))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 != (vi = dynamic_cast<vector_interface<T>*>(unary_node<T>::branch_)))
{
vec0_node_ptr_ = vi->vec();
vec0_is_ivec = true;
}
}
if (vec0_node_ptr_)
{
if (vec0_is_ivec)
vds_ = vec0_node_ptr_->vds();
else
vds_ = vds_t(vec0_node_ptr_->size());
temp_ = new vector_holder<T>(vds());
temp_vec_node_ = new vector_node<T> (vds(),temp_);
}
}
~unary_vector_node()
{
delete temp_;
delete temp_vec_node_;
}
inline T value() const
{
unary_node<T>::branch_->value();
if (vec0_node_ptr_)
{
T* vec0 = vec0_node_ptr_->vds().data();
T* vec1 = vds().data();
loop_unroll::details lud(size());
const T* upper_bound = vec0 + lud.upper_bound;
while (vec0 < upper_bound)
{
#define exprtk_loop(N) \
vec1[N] = Operation::process(vec0[N]); \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec0 += lud.batch_size;
vec1 += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : { vec1[i] = Operation::process(vec0[i]); ++i; } \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (vds().data())[0];
}
else
return std::numeric_limits<T>::quiet_NaN();
}
vector_node_ptr vec() const
{
return temp_vec_node_;
}
vector_node_ptr vec()
{
return temp_vec_node_;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vecunaryop;
}
std::size_t size() const
{
return vds().size();
}
vds_t& vds()
{
return vds_;
}
const vds_t& vds() const
{
return vds_;
}
private:
vector_node_ptr vec0_node_ptr_;
vector_holder_ptr temp_;
vector_node_ptr temp_vec_node_;
vds_t vds_;
};
template <typename T>
class scand_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
scand_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1)
{}
inline T value() const
{
return (
std::not_equal_to<T>()
(T(0),binary_node<T>::branch_[0].first->value()) &&
std::not_equal_to<T>()
(T(0),binary_node<T>::branch_[1].first->value())
) ? T(1) : T(0);
}
};
template <typename T>
class scor_node : public binary_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
scor_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1)
{}
inline T value() const
{
return (
std::not_equal_to<T>()
(T(0),binary_node<T>::branch_[0].first->value()) ||
std::not_equal_to<T>()
(T(0),binary_node<T>::branch_[1].first->value())
) ? T(1) : T(0);
}
};
template <typename T, typename IFunction, std::size_t N>
class function_N_node : public expression_node<T>
{
public:
// Function of N paramters.
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
typedef IFunction ifunction;
function_N_node(ifunction* func)
: function_((N == func->param_count) ? func : reinterpret_cast<ifunction*>(0)),
parameter_count_(func->param_count)
{}
~function_N_node()
{
cleanup_branches::execute<T,N>(branch_);
}
template <std::size_t NumBranches>
bool init_branches(expression_ptr (&b)[NumBranches])
{
// Needed for incompetent and broken msvc compiler versions
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (N != NumBranches)
return false;
else
{
for (std::size_t i = 0; i < NumBranches; ++i)
{
if (b[i])
branch_[i] = std::make_pair(b[i],branch_deletable(b[i]));
else
return false;
}
return true;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
}
inline bool operator <(const function_N_node<T,IFunction,N>& fn) const
{
return this < (&fn);
}
inline T value() const
{
// Needed for incompetent and broken msvc compiler versions
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if ((0 == function_) || (0 == N))
return std::numeric_limits<T>::quiet_NaN();
else
{
T v[N];
evaluate_branches<T,N>::execute(v,branch_);
return invoke<T,N>::execute(*function_,v);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
}
template <typename T_, std::size_t BranchCount>
struct evaluate_branches
{
static inline void execute(T_ (&v)[BranchCount], const branch_t (&b)[BranchCount])
{
for (std::size_t i = 0; i < BranchCount; ++i)
{
v[i] = b[i].first->value();
}
}
};
template <typename T_>
struct evaluate_branches <T_,5>
{
static inline void execute(T_ (&v)[5], const branch_t (&b)[5])
{
v[0] = b[0].first->value();
v[1] = b[1].first->value();
v[2] = b[2].first->value();
v[3] = b[3].first->value();
v[4] = b[4].first->value();
}
};
template <typename T_>
struct evaluate_branches <T_,4>
{
static inline void execute(T_ (&v)[4], const branch_t (&b)[4])
{
v[0] = b[0].first->value();
v[1] = b[1].first->value();
v[2] = b[2].first->value();
v[3] = b[3].first->value();
}
};
template <typename T_>
struct evaluate_branches <T_,3>
{
static inline void execute(T_ (&v)[3], const branch_t (&b)[3])
{
v[0] = b[0].first->value();
v[1] = b[1].first->value();
v[2] = b[2].first->value();
}
};
template <typename T_>
struct evaluate_branches <T_,2>
{
static inline void execute(T_ (&v)[2], const branch_t (&b)[2])
{
v[0] = b[0].first->value();
v[1] = b[1].first->value();
}
};
template <typename T_>
struct evaluate_branches <T_,1>
{
static inline void execute(T_ (&v)[1], const branch_t (&b)[1])
{
v[0] = b[0].first->value();
}
};
template <typename T_, std::size_t ParamCount>
struct invoke { static inline T execute(ifunction&, branch_t (&)[ParamCount]) { return std::numeric_limits<T_>::quiet_NaN(); } };
template <typename T_>
struct invoke<T_,20>
{
static inline T_ execute(ifunction& f, T_ (&v)[20])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15],v[16],v[17],v[18],v[19]); }
};
template <typename T_>
struct invoke<T_,19>
{
static inline T_ execute(ifunction& f, T_ (&v)[19])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15],v[16],v[17],v[18]); }
};
template <typename T_>
struct invoke<T_,18>
{
static inline T_ execute(ifunction& f, T_ (&v)[18])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15],v[16],v[17]); }
};
template <typename T_>
struct invoke<T_,17>
{
static inline T_ execute(ifunction& f, T_ (&v)[17])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15],v[16]); }
};
template <typename T_>
struct invoke<T_,16>
{
static inline T_ execute(ifunction& f, T_ (&v)[16])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14],v[15]); }
};
template <typename T_>
struct invoke<T_,15>
{
static inline T_ execute(ifunction& f, T_ (&v)[15])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13],v[14]); }
};
template <typename T_>
struct invoke<T_,14>
{
static inline T_ execute(ifunction& f, T_ (&v)[14])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12],v[13]); }
};
template <typename T_>
struct invoke<T_,13>
{
static inline T_ execute(ifunction& f, T_ (&v)[13])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],v[12]); }
};
template <typename T_>
struct invoke<T_,12>
{
static inline T_ execute(ifunction& f, T_ (&v)[12])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11]); }
};
template <typename T_>
struct invoke<T_,11>
{
static inline T_ execute(ifunction& f, T_ (&v)[11])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10]); }
};
template <typename T_>
struct invoke<T_,10>
{
static inline T_ execute(ifunction& f, T_ (&v)[10])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9]); }
};
template <typename T_>
struct invoke<T_,9>
{
static inline T_ execute(ifunction& f, T_ (&v)[9])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8]); }
};
template <typename T_>
struct invoke<T_,8>
{
static inline T_ execute(ifunction& f, T_ (&v)[8])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]); }
};
template <typename T_>
struct invoke<T_,7>
{
static inline T_ execute(ifunction& f, T_ (&v)[7])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5],v[6]); }
};
template <typename T_>
struct invoke<T_,6>
{
static inline T_ execute(ifunction& f, T_ (&v)[6])
{ return f(v[0],v[1],v[2],v[3],v[4],v[5]); }
};
template <typename T_>
struct invoke<T_,5>
{
static inline T_ execute(ifunction& f, T_ (&v)[5])
{ return f(v[0],v[1],v[2],v[3],v[4]); }
};
template <typename T_>
struct invoke<T_,4>
{
static inline T_ execute(ifunction& f, T_ (&v)[4])
{ return f(v[0],v[1],v[2],v[3]); }
};
template <typename T_>
struct invoke<T_,3>
{
static inline T_ execute(ifunction& f, T_ (&v)[3])
{ return f(v[0],v[1],v[2]); }
};
template <typename T_>
struct invoke<T_,2>
{
static inline T_ execute(ifunction& f, T_ (&v)[2])
{ return f(v[0],v[1]); }
};
template <typename T_>
struct invoke<T_,1>
{
static inline T_ execute(ifunction& f, T_ (&v)[1])
{ return f(v[0]); }
};
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_function;
}
private:
ifunction* function_;
std::size_t parameter_count_;
branch_t branch_[N];
};
template <typename T, typename IFunction>
class function_N_node<T,IFunction,0> : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef IFunction ifunction;
function_N_node(ifunction* func)
: function_((0 == func->param_count) ? func : reinterpret_cast<ifunction*>(0))
{}
inline bool operator <(const function_N_node<T,IFunction,0>& fn) const
{
return this < (&fn);
}
inline T value() const
{
if (function_)
return (*function_)();
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_function;
}
private:
ifunction* function_;
};
template <typename T, typename VarArgFunction>
class vararg_function_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
vararg_function_node(VarArgFunction* func,
const std::vector<expression_ptr>& arg_list)
: function_(func),
arg_list_(arg_list)
{
value_list_.resize(arg_list.size(),std::numeric_limits<T>::quiet_NaN());
}
~vararg_function_node()
{
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
if (arg_list_[i] && !details::is_variable_node(arg_list_[i]))
{
destroy_node(arg_list_[i]);
}
}
}
inline bool operator <(const vararg_function_node<T,VarArgFunction>& fn) const
{
return this < (&fn);
}
inline T value() const
{
if (function_)
{
populate_value_list();
return (*function_)(value_list_);
}
else
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_vafunction;
}
private:
inline void populate_value_list() const
{
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
value_list_[i] = arg_list_[i]->value();
}
}
VarArgFunction* function_;
std::vector<expression_ptr> arg_list_;
mutable std::vector<T> value_list_;
};
template <typename T, typename GenericFunction>
class generic_function_node : public expression_node<T>
{
public:
typedef type_store<T> type_store_t;
typedef expression_node<T>* expression_ptr;
typedef variable_node<T> variable_node_t;
typedef vector_node<T> vector_node_t;
typedef variable_node_t* variable_node_ptr_t;
typedef vector_node_t* vector_node_ptr_t;
typedef range_interface<T> range_interface_t;
typedef range_data_type<T> range_data_type_t;
typedef range_pack<T> range_t;
typedef std::pair<expression_ptr,bool> branch_t;
typedef std::pair<void*,std::size_t> void_t;
typedef std::vector<T> tmp_vs_t;
typedef std::vector<type_store_t> typestore_list_t;
typedef std::vector<range_data_type_t> range_list_t;
generic_function_node(const std::vector<expression_ptr>& arg_list,
GenericFunction* func = (GenericFunction*)(0))
: function_(func),
arg_list_(arg_list)
{}
virtual ~generic_function_node()
{
cleanup_branches::execute(branch_);
}
virtual bool init_branches()
{
expr_as_vec1_store_.resize(arg_list_.size(),T(0) );
typestore_list_ .resize(arg_list_.size(),type_store_t() );
range_list_ .resize(arg_list_.size(),range_data_type_t());
branch_ .resize(arg_list_.size(),branch_t((expression_ptr)0,false));
for (std::size_t i = 0; i < arg_list_.size(); ++i)
{
type_store_t& ts = typestore_list_[i];
if (0 == arg_list_[i])
return false;
else if (is_ivector_node(arg_list_[i]))
{
vector_interface<T>* vi = reinterpret_cast<vector_interface<T>*>(0);
if (0 == (vi = dynamic_cast<vector_interface<T>*>(arg_list_[i])))
return false;
ts.size = vi->size();
ts.data = vi->vds().data();
ts.type = type_store_t::e_vector;
}
#ifndef exprtk_disable_string_capabilities
else if (is_generally_string_node(arg_list_[i]))
{
string_base_node<T>* sbn = reinterpret_cast<string_base_node<T>*>(0);
if (0 == (sbn = dynamic_cast<string_base_node<T>*>(arg_list_[i])))
return false;
ts.size = sbn->size();
ts.data = reinterpret_cast<void*>(const_cast<char_t*>(sbn->base()));
ts.type = type_store_t::e_string;
range_list_[i].data = ts.data;
range_list_[i].size = ts.size;
range_list_[i].type_size = sizeof(char);
range_list_[i].str_node = sbn;
range_interface_t* ri = reinterpret_cast<range_interface_t*>(0);
if (0 == (ri = dynamic_cast<range_interface_t*>(arg_list_[i])))
return false;
range_t& rp = ri->range_ref();
if (
rp.const_range() &&
is_const_string_range_node(arg_list_[i])
)
{
ts.size = rp.const_size();
ts.data = static_cast<char_t*>(ts.data) + rp.n0_c.second;
range_list_[i].range = reinterpret_cast<range_t*>(0);
}
else
range_list_[i].range = &(ri->range_ref());
}
#endif
else if (is_variable_node(arg_list_[i]))
{
variable_node_ptr_t var = variable_node_ptr_t(0);
if (0 == (var = dynamic_cast<variable_node_ptr_t>(arg_list_[i])))
return false;
ts.size = 1;
ts.data = &var->ref();
ts.type = type_store_t::e_scalar;
}
else
{
ts.size = 1;
ts.data = reinterpret_cast<void*>(&expr_as_vec1_store_[i]);
ts.type = type_store_t::e_scalar;
}
branch_[i] = std::make_pair(arg_list_[i],branch_deletable(arg_list_[i]));
}
return true;
}
inline bool operator <(const generic_function_node<T,GenericFunction>& fn) const
{
return this < (&fn);
}
inline T value() const
{
if (function_)
{
if (populate_value_list())
{
typedef typename GenericFunction::parameter_list_t parameter_list_t;
return (*function_)(parameter_list_t(typestore_list_));
}
}
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_genfunction;
}
protected:
inline virtual bool populate_value_list() const
{
for (std::size_t i = 0; i < branch_.size(); ++i)
{
expr_as_vec1_store_[i] = branch_[i].first->value();
}
for (std::size_t i = 0; i < branch_.size(); ++i)
{
range_data_type_t& rdt = range_list_[i];
if (rdt.range)
{
range_t& rp = (*rdt.range);
std::size_t r0 = 0;
std::size_t r1 = 0;
if (rp(r0,r1,rdt.size))
{
type_store_t& ts = typestore_list_[i];
ts.size = rp.cache_size();
#ifndef exprtk_disable_string_capabilities
if (ts.type == type_store_t::e_string)
ts.data = const_cast<char_t*>(rdt.str_node->base()) + rp.cache.first;
else
#endif
ts.data = static_cast<char_t*>(rdt.data) + (rp.cache.first * rdt.type_size);
}
else
return false;
}
}
return true;
}
GenericFunction* function_;
mutable typestore_list_t typestore_list_;
private:
std::vector<expression_ptr> arg_list_;
std::vector<branch_t> branch_;
mutable tmp_vs_t expr_as_vec1_store_;
mutable range_list_t range_list_;
};
#ifndef exprtk_disable_string_capabilities
template <typename T, typename StringFunction>
class string_function_node : public generic_function_node<T,StringFunction>,
public string_base_node<T>,
public range_interface <T>
{
public:
typedef generic_function_node<T,StringFunction> gen_function_t;
typedef range_pack<T> range_t;
string_function_node(StringFunction* func,
const std::vector<typename gen_function_t::expression_ptr>& arg_list)
: gen_function_t(arg_list,func)
{
range_.n0_c = std::make_pair<bool,std::size_t>(true,0);
range_.n1_c = std::make_pair<bool,std::size_t>(true,0);
range_.cache.first = range_.n0_c.second;
range_.cache.second = range_.n1_c.second;
}
inline bool operator <(const string_function_node<T,StringFunction>& fn) const
{
return this < (&fn);
}
inline T value() const
{
T result = std::numeric_limits<T>::quiet_NaN();
if (gen_function_t::function_)
{
if (gen_function_t::populate_value_list())
{
typedef typename StringFunction::parameter_list_t parameter_list_t;
result = (*gen_function_t::function_)(ret_string_,
parameter_list_t(gen_function_t::typestore_list_));
range_.n1_c.second = ret_string_.size() - 1;
range_.cache.second = range_.n1_c.second;
return result;
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strfunction;
}
std::string str() const
{
return ret_string_;
}
const char_t* base() const
{
return &ret_string_[0];
}
std::size_t size() const
{
return ret_string_.size();
}
range_t& range_ref()
{
return range_;
}
const range_t& range_ref() const
{
return range_;
}
protected:
mutable range_t range_;
mutable std::string ret_string_;
};
#endif
template <typename T, typename GenericFunction>
class multimode_genfunction_node : public generic_function_node<T,GenericFunction>
{
public:
typedef generic_function_node<T,GenericFunction> gen_function_t;
typedef range_pack<T> range_t;
multimode_genfunction_node(GenericFunction* func,
const std::size_t& param_seq_index,
const std::vector<typename gen_function_t::expression_ptr>& arg_list)
: gen_function_t(arg_list,func),
param_seq_index_(param_seq_index)
{}
inline T value() const
{
T result = std::numeric_limits<T>::quiet_NaN();
if (gen_function_t::function_)
{
if (gen_function_t::populate_value_list())
{
typedef typename GenericFunction::parameter_list_t parameter_list_t;
return (*gen_function_t::function_)(param_seq_index_,
parameter_list_t(gen_function_t::typestore_list_));
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_genfunction;
}
private:
std::size_t param_seq_index_;
};
#ifndef exprtk_disable_string_capabilities
template <typename T, typename StringFunction>
class multimode_strfunction_node : public string_function_node<T,StringFunction>
{
public:
typedef string_function_node<T,StringFunction> str_function_t;
typedef range_pack<T> range_t;
multimode_strfunction_node(StringFunction* func,
const std::size_t& param_seq_index,
const std::vector<typename str_function_t::expression_ptr>& arg_list)
: str_function_t(func,arg_list),
param_seq_index_(param_seq_index)
{}
inline T value() const
{
T result = std::numeric_limits<T>::quiet_NaN();
if (str_function_t::function_)
{
if (str_function_t::populate_value_list())
{
typedef typename StringFunction::parameter_list_t parameter_list_t;
result = (*str_function_t::function_)(param_seq_index_,
str_function_t::ret_string_,
parameter_list_t(str_function_t::typestore_list_));
str_function_t::range_.n1_c.second = str_function_t::ret_string_.size() - 1;
str_function_t::range_.cache.second = str_function_t::range_.n1_c.second;
return result;
}
}
return result;
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_strfunction;
}
private:
const std::size_t param_seq_index_;
};
#endif
class return_exception
{};
template <typename T>
class null_igenfunc
{
public:
virtual ~null_igenfunc()
{}
typedef type_store<T> generic_type;
typedef typename generic_type::parameter_list parameter_list_t;
inline virtual T operator() (parameter_list_t)
{
return std::numeric_limits<T>::quiet_NaN();
}
};
#ifndef exprtk_disable_return_statement
template <typename T>
class return_node : public generic_function_node<T,null_igenfunc<T> >
{
public:
typedef null_igenfunc<T> igeneric_function_t;
typedef igeneric_function_t* igeneric_function_ptr;
typedef generic_function_node<T,igeneric_function_t> gen_function_t;
typedef results_context<T> results_context_t;
return_node(const std::vector<typename gen_function_t::expression_ptr>& arg_list,
results_context_t& rc)
: gen_function_t (arg_list),
results_context_(&rc)
{}
inline T value() const
{
if (
(0 != results_context_) &&
gen_function_t::populate_value_list()
)
{
typedef typename type_store<T>::parameter_list parameter_list_t;
results_context_->
assign(parameter_list_t(gen_function_t::typestore_list_));
throw return_exception();
}
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_return;
}
private:
results_context_t* results_context_;
};
template <typename T>
class return_envelope_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef results_context<T> results_context_t;
return_envelope_node(expression_ptr body, results_context_t& rc)
: results_context_(&rc ),
return_invoked_ (false),
body_ (body ),
body_deletable_ (branch_deletable(body_))
{}
~return_envelope_node()
{
if (body_ && body_deletable_)
{
destroy_node(body_);
}
}
inline T value() const
{
try
{
return_invoked_ = false;
results_context_->clear();
return body_->value();
}
catch(const return_exception&)
{
return_invoked_ = true;
return std::numeric_limits<T>::quiet_NaN();
}
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_retenv;
}
inline bool* retinvk_ptr()
{
return &return_invoked_;
}
private:
results_context_t* results_context_;
mutable bool return_invoked_;
expression_ptr body_;
const bool body_deletable_;
};
#endif
#define exprtk_define_unary_op(OpName) \
template <typename T> \
struct OpName##_op \
{ \
typedef typename functor_t<T>::Type Type; \
typedef typename expression_node<T>::node_type node_t; \
\
static inline T process(Type v) \
{ \
return numeric:: OpName (v); \
} \
\
static inline node_t type() \
{ \
return expression_node<T>::e_##OpName; \
} \
\
static inline details::operator_type operation() \
{ \
return details::e_##OpName; \
} \
}; \
exprtk_define_unary_op(abs )
exprtk_define_unary_op(acos )
exprtk_define_unary_op(acosh)
exprtk_define_unary_op(asin )
exprtk_define_unary_op(asinh)
exprtk_define_unary_op(atan )
exprtk_define_unary_op(atanh)
exprtk_define_unary_op(ceil )
exprtk_define_unary_op(cos )
exprtk_define_unary_op(cosh )
exprtk_define_unary_op(cot )
exprtk_define_unary_op(csc )
exprtk_define_unary_op(d2g )
exprtk_define_unary_op(d2r )
exprtk_define_unary_op(erf )
exprtk_define_unary_op(erfc )
exprtk_define_unary_op(exp )
exprtk_define_unary_op(expm1)
exprtk_define_unary_op(floor)
exprtk_define_unary_op(frac )
exprtk_define_unary_op(g2d )
exprtk_define_unary_op(log )
exprtk_define_unary_op(log10)
exprtk_define_unary_op(log2 )
exprtk_define_unary_op(log1p)
exprtk_define_unary_op(ncdf )
exprtk_define_unary_op(neg )
exprtk_define_unary_op(notl )
exprtk_define_unary_op(pos )
exprtk_define_unary_op(r2d )
exprtk_define_unary_op(round)
exprtk_define_unary_op(sec )
exprtk_define_unary_op(sgn )
exprtk_define_unary_op(sin )
exprtk_define_unary_op(sinc )
exprtk_define_unary_op(sinh )
exprtk_define_unary_op(sqrt )
exprtk_define_unary_op(tan )
exprtk_define_unary_op(tanh )
exprtk_define_unary_op(trunc)
#undef exprtk_define_unary_op
template <typename T>
struct opr_base
{
typedef typename details::functor_t<T>::Type Type;
typedef typename details::functor_t<T>::RefType RefType;
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::qfunc_t quaternary_functor_t;
typedef typename functor_t::tfunc_t trinary_functor_t;
typedef typename functor_t::bfunc_t binary_functor_t;
typedef typename functor_t::ufunc_t unary_functor_t;
};
template <typename T>
struct add_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return t1 + t2; }
static inline T process(Type t1, Type t2, Type t3) { return t1 + t2 + t3; }
static inline void assign(RefType t1, Type t2) { t1 += t2; }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_add; }
static inline details::operator_type operation() { return details::e_add; }
};
template <typename T>
struct mul_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return t1 * t2; }
static inline T process(Type t1, Type t2, Type t3) { return t1 * t2 * t3; }
static inline void assign(RefType t1, Type t2) { t1 *= t2; }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_mul; }
static inline details::operator_type operation() { return details::e_mul; }
};
template <typename T>
struct sub_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return t1 - t2; }
static inline T process(Type t1, Type t2, Type t3) { return t1 - t2 - t3; }
static inline void assign(RefType t1, Type t2) { t1 -= t2; }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_sub; }
static inline details::operator_type operation() { return details::e_sub; }
};
template <typename T>
struct div_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return t1 / t2; }
static inline T process(Type t1, Type t2, Type t3) { return t1 / t2 / t3; }
static inline void assign(RefType t1, Type t2) { t1 /= t2; }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_div; }
static inline details::operator_type operation() { return details::e_div; }
};
template <typename T>
struct mod_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return numeric::modulus<T>(t1,t2); }
static inline void assign(RefType t1, Type t2) { t1 = numeric::modulus<T>(t1,t2); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_mod; }
static inline details::operator_type operation() { return details::e_mod; }
};
template <typename T>
struct pow_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
typedef typename opr_base<T>::RefType RefType;
static inline T process(Type t1, Type t2) { return numeric::pow<T>(t1,t2); }
static inline void assign(RefType t1, Type t2) { t1 = numeric::pow<T>(t1,t2); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_pow; }
static inline details::operator_type operation() { return details::e_pow; }
};
template <typename T>
struct lt_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return ((t1 < t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 < t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_lt; }
static inline details::operator_type operation() { return details::e_lt; }
};
template <typename T>
struct lte_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return ((t1 <= t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 <= t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_lte; }
static inline details::operator_type operation() { return details::e_lte; }
};
template <typename T>
struct gt_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return ((t1 > t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 > t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_gt; }
static inline details::operator_type operation() { return details::e_gt; }
};
template <typename T>
struct gte_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return ((t1 >= t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 >= t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_gte; }
static inline details::operator_type operation() { return details::e_gte; }
};
template <typename T>
struct eq_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (std::equal_to<T>()(t1,t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 == t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_eq; }
static inline details::operator_type operation() { return details::e_eq; }
};
template <typename T>
struct equal_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return numeric::equal(t1,t2); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 == t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_eq; }
static inline details::operator_type operation() { return details::e_equal; }
};
template <typename T>
struct ne_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (std::not_equal_to<T>()(t1,t2) ? T(1) : T(0)); }
static inline T process(const std::string& t1, const std::string& t2) { return ((t1 != t2) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_ne; }
static inline details::operator_type operation() { return details::e_ne; }
};
template <typename T>
struct and_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (details::is_true(t1) && details::is_true(t2)) ? T(1) : T(0); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_and; }
static inline details::operator_type operation() { return details::e_and; }
};
template <typename T>
struct nand_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (details::is_true(t1) && details::is_true(t2)) ? T(0) : T(1); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_nand; }
static inline details::operator_type operation() { return details::e_nand; }
};
template <typename T>
struct or_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (details::is_true(t1) || details::is_true(t2)) ? T(1) : T(0); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_or; }
static inline details::operator_type operation() { return details::e_or; }
};
template <typename T>
struct nor_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return (details::is_true(t1) || details::is_true(t2)) ? T(0) : T(1); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_nor; }
static inline details::operator_type operation() { return details::e_nor; }
};
template <typename T>
struct xor_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return numeric::xor_opr<T>(t1,t2); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_nor; }
static inline details::operator_type operation() { return details::e_xor; }
};
template <typename T>
struct xnor_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(Type t1, Type t2) { return numeric::xnor_opr<T>(t1,t2); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_nor; }
static inline details::operator_type operation() { return details::e_xnor; }
};
template <typename T>
struct in_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(const T&, const T&) { return std::numeric_limits<T>::quiet_NaN(); }
static inline T process(const std::string& t1, const std::string& t2) { return ((std::string::npos != t2.find(t1)) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_in; }
static inline details::operator_type operation() { return details::e_in; }
};
template <typename T>
struct like_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(const T&, const T&) { return std::numeric_limits<T>::quiet_NaN(); }
static inline T process(const std::string& t1, const std::string& t2) { return (details::wc_match(t2,t1) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_like; }
static inline details::operator_type operation() { return details::e_like; }
};
template <typename T>
struct ilike_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(const T&, const T&) { return std::numeric_limits<T>::quiet_NaN(); }
static inline T process(const std::string& t1, const std::string& t2) { return (details::wc_imatch(t2,t1) ? T(1) : T(0)); }
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_ilike; }
static inline details::operator_type operation() { return details::e_ilike; }
};
template <typename T>
struct inrange_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
static inline T process(const T& t0, const T& t1, const T& t2) { return ((t0 <= t1) && (t1 <= t2)) ? T(1) : T(0); }
static inline T process(const std::string& t0, const std::string& t1, const std::string& t2)
{
return ((t0 <= t1) && (t1 <= t2)) ? T(1) : T(0);
}
static inline typename expression_node<T>::node_type type() { return expression_node<T>::e_inranges; }
static inline details::operator_type operation() { return details::e_inrange; }
};
template <typename T>
inline T value(details::expression_node<T>* n)
{
return n->value();
}
template <typename T>
inline T value(T* t)
{
return (*t);
}
template <typename T>
struct vararg_add_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return T(0);
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
T result = T(0);
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
result += value(arg_list[i]);
}
return result;
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return value(arg_list[0]) + value(arg_list[1]);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return value(arg_list[0]) + value(arg_list[1]) +
value(arg_list[2]);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return value(arg_list[0]) + value(arg_list[1]) +
value(arg_list[2]) + value(arg_list[3]);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return value(arg_list[0]) + value(arg_list[1]) +
value(arg_list[2]) + value(arg_list[3]) +
value(arg_list[4]);
}
};
template <typename T>
struct vararg_mul_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return T(0);
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
T result = T(value(arg_list[0]));
for (std::size_t i = 1; i < arg_list.size(); ++i)
{
result *= value(arg_list[i]);
}
return result;
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return value(arg_list[0]) * value(arg_list[1]);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return value(arg_list[0]) * value(arg_list[1]) *
value(arg_list[2]);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return value(arg_list[0]) * value(arg_list[1]) *
value(arg_list[2]) * value(arg_list[3]);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return value(arg_list[0]) * value(arg_list[1]) *
value(arg_list[2]) * value(arg_list[3]) *
value(arg_list[4]);
}
};
template <typename T>
struct vararg_avg_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return T(0);
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default : return vararg_add_op<T>::process(arg_list) / arg_list.size();
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return (value(arg_list[0]) + value(arg_list[1])) / T(2);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return (value(arg_list[0]) + value(arg_list[1]) + value(arg_list[2])) / T(3);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return (value(arg_list[0]) + value(arg_list[1]) +
value(arg_list[2]) + value(arg_list[3])) / T(4);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return (value(arg_list[0]) + value(arg_list[1]) +
value(arg_list[2]) + value(arg_list[3]) +
value(arg_list[4])) / T(5);
}
};
template <typename T>
struct vararg_min_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return T(0);
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
T result = T(value(arg_list[0]));
for (std::size_t i = 1; i < arg_list.size(); ++i)
{
const T v = value(arg_list[i]);
if (v < result)
result = v;
}
return result;
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return std::min<T>(value(arg_list[0]),value(arg_list[1]));
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return std::min<T>(std::min<T>(value(arg_list[0]),value(arg_list[1])),value(arg_list[2]));
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return std::min<T>(
std::min<T>(value(arg_list[0]),value(arg_list[1])),
std::min<T>(value(arg_list[2]),value(arg_list[3])));
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return std::min<T>(
std::min<T>(std::min<T>(value(arg_list[0]),value(arg_list[1])),
std::min<T>(value(arg_list[2]),value(arg_list[3]))),
value(arg_list[4]));
}
};
template <typename T>
struct vararg_max_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return T(0);
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
T result = T(value(arg_list[0]));
for (std::size_t i = 1; i < arg_list.size(); ++i)
{
const T v = value(arg_list[i]);
if (v > result)
result = v;
}
return result;
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return std::max<T>(value(arg_list[0]),value(arg_list[1]));
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return std::max<T>(std::max<T>(value(arg_list[0]),value(arg_list[1])),value(arg_list[2]));
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return std::max<T>(
std::max<T>(value(arg_list[0]),value(arg_list[1])),
std::max<T>(value(arg_list[2]),value(arg_list[3])));
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return std::max<T>(
std::max<T>(std::max<T>(value(arg_list[0]),value(arg_list[1])),
std::max<T>(value(arg_list[2]),value(arg_list[3]))),
value(arg_list[4]));
}
};
template <typename T>
struct vararg_mand_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (std::equal_to<T>()(T(0),value(arg_list[i])))
return T(0);
}
return T(1);
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return std::not_equal_to<T>()
(T(0),value(arg_list[0])) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) &&
std::not_equal_to<T>()(T(0),value(arg_list[1]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) &&
std::not_equal_to<T>()(T(0),value(arg_list[1])) &&
std::not_equal_to<T>()(T(0),value(arg_list[2]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) &&
std::not_equal_to<T>()(T(0),value(arg_list[1])) &&
std::not_equal_to<T>()(T(0),value(arg_list[2])) &&
std::not_equal_to<T>()(T(0),value(arg_list[3]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) &&
std::not_equal_to<T>()(T(0),value(arg_list[1])) &&
std::not_equal_to<T>()(T(0),value(arg_list[2])) &&
std::not_equal_to<T>()(T(0),value(arg_list[3])) &&
std::not_equal_to<T>()(T(0),value(arg_list[4]))
) ? T(1) : T(0);
}
};
template <typename T>
struct vararg_mor_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
default :
{
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (std::not_equal_to<T>()(T(0),value(arg_list[i])))
return T(1);
}
return T(0);
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return std::not_equal_to<T>()
(T(0),value(arg_list[0])) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) ||
std::not_equal_to<T>()(T(0),value(arg_list[1]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) ||
std::not_equal_to<T>()(T(0),value(arg_list[1])) ||
std::not_equal_to<T>()(T(0),value(arg_list[2]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) ||
std::not_equal_to<T>()(T(0),value(arg_list[1])) ||
std::not_equal_to<T>()(T(0),value(arg_list[2])) ||
std::not_equal_to<T>()(T(0),value(arg_list[3]))
) ? T(1) : T(0);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
return (
std::not_equal_to<T>()(T(0),value(arg_list[0])) ||
std::not_equal_to<T>()(T(0),value(arg_list[1])) ||
std::not_equal_to<T>()(T(0),value(arg_list[2])) ||
std::not_equal_to<T>()(T(0),value(arg_list[3])) ||
std::not_equal_to<T>()(T(0),value(arg_list[4]))
) ? T(1) : T(0);
}
};
template <typename T>
struct vararg_multi_op : public opr_base<T>
{
typedef typename opr_base<T>::Type Type;
template <typename Type,
typename Allocator,
template <typename,typename> class Sequence>
static inline T process(const Sequence<Type,Allocator>& arg_list)
{
switch (arg_list.size())
{
case 0 : return std::numeric_limits<T>::quiet_NaN();
case 1 : return process_1(arg_list);
case 2 : return process_2(arg_list);
case 3 : return process_3(arg_list);
case 4 : return process_4(arg_list);
case 5 : return process_5(arg_list);
case 6 : return process_6(arg_list);
case 7 : return process_7(arg_list);
case 8 : return process_8(arg_list);
default :
{
for (std::size_t i = 0; i < (arg_list.size() - 1); ++i)
{
value(arg_list[i]);
}
return value(arg_list.back());
}
}
}
template <typename Sequence>
static inline T process_1(const Sequence& arg_list)
{
return value(arg_list[0]);
}
template <typename Sequence>
static inline T process_2(const Sequence& arg_list)
{
value(arg_list[0]);
return value(arg_list[1]);
}
template <typename Sequence>
static inline T process_3(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
return value(arg_list[2]);
}
template <typename Sequence>
static inline T process_4(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
value(arg_list[2]);
return value(arg_list[3]);
}
template <typename Sequence>
static inline T process_5(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
value(arg_list[2]);
value(arg_list[3]);
return value(arg_list[4]);
}
template <typename Sequence>
static inline T process_6(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
value(arg_list[2]);
value(arg_list[3]);
value(arg_list[4]);
return value(arg_list[5]);
}
template <typename Sequence>
static inline T process_7(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
value(arg_list[2]);
value(arg_list[3]);
value(arg_list[4]);
value(arg_list[5]);
return value(arg_list[6]);
}
template <typename Sequence>
static inline T process_8(const Sequence& arg_list)
{
value(arg_list[0]);
value(arg_list[1]);
value(arg_list[2]);
value(arg_list[3]);
value(arg_list[4]);
value(arg_list[5]);
value(arg_list[6]);
return value(arg_list[7]);
}
};
template <typename T>
struct vec_add_op
{
typedef vector_interface<T>* ivector_ptr;
static inline T process(const ivector_ptr v)
{
const T* vec = v->vec()->vds().data();
const std::size_t vec_size = v->vec()->vds().size();
loop_unroll::details lud(vec_size);
if (vec_size <= static_cast<std::size_t>(lud.batch_size))
{
T result = T(0);
int i = 0;
exprtk_disable_fallthrough_begin
switch (vec_size)
{
#define case_stmt(N) \
case N : result += vec[i++]; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(16) case_stmt(15)
case_stmt(14) case_stmt(13)
case_stmt(12) case_stmt(11)
case_stmt(10) case_stmt( 9)
case_stmt( 8) case_stmt( 7)
case_stmt( 6) case_stmt( 5)
#endif
case_stmt( 4) case_stmt( 3)
case_stmt( 2) case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef case_stmt
return result;
}
T r[] = {
T(0), T(0), T(0), T(0), T(0), T(0), T(0), T(0),
T(0), T(0), T(0), T(0), T(0), T(0), T(0), T(0)
};
const T* upper_bound = vec + lud.upper_bound;
while (vec < upper_bound)
{
#define exprtk_loop(N) \
r[N] += vec[N]; \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : r[0] += vec[i++]; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (r[ 0] + r[ 1] + r[ 2] + r[ 3])
#ifndef exprtk_disable_superscalar_unroll
+ (r[ 4] + r[ 5] + r[ 6] + r[ 7])
+ (r[ 8] + r[ 9] + r[10] + r[11])
+ (r[12] + r[13] + r[14] + r[15])
#endif
;
}
};
template <typename T>
struct vec_mul_op
{
typedef vector_interface<T>* ivector_ptr;
static inline T process(const ivector_ptr v)
{
const T* vec = v->vec()->vds().data();
const std::size_t vec_size = v->vec()->vds().size();
loop_unroll::details lud(vec_size);
if (vec_size <= static_cast<std::size_t>(lud.batch_size))
{
T result = T(1);
int i = 0;
exprtk_disable_fallthrough_begin
switch (vec_size)
{
#define case_stmt(N) \
case N : result *= vec[i++]; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(16) case_stmt(15)
case_stmt(14) case_stmt(13)
case_stmt(12) case_stmt(11)
case_stmt(10) case_stmt( 9)
case_stmt( 8) case_stmt( 7)
case_stmt( 6) case_stmt( 5)
#endif
case_stmt( 4) case_stmt( 3)
case_stmt( 2) case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef case_stmt
return result;
}
T r[] = {
T(1), T(1), T(1), T(1), T(1), T(1), T(1), T(1),
T(1), T(1), T(1), T(1), T(1), T(1), T(1), T(1)
};
const T* upper_bound = vec + lud.upper_bound;
while (vec < upper_bound)
{
#define exprtk_loop(N) \
r[N] *= vec[N]; \
exprtk_loop( 0) exprtk_loop( 1)
exprtk_loop( 2) exprtk_loop( 3)
#ifndef exprtk_disable_superscalar_unroll
exprtk_loop( 4) exprtk_loop( 5)
exprtk_loop( 6) exprtk_loop( 7)
exprtk_loop( 8) exprtk_loop( 9)
exprtk_loop(10) exprtk_loop(11)
exprtk_loop(12) exprtk_loop(13)
exprtk_loop(14) exprtk_loop(15)
#endif
vec += lud.batch_size;
}
int i = 0;
exprtk_disable_fallthrough_begin
switch (lud.remainder)
{
#define case_stmt(N) \
case N : r[0] *= vec[i++]; \
#ifndef exprtk_disable_superscalar_unroll
case_stmt(15) case_stmt(14)
case_stmt(13) case_stmt(12)
case_stmt(11) case_stmt(10)
case_stmt( 9) case_stmt( 8)
case_stmt( 7) case_stmt( 6)
case_stmt( 5) case_stmt( 4)
#endif
case_stmt( 3) case_stmt( 2)
case_stmt( 1)
}
exprtk_disable_fallthrough_end
#undef exprtk_loop
#undef case_stmt
return (r[ 0] * r[ 1] * r[ 2] * r[ 3])
#ifndef exprtk_disable_superscalar_unroll
+ (r[ 4] * r[ 5] * r[ 6] * r[ 7])
+ (r[ 8] * r[ 9] * r[10] * r[11])
+ (r[12] * r[13] * r[14] * r[15])
#endif
;
}
};
template <typename T>
struct vec_avg_op
{
typedef vector_interface<T>* ivector_ptr;
static inline T process(const ivector_ptr v)
{
const std::size_t vec_size = v->vec()->vds().size();
return vec_add_op<T>::process(v) / vec_size;
}
};
template <typename T>
struct vec_min_op
{
typedef vector_interface<T>* ivector_ptr;
static inline T process(const ivector_ptr v)
{
const T* vec = v->vec()->vds().data();
const std::size_t vec_size = v->vec()->vds().size();
T result = vec[0];
for (std::size_t i = 1; i < vec_size; ++i)
{
T v_i = vec[i];
if (v_i < result)
result = v_i;
}
return result;
}
};
template <typename T>
struct vec_max_op
{
typedef vector_interface<T>* ivector_ptr;
static inline T process(const ivector_ptr v)
{
const T* vec = v->vec()->vds().data();
const std::size_t vec_size = v->vec()->vds().size();
T result = vec[0];
for (std::size_t i = 1; i < vec_size; ++i)
{
T v_i = vec[i];
if (v_i > result)
result = v_i;
}
return result;
}
};
template <typename T>
class vov_base_node : public expression_node<T>
{
public:
virtual ~vov_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T& v0() const = 0;
virtual const T& v1() const = 0;
};
template <typename T>
class cov_base_node : public expression_node<T>
{
public:
virtual ~cov_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T c() const = 0;
virtual const T& v() const = 0;
};
template <typename T>
class voc_base_node : public expression_node<T>
{
public:
virtual ~voc_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T c() const = 0;
virtual const T& v() const = 0;
};
template <typename T>
class vob_base_node : public expression_node<T>
{
public:
virtual ~vob_base_node()
{}
virtual const T& v() const = 0;
};
template <typename T>
class bov_base_node : public expression_node<T>
{
public:
virtual ~bov_base_node()
{}
virtual const T& v() const = 0;
};
template <typename T>
class cob_base_node : public expression_node<T>
{
public:
virtual ~cob_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T c() const = 0;
virtual void set_c(const T) = 0;
virtual expression_node<T>* move_branch(const std::size_t& index) = 0;
};
template <typename T>
class boc_base_node : public expression_node<T>
{
public:
virtual ~boc_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T c() const = 0;
virtual void set_c(const T) = 0;
virtual expression_node<T>* move_branch(const std::size_t& index) = 0;
};
template <typename T>
class uv_base_node : public expression_node<T>
{
public:
virtual ~uv_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
virtual const T& v() const = 0;
};
template <typename T>
class sos_base_node : public expression_node<T>
{
public:
virtual ~sos_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
};
template <typename T>
class sosos_base_node : public expression_node<T>
{
public:
virtual ~sosos_base_node()
{}
inline virtual operator_type operation() const
{
return details::e_default;
}
};
template <typename T>
class T0oT1oT2_base_node : public expression_node<T>
{
public:
virtual ~T0oT1oT2_base_node()
{}
virtual std::string type_id() const = 0;
};
template <typename T>
class T0oT1oT2oT3_base_node : public expression_node<T>
{
public:
virtual ~T0oT1oT2oT3_base_node()
{}
virtual std::string type_id() const = 0;
};
template <typename T, typename Operation>
class unary_variable_node : public uv_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
explicit unary_variable_node(const T& var)
: v_(var)
{}
inline T value() const
{
return Operation::process(v_);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T& v() const
{
return v_;
}
private:
unary_variable_node(unary_variable_node<T,Operation>&);
unary_variable_node<T,Operation>& operator=(unary_variable_node<T,Operation>&);
const T& v_;
};
template <typename T>
class uvouv_node : public expression_node<T>
{
public:
// UOpr1(v0) Op UOpr2(v1)
typedef expression_node<T>* expression_ptr;
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
typedef typename functor_t::ufunc_t ufunc_t;
explicit uvouv_node(const T& var0,const T& var1,
ufunc_t uf0, ufunc_t uf1, bfunc_t bf)
: v0_(var0),
v1_(var1),
u0_(uf0 ),
u1_(uf1 ),
f_ (bf )
{}
inline T value() const
{
return f_(u0_(v0_),u1_(v1_));
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_uvouv;
}
inline operator_type operation() const
{
return details::e_default;
}
inline const T& v0()
{
return v0_;
}
inline const T& v1()
{
return v1_;
}
inline ufunc_t u0()
{
return u0_;
}
inline ufunc_t u1()
{
return u1_;
}
inline ufunc_t f()
{
return f_;
}
private:
uvouv_node(uvouv_node<T>&);
uvouv_node<T>& operator=(uvouv_node<T>&);
const T& v0_;
const T& v1_;
const ufunc_t u0_;
const ufunc_t u1_;
const bfunc_t f_;
};
template <typename T, typename Operation>
class unary_branch_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
explicit unary_branch_node(expression_ptr brnch)
: branch_(brnch),
branch_deletable_(branch_deletable(branch_))
{}
~unary_branch_node()
{
if (branch_ && branch_deletable_)
{
destroy_node(branch_);
}
}
inline T value() const
{
return Operation::process(branch_->value());
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_;
}
inline void release()
{
branch_deletable_ = false;
}
private:
unary_branch_node(unary_branch_node<T,Operation>&);
unary_branch_node<T,Operation>& operator=(unary_branch_node<T,Operation>&);
expression_ptr branch_;
bool branch_deletable_;
};
template <typename T> struct is_const { enum {result = 0}; };
template <typename T> struct is_const <const T> { enum {result = 1}; };
template <typename T> struct is_const_ref { enum {result = 0}; };
template <typename T> struct is_const_ref <const T&> { enum {result = 1}; };
template <typename T> struct is_ref { enum {result = 0}; };
template <typename T> struct is_ref<T&> { enum {result = 1}; };
template <typename T> struct is_ref<const T&> { enum {result = 0}; };
template <std::size_t State>
struct param_to_str { static std::string result() { static const std::string r("v"); return r; } };
template <>
struct param_to_str<0> { static std::string result() { static const std::string r("c"); return r; } };
#define exprtk_crtype(Type) \
param_to_str<is_const_ref< Type >::result>::result() \
template <typename T>
struct T0oT1oT2process
{
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
struct mode0
{
static inline T process(const T& t0, const T& t1, const T& t2, const bfunc_t bf0, const bfunc_t bf1)
{
// (T0 o0 T1) o1 T2
return bf1(bf0(t0,t1),t2);
}
template <typename T0, typename T1, typename T2>
static inline std::string id()
{
static const std::string result = "(" + exprtk_crtype(T0) + "o" +
exprtk_crtype(T1) + ")o(" +
exprtk_crtype(T2) + ")" ;
return result;
}
};
struct mode1
{
static inline T process(const T& t0, const T& t1, const T& t2, const bfunc_t bf0, const bfunc_t bf1)
{
// T0 o0 (T1 o1 T2)
return bf0(t0,bf1(t1,t2));
}
template <typename T0, typename T1, typename T2>
static inline std::string id()
{
static const std::string result = "(" + exprtk_crtype(T0) + ")o(" +
exprtk_crtype(T1) + "o" +
exprtk_crtype(T2) + ")" ;
return result;
}
};
};
template <typename T>
struct T0oT1oT20T3process
{
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
struct mode0
{
static inline T process(const T& t0, const T& t1,
const T& t2, const T& t3,
const bfunc_t bf0, const bfunc_t bf1, const bfunc_t bf2)
{
// (T0 o0 T1) o1 (T2 o2 T3)
return bf1(bf0(t0,t1),bf2(t2,t3));
}
template <typename T0, typename T1, typename T2, typename T3>
static inline std::string id()
{
static const std::string result = "(" + exprtk_crtype(T0) + "o" +
exprtk_crtype(T1) + ")o" +
"(" + exprtk_crtype(T2) + "o" +
exprtk_crtype(T3) + ")" ;
return result;
}
};
struct mode1
{
static inline T process(const T& t0, const T& t1,
const T& t2, const T& t3,
const bfunc_t bf0, const bfunc_t bf1, const bfunc_t bf2)
{
// (T0 o0 (T1 o1 (T2 o2 T3))
return bf0(t0,bf1(t1,bf2(t2,t3)));
}
template <typename T0, typename T1, typename T2, typename T3>
static inline std::string id()
{
static const std::string result = "(" + exprtk_crtype(T0) + ")o((" +
exprtk_crtype(T1) + ")o(" +
exprtk_crtype(T2) + "o" +
exprtk_crtype(T3) + "))" ;
return result;
}
};
struct mode2
{
static inline T process(const T& t0, const T& t1,
const T& t2, const T& t3,
const bfunc_t bf0, const bfunc_t bf1, const bfunc_t bf2)
{
// (T0 o0 ((T1 o1 T2) o2 T3)
return bf0(t0,bf2(bf1(t1,t2),t3));
}
template <typename T0, typename T1, typename T2, typename T3>
static inline std::string id()
{
static const std::string result = "(" + exprtk_crtype(T0) + ")o((" +
exprtk_crtype(T1) + "o" +
exprtk_crtype(T2) + ")o(" +
exprtk_crtype(T3) + "))" ;
return result;
}
};
struct mode3
{
static inline T process(const T& t0, const T& t1,
const T& t2, const T& t3,
const bfunc_t bf0, const bfunc_t bf1, const bfunc_t bf2)
{
// (((T0 o0 T1) o1 T2) o2 T3)
return bf2(bf1(bf0(t0,t1),t2),t3);
}
template <typename T0, typename T1, typename T2, typename T3>
static inline std::string id()
{
static const std::string result = "((" + exprtk_crtype(T0) + "o" +
exprtk_crtype(T1) + ")o(" +
exprtk_crtype(T2) + "))o(" +
exprtk_crtype(T3) + ")";
return result;
}
};
struct mode4
{
static inline T process(const T& t0, const T& t1,
const T& t2, const T& t3,
const bfunc_t bf0, const bfunc_t bf1, const bfunc_t bf2)
{
// ((T0 o0 (T1 o1 T2)) o2 T3
return bf2(bf0(t0,bf1(t1,t2)),t3);
}
template <typename T0, typename T1, typename T2, typename T3>
static inline std::string id()
{
static const std::string result = "((" + exprtk_crtype(T0) + ")o(" +
exprtk_crtype(T1) + "o" +
exprtk_crtype(T2) + "))o(" +
exprtk_crtype(T3) + ")" ;
return result;
}
};
};
#undef exprtk_crtype
template <typename T, typename T0, typename T1>
struct nodetype_T0oT1 { static const typename expression_node<T>::node_type result; };
template <typename T, typename T0, typename T1>
const typename expression_node<T>::node_type nodetype_T0oT1<T,T0,T1>::result = expression_node<T>::e_none;
#define synthesis_node_type_define(T0_,T1_,v_) \
template <typename T, typename T0, typename T1> \
struct nodetype_T0oT1<T,T0_,T1_> { static const typename expression_node<T>::node_type result; }; \
template <typename T, typename T0, typename T1> \
const typename expression_node<T>::node_type nodetype_T0oT1<T,T0_,T1_>::result = expression_node<T>:: v_; \
synthesis_node_type_define(const T0&,const T1&, e_vov)
synthesis_node_type_define(const T0&,const T1 , e_voc)
synthesis_node_type_define(const T0 ,const T1&, e_cov)
synthesis_node_type_define( T0&, T1&,e_none)
synthesis_node_type_define(const T0 ,const T1 ,e_none)
synthesis_node_type_define( T0&,const T1 ,e_none)
synthesis_node_type_define(const T0 , T1&,e_none)
synthesis_node_type_define(const T0&, T1&,e_none)
synthesis_node_type_define( T0&,const T1&,e_none)
#undef synthesis_node_type_define
template <typename T, typename T0, typename T1, typename T2>
struct nodetype_T0oT1oT2 { static const typename expression_node<T>::node_type result; };
template <typename T, typename T0, typename T1, typename T2>
const typename expression_node<T>::node_type nodetype_T0oT1oT2<T,T0,T1,T2>::result = expression_node<T>::e_none;
#define synthesis_node_type_define(T0_,T1_,T2_,v_) \
template <typename T, typename T0, typename T1, typename T2> \
struct nodetype_T0oT1oT2<T,T0_,T1_,T2_> { static const typename expression_node<T>::node_type result; }; \
template <typename T, typename T0, typename T1, typename T2> \
const typename expression_node<T>::node_type nodetype_T0oT1oT2<T,T0_,T1_,T2_>::result = expression_node<T>:: v_; \
synthesis_node_type_define(const T0&,const T1&,const T2&, e_vovov)
synthesis_node_type_define(const T0&,const T1&,const T2 , e_vovoc)
synthesis_node_type_define(const T0&,const T1 ,const T2&, e_vocov)
synthesis_node_type_define(const T0 ,const T1&,const T2&, e_covov)
synthesis_node_type_define(const T0 ,const T1&,const T2 , e_covoc)
synthesis_node_type_define(const T0 ,const T1 ,const T2 , e_none )
synthesis_node_type_define(const T0 ,const T1 ,const T2&, e_none )
synthesis_node_type_define(const T0&,const T1 ,const T2 , e_none )
synthesis_node_type_define( T0&, T1&, T2&, e_none )
#undef synthesis_node_type_define
template <typename T, typename T0, typename T1, typename T2, typename T3>
struct nodetype_T0oT1oT2oT3 { static const typename expression_node<T>::node_type result; };
template <typename T, typename T0, typename T1, typename T2, typename T3>
const typename expression_node<T>::node_type nodetype_T0oT1oT2oT3<T,T0,T1,T2,T3>::result = expression_node<T>::e_none;
#define synthesis_node_type_define(T0_,T1_,T2_,T3_,v_) \
template <typename T, typename T0, typename T1, typename T2, typename T3> \
struct nodetype_T0oT1oT2oT3<T,T0_,T1_,T2_,T3_> { static const typename expression_node<T>::node_type result; }; \
template <typename T, typename T0, typename T1, typename T2, typename T3> \
const typename expression_node<T>::node_type nodetype_T0oT1oT2oT3<T,T0_,T1_,T2_,T3_>::result = expression_node<T>:: v_; \
synthesis_node_type_define(const T0&,const T1&,const T2&, const T3&,e_vovovov)
synthesis_node_type_define(const T0&,const T1&,const T2&, const T3 ,e_vovovoc)
synthesis_node_type_define(const T0&,const T1&,const T2 , const T3&,e_vovocov)
synthesis_node_type_define(const T0&,const T1 ,const T2&, const T3&,e_vocovov)
synthesis_node_type_define(const T0 ,const T1&,const T2&, const T3&,e_covovov)
synthesis_node_type_define(const T0 ,const T1&,const T2 , const T3&,e_covocov)
synthesis_node_type_define(const T0&,const T1 ,const T2&, const T3 ,e_vocovoc)
synthesis_node_type_define(const T0 ,const T1&,const T2&, const T3 ,e_covovoc)
synthesis_node_type_define(const T0&,const T1 ,const T2 , const T3&,e_vococov)
synthesis_node_type_define(const T0 ,const T1 ,const T2 , const T3 ,e_none )
synthesis_node_type_define(const T0 ,const T1 ,const T2 , const T3&,e_none )
synthesis_node_type_define(const T0 ,const T1 ,const T2&, const T3 ,e_none )
synthesis_node_type_define(const T0 ,const T1&,const T2 , const T3 ,e_none )
synthesis_node_type_define(const T0&,const T1 ,const T2 , const T3 ,e_none )
synthesis_node_type_define(const T0 ,const T1 ,const T2&, const T3&,e_none )
synthesis_node_type_define(const T0&,const T1&,const T2 , const T3 ,e_none )
#undef synthesis_node_type_define
template <typename T, typename T0, typename T1>
class T0oT1 : public expression_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
typedef T value_type;
typedef T0oT1<T,T0,T1> node_type;
T0oT1(T0 p0, T1 p1, const bfunc_t p2)
: t0_(p0),
t1_(p1),
f_ (p2)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1<T,T0,T1>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return f_(t0_,t1_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline bfunc_t f() const
{
return f_;
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator,
T0 p0, T1 p1,
bfunc_t p2)
{
return allocator
.template allocate_type<node_type,T0,T1,bfunc_t&>
(p0, p1, p2);
}
private:
T0oT1(T0oT1<T,T0,T1>&) {}
T0oT1<T,T0,T1>& operator=(T0oT1<T,T0,T1>&) { return (*this); }
T0 t0_;
T1 t1_;
const bfunc_t f_;
};
template <typename T, typename T0, typename T1, typename T2, typename ProcessMode>
class T0oT1oT2 : public T0oT1oT2_base_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
typedef T value_type;
typedef T0oT1oT2<T,T0,T1,T2,ProcessMode> node_type;
typedef ProcessMode process_mode_t;
T0oT1oT2(T0 p0, T1 p1, T2 p2, const bfunc_t p3, const bfunc_t p4)
: t0_(p0),
t1_(p1),
t2_(p2),
f0_(p3),
f1_(p4)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1oT2<T,T0,T1,T2>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return ProcessMode::process(t0_,t1_,t2_,f0_,f1_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline T2 t2() const
{
return t2_;
}
bfunc_t f0() const
{
return f0_;
}
bfunc_t f1() const
{
return f1_;
}
std::string type_id() const
{
return id();
}
static inline std::string id()
{
return process_mode_t::template id<T0,T1,T2>();
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator, T0 p0, T1 p1, T2 p2, bfunc_t p3, bfunc_t p4)
{
return allocator
.template allocate_type<node_type,T0,T1,T2,bfunc_t,bfunc_t>
(p0, p1, p2, p3, p4);
}
private:
T0oT1oT2(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
const bfunc_t f0_;
const bfunc_t f1_;
};
template <typename T, typename T0_, typename T1_, typename T2_, typename T3_, typename ProcessMode>
class T0oT1oT2oT3 : public T0oT1oT2oT3_base_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::bfunc_t bfunc_t;
typedef T value_type;
typedef T0_ T0;
typedef T1_ T1;
typedef T2_ T2;
typedef T3_ T3;
typedef T0oT1oT2oT3<T,T0,T1,T2,T3,ProcessMode> node_type;
typedef ProcessMode process_mode_t;
T0oT1oT2oT3(T0 p0, T1 p1, T2 p2, T3 p3, bfunc_t p4, bfunc_t p5, bfunc_t p6)
: t0_(p0),
t1_(p1),
t2_(p2),
t3_(p3),
f0_(p4),
f1_(p5),
f2_(p6)
{}
inline T value() const
{
return ProcessMode::process(t0_, t1_, t2_, t3_, f0_, f1_, f2_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline T2 t2() const
{
return t2_;
}
inline T3 t3() const
{
return t3_;
}
inline bfunc_t f0() const
{
return f0_;
}
inline bfunc_t f1() const
{
return f1_;
}
inline bfunc_t f2() const
{
return f2_;
}
inline std::string type_id() const
{
return id();
}
static inline std::string id()
{
return process_mode_t::template id<T0,T1,T2,T3>();
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator,
T0 p0, T1 p1, T2 p2, T3 p3,
bfunc_t p4, bfunc_t p5, bfunc_t p6)
{
return allocator
.template allocate_type<node_type,T0,T1,T2,T3,bfunc_t,bfunc_t>
(p0, p1, p2, p3, p4, p5, p6);
}
private:
T0oT1oT2oT3(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
T3 t3_;
const bfunc_t f0_;
const bfunc_t f1_;
const bfunc_t f2_;
};
template <typename T, typename T0, typename T1, typename T2>
class T0oT1oT2_sf3 : public T0oT1oT2_base_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::tfunc_t tfunc_t;
typedef T value_type;
typedef T0oT1oT2_sf3<T,T0,T1,T2> node_type;
T0oT1oT2_sf3(T0 p0, T1 p1, T2 p2, const tfunc_t p3)
: t0_(p0),
t1_(p1),
t2_(p2),
f_ (p3)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1oT2<T,T0,T1,T2>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return f_(t0_, t1_, t2_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline T2 t2() const
{
return t2_;
}
tfunc_t f() const
{
return f_;
}
std::string type_id() const
{
return id();
}
static inline std::string id()
{
return "sf3";
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator, T0 p0, T1 p1, T2 p2, tfunc_t p3)
{
return allocator
.template allocate_type<node_type,T0,T1,T2,tfunc_t>
(p0, p1, p2, p3);
}
private:
T0oT1oT2_sf3(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
const tfunc_t f_;
};
template <typename T, typename T0, typename T1, typename T2>
class sf3ext_type_node : public T0oT1oT2_base_node<T>
{
public:
virtual ~sf3ext_type_node()
{}
virtual T0 t0() const = 0;
virtual T1 t1() const = 0;
virtual T2 t2() const = 0;
};
template <typename T, typename T0, typename T1, typename T2, typename SF3Operation>
class T0oT1oT2_sf3ext : public sf3ext_type_node<T,T0,T1,T2>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::tfunc_t tfunc_t;
typedef T value_type;
typedef T0oT1oT2_sf3ext<T,T0,T1,T2,SF3Operation> node_type;
T0oT1oT2_sf3ext(T0 p0, T1 p1, T2 p2)
: t0_(p0),
t1_(p1),
t2_(p2)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1oT2<T,T0,T1,T2>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return SF3Operation::process(t0_, t1_, t2_);
}
T0 t0() const
{
return t0_;
}
T1 t1() const
{
return t1_;
}
T2 t2() const
{
return t2_;
}
std::string type_id() const
{
return id();
}
static inline std::string id()
{
return SF3Operation::id();
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator, T0 p0, T1 p1, T2 p2)
{
return allocator
.template allocate_type<node_type,T0,T1,T2>
(p0, p1, p2);
}
private:
T0oT1oT2_sf3ext(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
};
template <typename T>
inline bool is_sf3ext_node(const expression_node<T>* n)
{
switch (n->type())
{
case expression_node<T>::e_vovov : return true;
case expression_node<T>::e_vovoc : return true;
case expression_node<T>::e_vocov : return true;
case expression_node<T>::e_covov : return true;
case expression_node<T>::e_covoc : return true;
default : return false;
}
}
template <typename T, typename T0, typename T1, typename T2, typename T3>
class T0oT1oT2oT3_sf4 : public T0oT1oT2_base_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::qfunc_t qfunc_t;
typedef T value_type;
typedef T0oT1oT2oT3_sf4<T,T0,T1,T2,T3> node_type;
T0oT1oT2oT3_sf4(T0 p0, T1 p1, T2 p2, T3 p3, const qfunc_t p4)
: t0_(p0),
t1_(p1),
t2_(p2),
t3_(p3),
f_ (p4)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1oT2oT3<T,T0,T1,T2,T3>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return f_(t0_, t1_, t2_, t3_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline T2 t2() const
{
return t2_;
}
inline T3 t3() const
{
return t3_;
}
qfunc_t f() const
{
return f_;
}
std::string type_id() const
{
return id();
}
static inline std::string id()
{
return "sf4";
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator, T0 p0, T1 p1, T2 p2, T3 p3, qfunc_t p4)
{
return allocator
.template allocate_type<node_type,T0,T1,T2,T3,qfunc_t>
(p0, p1, p2, p3, p4);
}
private:
T0oT1oT2oT3_sf4(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
T3 t3_;
const qfunc_t f_;
};
template <typename T, typename T0, typename T1, typename T2, typename T3, typename SF4Operation>
class T0oT1oT2oT3_sf4ext : public T0oT1oT2oT3_base_node<T>
{
public:
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::tfunc_t tfunc_t;
typedef T value_type;
typedef T0oT1oT2oT3_sf4ext<T,T0,T1,T2,T3,SF4Operation> node_type;
T0oT1oT2oT3_sf4ext(T0 p0, T1 p1, T2 p2, T3 p3)
: t0_(p0),
t1_(p1),
t2_(p2),
t3_(p3)
{}
inline typename expression_node<T>::node_type type() const
{
static const typename expression_node<T>::node_type result = nodetype_T0oT1oT2oT3<T,T0,T1,T2,T3>::result;
return result;
}
inline operator_type operation() const
{
return e_default;
}
inline T value() const
{
return SF4Operation::process(t0_, t1_, t2_, t3_);
}
inline T0 t0() const
{
return t0_;
}
inline T1 t1() const
{
return t1_;
}
inline T2 t2() const
{
return t2_;
}
inline T3 t3() const
{
return t2_;
}
std::string type_id() const
{
return id();
}
static inline std::string id()
{
return SF4Operation::id();
}
template <typename Allocator>
static inline expression_node<T>* allocate(Allocator& allocator, T0 p0, T1 p1, T2 p2, T3 p3)
{
return allocator
.template allocate_type<node_type,T0,T1,T2,T3>
(p0, p1, p2, p3);
}
private:
T0oT1oT2oT3_sf4ext(node_type&) {}
node_type& operator=(node_type&) { return (*this); }
T0 t0_;
T1 t1_;
T2 t2_;
T3 t3_;
};
template <typename T>
inline bool is_sf4ext_node(const expression_node<T>* n)
{
switch (n->type())
{
case expression_node<T>::e_vovovov : return true;
case expression_node<T>::e_vovovoc : return true;
case expression_node<T>::e_vovocov : return true;
case expression_node<T>::e_vocovov : return true;
case expression_node<T>::e_covovov : return true;
case expression_node<T>::e_covocov : return true;
case expression_node<T>::e_vocovoc : return true;
case expression_node<T>::e_covovoc : return true;
case expression_node<T>::e_vococov : return true;
default : return false;
}
}
template <typename T, typename T0, typename T1>
struct T0oT1_define
{
typedef details::T0oT1<T,T0,T1> type0;
};
template <typename T, typename T0, typename T1, typename T2>
struct T0oT1oT2_define
{
typedef details::T0oT1oT2<T,T0,T1,T2,typename T0oT1oT2process<T>::mode0> type0;
typedef details::T0oT1oT2<T,T0,T1,T2,typename T0oT1oT2process<T>::mode1> type1;
typedef details::T0oT1oT2_sf3<T,T0,T1,T2> sf3_type;
typedef details::sf3ext_type_node<T,T0,T1,T2> sf3_type_node;
};
template <typename T, typename T0, typename T1, typename T2, typename T3>
struct T0oT1oT2oT3_define
{
typedef details::T0oT1oT2oT3<T,T0,T1,T2,T3,typename T0oT1oT20T3process<T>::mode0> type0;
typedef details::T0oT1oT2oT3<T,T0,T1,T2,T3,typename T0oT1oT20T3process<T>::mode1> type1;
typedef details::T0oT1oT2oT3<T,T0,T1,T2,T3,typename T0oT1oT20T3process<T>::mode2> type2;
typedef details::T0oT1oT2oT3<T,T0,T1,T2,T3,typename T0oT1oT20T3process<T>::mode3> type3;
typedef details::T0oT1oT2oT3<T,T0,T1,T2,T3,typename T0oT1oT20T3process<T>::mode4> type4;
typedef details::T0oT1oT2oT3_sf4<T,T0,T1,T2,T3> sf4_type;
};
template <typename T, typename Operation>
class vov_node : public vov_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// variable op variable node
explicit vov_node(const T& var0, const T& var1)
: v0_(var0),
v1_(var1)
{}
inline T value() const
{
return Operation::process(v0_,v1_);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T& v0() const
{
return v0_;
}
inline const T& v1() const
{
return v1_;
}
protected:
const T& v0_;
const T& v1_;
private:
vov_node(vov_node<T,Operation>&);
vov_node<T,Operation>& operator=(vov_node<T,Operation>&);
};
template <typename T, typename Operation>
class cov_node : public cov_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// constant op variable node
explicit cov_node(const T& const_var, const T& var)
: c_(const_var),
v_(var)
{}
inline T value() const
{
return Operation::process(c_,v_);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T c() const
{
return c_;
}
inline const T& v() const
{
return v_;
}
protected:
const T c_;
const T& v_;
private:
cov_node(const cov_node<T,Operation>&);
cov_node<T,Operation>& operator=(const cov_node<T,Operation>&);
};
template <typename T, typename Operation>
class voc_node : public voc_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// variable op constant node
explicit voc_node(const T& var, const T& const_var)
: v_(var),
c_(const_var)
{}
inline T value() const
{
return Operation::process(v_,c_);
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T c() const
{
return c_;
}
inline const T& v() const
{
return v_;
}
protected:
const T& v_;
const T c_;
private:
voc_node(const voc_node<T,Operation>&);
voc_node<T,Operation>& operator=(const voc_node<T,Operation>&);
};
template <typename T, typename Operation>
class vob_node : public vob_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
typedef Operation operation_t;
// variable op constant node
explicit vob_node(const T& var, const expression_ptr brnch)
: v_(var)
{
init_branches<1>(branch_,brnch);
}
~vob_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return Operation::process(v_,branch_[0].first->value());
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T& v() const
{
return v_;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_[0].first;
}
private:
vob_node(const vob_node<T,Operation>&);
vob_node<T,Operation>& operator=(const vob_node<T,Operation>&);
const T& v_;
branch_t branch_[1];
};
template <typename T, typename Operation>
class bov_node : public bov_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
typedef Operation operation_t;
// variable op constant node
explicit bov_node(const expression_ptr brnch, const T& var)
: v_(var)
{
init_branches<1>(branch_,brnch);
}
~bov_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return Operation::process(branch_[0].first->value(),v_);
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T& v() const
{
return v_;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_[0].first;
}
private:
bov_node(const bov_node<T,Operation>&);
bov_node<T,Operation>& operator=(const bov_node<T,Operation>&);
const T& v_;
branch_t branch_[1];
};
template <typename T, typename Operation>
class cob_node : public cob_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
typedef Operation operation_t;
// variable op constant node
explicit cob_node(const T const_var, const expression_ptr brnch)
: c_(const_var)
{
init_branches<1>(branch_,brnch);
}
~cob_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return Operation::process(c_,branch_[0].first->value());
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T c() const
{
return c_;
}
inline void set_c(const T new_c)
{
(*const_cast<T*>(&c_)) = new_c;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_[0].first;
}
inline expression_node<T>* move_branch(const std::size_t&)
{
branch_[0].second = false;
return branch_[0].first;
}
private:
cob_node(const cob_node<T,Operation>&);
cob_node<T,Operation>& operator=(const cob_node<T,Operation>&);
const T c_;
branch_t branch_[1];
};
template <typename T, typename Operation>
class boc_node : public boc_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr,bool> branch_t;
typedef Operation operation_t;
// variable op constant node
explicit boc_node(const expression_ptr brnch, const T const_var)
: c_(const_var)
{
init_branches<1>(branch_,brnch);
}
~boc_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return Operation::process(branch_[0].first->value(),c_);
}
inline operator_type operation() const
{
return Operation::operation();
}
inline const T c() const
{
return c_;
}
inline void set_c(const T new_c)
{
(*const_cast<T*>(&c_)) = new_c;
}
inline expression_node<T>* branch(const std::size_t&) const
{
return branch_[0].first;
}
inline expression_node<T>* move_branch(const std::size_t&)
{
branch_[0].second = false;
return branch_[0].first;
}
private:
boc_node(const boc_node<T,Operation>&);
boc_node<T,Operation>& operator=(const boc_node<T,Operation>&);
const T c_;
branch_t branch_[1];
};
#ifndef exprtk_disable_string_capabilities
template <typename T, typename SType0, typename SType1, typename Operation>
class sos_node : public sos_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// string op string node
explicit sos_node(SType0 p0, SType1 p1)
: s0_(p0),
s1_(p1)
{}
inline T value() const
{
return Operation::process(s0_,s1_);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline std::string& s0()
{
return s0_;
}
inline std::string& s1()
{
return s1_;
}
protected:
SType0 s0_;
SType1 s1_;
private:
sos_node(sos_node<T,SType0,SType1,Operation>&);
sos_node<T,SType0,SType1,Operation>& operator=(sos_node<T,SType0,SType1,Operation>&);
};
template <typename T, typename SType0, typename SType1, typename RangePack, typename Operation>
class str_xrox_node : public sos_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// string-range op string node
explicit str_xrox_node(SType0 p0, SType1 p1, RangePack rp0)
: s0_ (p0 ),
s1_ (p1 ),
rp0_(rp0)
{}
~str_xrox_node()
{
rp0_.free();
}
inline T value() const
{
std::size_t r0 = 0;
std::size_t r1 = 0;
if (rp0_(r0, r1, s0_.size()))
return Operation::process(s0_.substr(r0, (r1 - r0) + 1), s1_);
else
return T(0);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline std::string& s0()
{
return s0_;
}
inline std::string& s1()
{
return s1_;
}
protected:
SType0 s0_;
SType1 s1_;
RangePack rp0_;
private:
str_xrox_node(str_xrox_node<T,SType0,SType1,RangePack,Operation>&);
str_xrox_node<T,SType0,SType1,RangePack,Operation>& operator=(str_xrox_node<T,SType0,SType1,RangePack,Operation>&);
};
template <typename T, typename SType0, typename SType1, typename RangePack, typename Operation>
class str_xoxr_node : public sos_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// string op string range node
explicit str_xoxr_node(SType0 p0, SType1 p1, RangePack rp1)
: s0_ (p0 ),
s1_ (p1 ),
rp1_(rp1)
{}
~str_xoxr_node()
{
rp1_.free();
}
inline T value() const
{
std::size_t r0 = 0;
std::size_t r1 = 0;
if (rp1_(r0, r1, s1_.size()))
return Operation::process(s0_, s1_.substr(r0, (r1 - r0) + 1));
else
return T(0);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline std::string& s0()
{
return s0_;
}
inline std::string& s1()
{
return s1_;
}
protected:
SType0 s0_;
SType1 s1_;
RangePack rp1_;
private:
str_xoxr_node(str_xoxr_node<T,SType0,SType1,RangePack,Operation>&);
str_xoxr_node<T,SType0,SType1,RangePack,Operation>& operator=(str_xoxr_node<T,SType0,SType1,RangePack,Operation>&);
};
template <typename T, typename SType0, typename SType1, typename RangePack, typename Operation>
class str_xroxr_node : public sos_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// string-range op string-range node
explicit str_xroxr_node(SType0 p0, SType1 p1, RangePack rp0, RangePack rp1)
: s0_ (p0 ),
s1_ (p1 ),
rp0_(rp0),
rp1_(rp1)
{}
~str_xroxr_node()
{
rp0_.free();
rp1_.free();
}
inline T value() const
{
std::size_t r0_0 = 0;
std::size_t r0_1 = 0;
std::size_t r1_0 = 0;
std::size_t r1_1 = 0;
if (
rp0_(r0_0, r1_0, s0_.size()) &&
rp1_(r0_1, r1_1, s1_.size())
)
{
return Operation::process(
s0_.substr(r0_0, (r1_0 - r0_0) + 1),
s1_.substr(r0_1, (r1_1 - r0_1) + 1)
);
}
else
return T(0);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline std::string& s0()
{
return s0_;
}
inline std::string& s1()
{
return s1_;
}
protected:
SType0 s0_;
SType1 s1_;
RangePack rp0_;
RangePack rp1_;
private:
str_xroxr_node(str_xroxr_node<T,SType0,SType1,RangePack,Operation>&);
str_xroxr_node<T,SType0,SType1,RangePack,Operation>& operator=(str_xroxr_node<T,SType0,SType1,RangePack,Operation>&);
};
template <typename T, typename Operation>
class str_sogens_node : public binary_node<T>
{
public:
typedef expression_node <T>* expression_ptr;
typedef string_base_node<T>* str_base_ptr;
typedef range_pack <T> range_t;
typedef range_t* range_ptr;
typedef range_interface<T> irange_t;
typedef irange_t* irange_ptr;
str_sogens_node(const operator_type& opr,
expression_ptr branch0,
expression_ptr branch1)
: binary_node<T>(opr, branch0, branch1),
str0_base_ptr_ (0),
str1_base_ptr_ (0),
str0_range_ptr_(0),
str1_range_ptr_(0)
{
if (is_generally_string_node(binary_node<T>::branch_[0].first))
{
str0_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[0].first);
if (0 == str0_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[0].first);
if (0 == range_ptr)
return;
str0_range_ptr_ = &(range_ptr->range_ref());
}
if (is_generally_string_node(binary_node<T>::branch_[1].first))
{
str1_base_ptr_ = dynamic_cast<str_base_ptr>(binary_node<T>::branch_[1].first);
if (0 == str1_base_ptr_)
return;
irange_ptr range_ptr = dynamic_cast<irange_ptr>(binary_node<T>::branch_[1].first);
if (0 == range_ptr)
return;
str1_range_ptr_ = &(range_ptr->range_ref());
}
}
inline T value() const
{
if (
str0_base_ptr_ &&
str1_base_ptr_ &&
str0_range_ptr_ &&
str1_range_ptr_
)
{
binary_node<T>::branch_[0].first->value();
binary_node<T>::branch_[1].first->value();
std::size_t str0_r0 = 0;
std::size_t str0_r1 = 0;
std::size_t str1_r0 = 0;
std::size_t str1_r1 = 0;
range_t& range0 = (*str0_range_ptr_);
range_t& range1 = (*str1_range_ptr_);
if (
range0(str0_r0, str0_r1, str0_base_ptr_->size()) &&
range1(str1_r0, str1_r1, str1_base_ptr_->size())
)
{
return Operation::process(
str0_base_ptr_->str().substr(str0_r0,(str0_r1 - str0_r0) + 1),
str1_base_ptr_->str().substr(str1_r0,(str1_r1 - str1_r0) + 1)
);
}
}
return std::numeric_limits<T>::quiet_NaN();
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
private:
str_sogens_node(str_sogens_node<T,Operation>&);
str_sogens_node<T,Operation>& operator=(str_sogens_node<T,Operation>&);
str_base_ptr str0_base_ptr_;
str_base_ptr str1_base_ptr_;
range_ptr str0_range_ptr_;
range_ptr str1_range_ptr_;
};
template <typename T, typename SType0, typename SType1, typename SType2, typename Operation>
class sosos_node : public sosos_base_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef Operation operation_t;
// variable op variable node
explicit sosos_node(SType0 p0, SType1 p1, SType2 p2)
: s0_(p0),
s1_(p1),
s2_(p2)
{}
inline T value() const
{
return Operation::process(s0_,s1_,s2_);
}
inline typename expression_node<T>::node_type type() const
{
return Operation::type();
}
inline operator_type operation() const
{
return Operation::operation();
}
inline std::string& s0()
{
return s0_;
}
inline std::string& s1()
{
return s1_;
}
inline std::string& s2()
{
return s2_;
}
protected:
SType0 s0_;
SType1 s1_;
SType2 s2_;
private:
sosos_node(sosos_node<T,SType0,SType1,SType2,Operation>&);
sosos_node<T,SType0,SType1,SType2,Operation>& operator=(sosos_node<T,SType0,SType1,SType2,Operation>&);
};
#endif
template <typename T, typename PowOp>
class ipow_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef PowOp operation_t;
explicit ipow_node(const T& v)
: v_(v)
{}
inline T value() const
{
return PowOp::result(v_);
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_ipow;
}
private:
ipow_node(const ipow_node<T,PowOp>&);
ipow_node<T,PowOp>& operator=(const ipow_node<T,PowOp>&);
const T& v_;
};
template <typename T, typename PowOp>
class bipow_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr, bool> branch_t;
typedef PowOp operation_t;
explicit bipow_node(expression_ptr brnch)
{
init_branches<1>(branch_, brnch);
}
~bipow_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return PowOp::result(branch_[0].first->value());
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_ipow;
}
private:
bipow_node(const bipow_node<T,PowOp>&);
bipow_node<T,PowOp>& operator=(const bipow_node<T,PowOp>&);
branch_t branch_[1];
};
template <typename T, typename PowOp>
class ipowinv_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef PowOp operation_t;
explicit ipowinv_node(const T& v)
: v_(v)
{}
inline T value() const
{
return (T(1) / PowOp::result(v_));
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_ipowinv;
}
private:
ipowinv_node(const ipowinv_node<T,PowOp>&);
ipowinv_node<T,PowOp>& operator=(const ipowinv_node<T,PowOp>&);
const T& v_;
};
template <typename T, typename PowOp>
class bipowninv_node : public expression_node<T>
{
public:
typedef expression_node<T>* expression_ptr;
typedef std::pair<expression_ptr, bool> branch_t;
typedef PowOp operation_t;
explicit bipowninv_node(expression_ptr brnch)
{
init_branches<1>(branch_, brnch);
}
~bipowninv_node()
{
cleanup_branches::execute<T,1>(branch_);
}
inline T value() const
{
return (T(1) / PowOp::result(branch_[0].first->value()));
}
inline typename expression_node<T>::node_type type() const
{
return expression_node<T>::e_ipowinv;
}
private:
bipowninv_node(const bipowninv_node<T,PowOp>&);
bipowninv_node<T,PowOp>& operator=(const bipowninv_node<T,PowOp>&);
branch_t branch_[1];
};
template <typename T>
inline bool is_vov_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const vov_base_node<T>*>(node));
}
template <typename T>
inline bool is_cov_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const cov_base_node<T>*>(node));
}
template <typename T>
inline bool is_voc_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const voc_base_node<T>*>(node));
}
template <typename T>
inline bool is_cob_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const cob_base_node<T>*>(node));
}
template <typename T>
inline bool is_boc_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const boc_base_node<T>*>(node));
}
template <typename T>
inline bool is_t0ot1ot2_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const T0oT1oT2_base_node<T>*>(node));
}
template <typename T>
inline bool is_t0ot1ot2ot3_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const T0oT1oT2oT3_base_node<T>*>(node));
}
template <typename T>
inline bool is_uv_node(const expression_node<T>* node)
{
return (0 != dynamic_cast<const uv_base_node<T>*>(node));
}
template <typename T>
inline bool is_string_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_stringvar == node->type());
}
template <typename T>
inline bool is_string_range_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_stringvarrng == node->type());
}
template <typename T>
inline bool is_const_string_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_stringconst == node->type());
}
template <typename T>
inline bool is_const_string_range_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_cstringvarrng == node->type());
}
template <typename T>
inline bool is_string_assignment_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strass == node->type());
}
template <typename T>
inline bool is_string_concat_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strconcat == node->type());
}
template <typename T>
inline bool is_string_function_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strfunction == node->type());
}
template <typename T>
inline bool is_string_condition_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strcondition == node->type());
}
template <typename T>
inline bool is_string_ccondition_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strccondition == node->type());
}
template <typename T>
inline bool is_string_vararg_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_stringvararg == node->type());
}
template <typename T>
inline bool is_genricstring_range_node(const expression_node<T>* node)
{
return node && (expression_node<T>::e_strgenrange == node->type());
}
template <typename T>
inline bool is_generally_string_node(const expression_node<T>* node)
{
if (node)
{
switch (node->type())
{
case expression_node<T>::e_stringvar :
case expression_node<T>::e_stringconst :
case expression_node<T>::e_stringvarrng :
case expression_node<T>::e_cstringvarrng :
case expression_node<T>::e_strgenrange :
case expression_node<T>::e_strass :
case expression_node<T>::e_strconcat :
case expression_node<T>::e_strfunction :
case expression_node<T>::e_strcondition :
case expression_node<T>::e_strccondition :
case expression_node<T>::e_stringvararg : return true;
default : return false;
}
}
return false;
}
class node_allocator
{
public:
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[1])
{
return allocate<ResultNode>(operation,branch[0]);
}
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[2])
{
return allocate<ResultNode>(operation,branch[0],branch[1]);
}
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[3])
{
return allocate<ResultNode>(operation,branch[0],branch[1],branch[2]);
}
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[4])
{
return allocate<ResultNode>(operation,branch[0],branch[1],branch[2],branch[3]);
}
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[5])
{
return allocate<ResultNode>(operation,branch[0],branch[1],branch[2],branch[3],branch[4]);
}
template <typename ResultNode, typename OpType, typename ExprNode>
inline expression_node<typename ResultNode::value_type>* allocate(OpType& operation, ExprNode (&branch)[6])
{
return allocate<ResultNode>(operation,branch[0],branch[1],branch[2],branch[3],branch[4],branch[5]);
}
template <typename node_type>
inline expression_node<typename node_type::value_type>* allocate() const
{
return (new node_type());
}
template <typename node_type,
typename Type,
typename Allocator,
template <typename,typename> class Sequence>
inline expression_node<typename node_type::value_type>* allocate(const Sequence<Type,Allocator>& seq) const
{
return (new node_type(seq));
}
template <typename node_type, typename T1>
inline expression_node<typename node_type::value_type>* allocate(T1& t1) const
{
return (new node_type(t1));
}
template <typename node_type, typename T1>
inline expression_node<typename node_type::value_type>* allocate_c(const T1& t1) const
{
return (new node_type(t1));
}
template <typename node_type,
typename T1, typename T2>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2) const
{
return (new node_type(t1,t2));
}
template <typename node_type,
typename T1, typename T2>
inline expression_node<typename node_type::value_type>* allocate_cr(const T1& t1, T2& t2) const
{
return (new node_type(t1,t2));
}
template <typename node_type,
typename T1, typename T2>
inline expression_node<typename node_type::value_type>* allocate_rc(T1& t1, const T2& t2) const
{
return (new node_type(t1,t2));
}
template <typename node_type,
typename T1, typename T2>
inline expression_node<typename node_type::value_type>* allocate_rr(T1& t1, T2& t2) const
{
return (new node_type(t1,t2));
}
template <typename node_type,
typename T1, typename T2>
inline expression_node<typename node_type::value_type>* allocate_tt(T1 t1, T2 t2) const
{
return (new node_type(t1,t2));
}
template <typename node_type,
typename T1, typename T2, typename T3>
inline expression_node<typename node_type::value_type>* allocate_ttt(T1 t1, T2 t2, T3 t3) const
{
return (new node_type(t1,t2,t3));
}
template <typename node_type,
typename T1, typename T2, typename T3, typename T4>
inline expression_node<typename node_type::value_type>* allocate_tttt(T1 t1, T2 t2, T3 t3, T4 t4) const
{
return (new node_type(t1,t2,t3,t4));
}
template <typename node_type,
typename T1, typename T2, typename T3>
inline expression_node<typename node_type::value_type>* allocate_rrr(T1& t1, T2& t2, T3& t3) const
{
return (new node_type(t1,t2,t3));
}
template <typename node_type,
typename T1, typename T2, typename T3, typename T4>
inline expression_node<typename node_type::value_type>* allocate_rrrr(T1& t1, T2& t2, T3& t3, T4& t4) const
{
return (new node_type(t1,t2,t3,t4));
}
template <typename node_type,
typename T1, typename T2, typename T3, typename T4, typename T5>
inline expression_node<typename node_type::value_type>* allocate_rrrrr(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5) const
{
return (new node_type(t1,t2,t3,t4,t5));
}
template <typename node_type,
typename T1, typename T2, typename T3>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3) const
{
return (new node_type(t1,t2,t3));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4) const
{
return (new node_type(t1,t2,t3,t4));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4, typename T5>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5) const
{
return (new node_type(t1,t2,t3,t4,t5));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4, typename T5, typename T6>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5, const T6& t6) const
{
return (new node_type(t1,t2,t3,t4,t5,t6));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6, typename T7>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5, const T6& t6,
const T7& t7) const
{
return (new node_type(t1,t2,t3,t4,t5,t6,t7));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6,
typename T7, typename T8>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5, const T6& t6,
const T7& t7, const T8& t8) const
{
return (new node_type(t1,t2,t3,t4,t5,t6,t7,t8));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6,
typename T7, typename T8, typename T9>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5, const T6& t6,
const T7& t7, const T8& t8,
const T9& t9) const
{
return (new node_type(t1,t2,t3,t4,t5,t6,t7,t8,t9));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6,
typename T7, typename T8,
typename T9, typename T10>
inline expression_node<typename node_type::value_type>* allocate(const T1& t1, const T2& t2,
const T3& t3, const T4& t4,
const T5& t5, const T6& t6,
const T7& t7, const T8& t8,
const T9& t9, const T10& t10) const
{
return (new node_type(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10));
}
template <typename node_type,
typename T1, typename T2, typename T3>
inline expression_node<typename node_type::value_type>* allocate_type(T1 t1, T2 t2, T3 t3) const
{
return (new node_type(t1,t2,t3));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4>
inline expression_node<typename node_type::value_type>* allocate_type(T1 t1, T2 t2,
T3 t3, T4 t4) const
{
return (new node_type(t1,t2,t3,t4));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5>
inline expression_node<typename node_type::value_type>* allocate_type(T1 t1, T2 t2,
T3 t3, T4 t4,
T5 t5) const
{
return (new node_type(t1,t2,t3,t4,t5));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6>
inline expression_node<typename node_type::value_type>* allocate_type(T1 t1, T2 t2,
T3 t3, T4 t4,
T5 t5, T6 t6) const
{
return (new node_type(t1,t2,t3,t4,t5,t6));
}
template <typename node_type,
typename T1, typename T2,
typename T3, typename T4,
typename T5, typename T6, typename T7>
inline expression_node<typename node_type::value_type>* allocate_type(T1 t1, T2 t2,
T3 t3, T4 t4,
T5 t5, T6 t6,
T7 t7) const
{
return (new node_type(t1,t2,t3,t4,t5,t6,t7));
}
template <typename T>
void inline free(expression_node<T>*& e) const
{
delete e;
e = 0;
}
};
inline void load_operations_map(std::multimap<std::string,details::base_operation_t,details::ilesscompare>& m)
{
#define register_op(Symbol,Type,Args) \
m.insert(std::make_pair(std::string(Symbol),details::base_operation_t(Type,Args))); \
register_op( "abs", e_abs , 1)
register_op( "acos", e_acos , 1)
register_op( "acosh", e_acosh , 1)
register_op( "asin", e_asin , 1)
register_op( "asinh", e_asinh , 1)
register_op( "atan", e_atan , 1)
register_op( "atanh", e_atanh , 1)
register_op( "ceil", e_ceil , 1)
register_op( "cos", e_cos , 1)
register_op( "cosh", e_cosh , 1)
register_op( "exp", e_exp , 1)
register_op( "expm1", e_expm1 , 1)
register_op( "floor", e_floor , 1)
register_op( "log", e_log , 1)
register_op( "log10", e_log10 , 1)
register_op( "log2", e_log2 , 1)
register_op( "log1p", e_log1p , 1)
register_op( "round", e_round , 1)
register_op( "sin", e_sin , 1)
register_op( "sinc", e_sinc , 1)
register_op( "sinh", e_sinh , 1)
register_op( "sec", e_sec , 1)
register_op( "csc", e_csc , 1)
register_op( "sqrt", e_sqrt , 1)
register_op( "tan", e_tan , 1)
register_op( "tanh", e_tanh , 1)
register_op( "cot", e_cot , 1)
register_op( "rad2deg", e_r2d , 1)
register_op( "deg2rad", e_d2r , 1)
register_op( "deg2grad", e_d2g , 1)
register_op( "grad2deg", e_g2d , 1)
register_op( "sgn", e_sgn , 1)
register_op( "not", e_notl , 1)
register_op( "erf", e_erf , 1)
register_op( "erfc", e_erfc , 1)
register_op( "ncdf", e_ncdf , 1)
register_op( "frac", e_frac , 1)
register_op( "trunc", e_trunc , 1)
register_op( "atan2", e_atan2 , 2)
register_op( "mod", e_mod , 2)
register_op( "logn", e_logn , 2)
register_op( "pow", e_pow , 2)
register_op( "root", e_root , 2)
register_op( "roundn", e_roundn , 2)
register_op( "equal", e_equal , 2)
register_op("not_equal", e_nequal , 2)
register_op( "hypot", e_hypot , 2)
register_op( "shr", e_shr , 2)
register_op( "shl", e_shl , 2)
register_op( "clamp", e_clamp , 3)
register_op( "iclamp", e_iclamp , 3)
register_op( "inrange", e_inrange , 3)
#undef register_op
}
} // namespace details
class function_traits
{
public:
function_traits()
: allow_zero_parameters_(false),
has_side_effects_(true),
min_num_args_(0),
max_num_args_(std::numeric_limits<std::size_t>::max())
{}
inline bool& allow_zero_parameters()
{
return allow_zero_parameters_;
}
inline bool& has_side_effects()
{
return has_side_effects_;
}
std::size_t& min_num_args()
{
return min_num_args_;
}
std::size_t& max_num_args()
{
return max_num_args_;
}
private:
bool allow_zero_parameters_;
bool has_side_effects_;
std::size_t min_num_args_;
std::size_t max_num_args_;
};
template <typename FunctionType>
void enable_zero_parameters(FunctionType& func)
{
func.allow_zero_parameters() = true;
if (0 != func.min_num_args())
{
func.min_num_args() = 0;
}
}
template <typename FunctionType>
void disable_zero_parameters(FunctionType& func)
{
func.allow_zero_parameters() = false;
}
template <typename FunctionType>
void enable_has_side_effects(FunctionType& func)
{
func.has_side_effects() = true;
}
template <typename FunctionType>
void disable_has_side_effects(FunctionType& func)
{
func.has_side_effects() = false;
}
template <typename FunctionType>
void set_min_num_args(FunctionType& func, const std::size_t& num_args)
{
func.min_num_args() = num_args;
if ((0 != func.min_num_args()) && func.allow_zero_parameters())
func.allow_zero_parameters() = false;
}
template <typename FunctionType>
void set_max_num_args(FunctionType& func, const std::size_t& num_args)
{
func.max_num_args() = num_args;
}
template <typename T>
class ifunction : public function_traits
{
public:
explicit ifunction(const std::size_t& pc)
: param_count(pc)
{}
virtual ~ifunction()
{}
#define empty_method_body \
{ \
return std::numeric_limits<T>::quiet_NaN(); \
} \
inline virtual T operator() ()
empty_method_body
inline virtual T operator() (const T&)
empty_method_body
inline virtual T operator() (const T&,const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
inline virtual T operator() (const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&,
const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&, const T&)
empty_method_body
#undef empty_method_body
std::size_t param_count;
};
template <typename T>
class ivararg_function : public function_traits
{
public:
virtual ~ivararg_function()
{}
inline virtual T operator() (const std::vector<T>&)
{
exprtk_debug(("ivararg_function::operator() - Operator has not been overridden.\n"));
return std::numeric_limits<T>::quiet_NaN();
}
};
template <typename T>
class igeneric_function : public function_traits
{
public:
enum return_type
{
e_rtrn_scalar = 0,
e_rtrn_string = 1
};
typedef T type;
typedef type_store<T> generic_type;
typedef typename generic_type::parameter_list parameter_list_t;
igeneric_function(const std::string& param_seq = "", const return_type rtr_type = e_rtrn_scalar)
: parameter_sequence(param_seq),
rtrn_type(rtr_type)
{}
virtual ~igeneric_function()
{}
#define igeneric_function_empty_body(N) \
{ \
exprtk_debug(("igeneric_function::operator() - Operator has not been overridden. ["#N"]\n")); \
return std::numeric_limits<T>::quiet_NaN(); \
} \
// f(i_0,i_1,....,i_N) --> Scalar
inline virtual T operator() (parameter_list_t)
igeneric_function_empty_body(1)
// f(i_0,i_1,....,i_N) --> String
inline virtual T operator() (std::string&, parameter_list_t)
igeneric_function_empty_body(2)
// f(psi,i_0,i_1,....,i_N) --> Scalar
inline virtual T operator() (const std::size_t&, parameter_list_t)
igeneric_function_empty_body(3)
// f(psi,i_0,i_1,....,i_N) --> String
inline virtual T operator() (const std::size_t&, std::string&, parameter_list_t)
igeneric_function_empty_body(4)
std::string parameter_sequence;
return_type rtrn_type;
};
template <typename T> class parser;
template <typename T> class expression_helper;
template <typename T>
class symbol_table
{
public:
typedef T (*ff00_functor)();
typedef T (*ff01_functor)(T);
typedef T (*ff02_functor)(T,T);
typedef T (*ff03_functor)(T,T,T);
typedef T (*ff04_functor)(T,T,T,T);
typedef T (*ff05_functor)(T,T,T,T,T);
typedef T (*ff06_functor)(T,T,T,T,T,T);
typedef T (*ff07_functor)(T,T,T,T,T,T,T);
typedef T (*ff08_functor)(T,T,T,T,T,T,T,T);
typedef T (*ff09_functor)(T,T,T,T,T,T,T,T,T);
typedef T (*ff10_functor)(T,T,T,T,T,T,T,T,T,T);
typedef T (*ff11_functor)(T,T,T,T,T,T,T,T,T,T,T);
typedef T (*ff12_functor)(T,T,T,T,T,T,T,T,T,T,T,T);
typedef T (*ff13_functor)(T,T,T,T,T,T,T,T,T,T,T,T,T);
typedef T (*ff14_functor)(T,T,T,T,T,T,T,T,T,T,T,T,T,T);
typedef T (*ff15_functor)(T,T,T,T,T,T,T,T,T,T,T,T,T,T,T);
protected:
struct freefunc00 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc00(ff00_functor ff) : exprtk::ifunction<T>(0), f(ff) {}
inline T operator() ()
{ return f(); }
ff00_functor f;
};
struct freefunc01 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc01(ff01_functor ff) : exprtk::ifunction<T>(1), f(ff) {}
inline T operator() (const T& v0)
{ return f(v0); }
ff01_functor f;
};
struct freefunc02 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc02(ff02_functor ff) : exprtk::ifunction<T>(2), f(ff) {}
inline T operator() (const T& v0, const T& v1)
{ return f(v0, v1); }
ff02_functor f;
};
struct freefunc03 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc03(ff03_functor ff) : exprtk::ifunction<T>(3), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2)
{ return f(v0, v1, v2); }
ff03_functor f;
};
struct freefunc04 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc04(ff04_functor ff) : exprtk::ifunction<T>(4), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3)
{ return f(v0, v1, v2, v3); }
ff04_functor f;
};
struct freefunc05 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc05(ff05_functor ff) : exprtk::ifunction<T>(5), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4)
{ return f(v0, v1, v2, v3, v4); }
ff05_functor f;
};
struct freefunc06 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc06(ff06_functor ff) : exprtk::ifunction<T>(6), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4, const T& v5)
{ return f(v0, v1, v2, v3, v4, v5); }
ff06_functor f;
};
struct freefunc07 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc07(ff07_functor ff) : exprtk::ifunction<T>(7), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4,
const T& v5, const T& v6)
{ return f(v0, v1, v2, v3, v4, v5, v6); }
ff07_functor f;
};
struct freefunc08 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc08(ff08_functor ff) : exprtk::ifunction<T>(8), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4,
const T& v5, const T& v6, const T& v7)
{ return f(v0, v1, v2, v3, v4, v5, v6, v7); }
ff08_functor f;
};
struct freefunc09 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc09(ff09_functor ff) : exprtk::ifunction<T>(9), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4,
const T& v5, const T& v6, const T& v7, const T& v8)
{ return f(v0, v1, v2, v3, v4, v5, v6, v7, v8); }
ff09_functor f;
};
struct freefunc10 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc10(ff10_functor ff) : exprtk::ifunction<T>(10), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4,
const T& v5, const T& v6, const T& v7, const T& v8, const T& v9)
{ return f(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9); }
ff10_functor f;
};
struct freefunc11 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc11(ff11_functor ff) : exprtk::ifunction<T>(11), f(ff) {}
inline T operator() (const T& v0, const T& v1, const T& v2, const T& v3, const T& v4,
const T& v5, const T& v6, const T& v7, const T& v8, const T& v9, const T& v10)
{ return f(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10); }
ff11_functor f;
};
struct freefunc12 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc12(ff12_functor ff) : exprtk::ifunction<T>(12), f(ff) {}
inline T operator() (const T& v00, const T& v01, const T& v02, const T& v03, const T& v04,
const T& v05, const T& v06, const T& v07, const T& v08, const T& v09,
const T& v10, const T& v11)
{ return f(v00, v01, v02, v03, v04, v05, v06, v07, v08, v09, v10, v11); }
ff12_functor f;
};
struct freefunc13 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc13(ff13_functor ff) : exprtk::ifunction<T>(13), f(ff) {}
inline T operator() (const T& v00, const T& v01, const T& v02, const T& v03, const T& v04,
const T& v05, const T& v06, const T& v07, const T& v08, const T& v09,
const T& v10, const T& v11, const T& v12)
{ return f(v00, v01, v02, v03, v04, v05, v06, v07, v08, v09, v10, v11, v12); }
ff13_functor f;
};
struct freefunc14 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc14(ff14_functor ff) : exprtk::ifunction<T>(14), f(ff) {}
inline T operator() (const T& v00, const T& v01, const T& v02, const T& v03, const T& v04,
const T& v05, const T& v06, const T& v07, const T& v08, const T& v09,
const T& v10, const T& v11, const T& v12, const T& v13)
{ return f(v00, v01, v02, v03, v04, v05, v06, v07, v08, v09, v10, v11, v12, v13); }
ff14_functor f;
};
struct freefunc15 : public exprtk::ifunction<T>
{
using exprtk::ifunction<T>::operator();
freefunc15(ff15_functor ff) : exprtk::ifunction<T>(15), f(ff) {}
inline T operator() (const T& v00, const T& v01, const T& v02, const T& v03, const T& v04,
const T& v05, const T& v06, const T& v07, const T& v08, const T& v09,
const T& v10, const T& v11, const T& v12, const T& v13, const T& v14)
{ return f(v00, v01, v02, v03, v04, v05, v06, v07, v08, v09, v10, v11, v12, v13, v14); }
ff15_functor f;
};
template <typename Type, typename RawType>
struct type_store
{
typedef details::expression_node<T>* expression_ptr;
typedef typename details::variable_node<T> variable_node_t;
typedef ifunction<T> ifunction_t;
typedef ivararg_function<T> ivararg_function_t;
typedef igeneric_function<T> igeneric_function_t;
typedef details::vector_holder<T> vector_t;
#ifndef exprtk_disable_string_capabilities
typedef typename details::stringvar_node<T> stringvar_node_t;
#endif
typedef Type type_t;
typedef type_t* type_ptr;
typedef std::pair<bool,type_ptr> type_pair_t;
typedef std::map<std::string,type_pair_t,details::ilesscompare> type_map_t;
typedef typename type_map_t::iterator tm_itr_t;
typedef typename type_map_t::const_iterator tm_const_itr_t;
enum { lut_size = 256 };
type_map_t map;
std::size_t size;
type_store()
: size(0)
{}
inline bool symbol_exists(const std::string& symbol_name) const
{
if (symbol_name.empty())
return false;
else if (map.end() != map.find(symbol_name))
return true;
else
return false;
}
template <typename PtrType>
inline std::string entity_name(const PtrType& ptr) const
{
if (map.empty())
return std::string();
tm_const_itr_t itr = map.begin();
while (map.end() != itr)
{
if (itr->second.second == ptr)
{
return itr->first;
}
else
++itr;
}
return std::string();
}
inline bool is_constant(const std::string& symbol_name) const
{
if (symbol_name.empty())
return false;
else
{
const tm_const_itr_t itr = map.find(symbol_name);
if (map.end() == itr)
return false;
else
return (*itr).second.first;
}
}
template <typename Tie, typename RType>
inline bool add_impl(const std::string& symbol_name, RType t, const bool is_const)
{
if (symbol_name.size() > 1)
{
for (std::size_t i = 0; i < details::reserved_symbols_size; ++i)
{
if (details::imatch(symbol_name, details::reserved_symbols[i]))
{
return false;
}
}
}
const tm_itr_t itr = map.find(symbol_name);
if (map.end() == itr)
{
map[symbol_name] = Tie::make(t,is_const);
++size;
}
return true;
}
struct tie_array
{
static inline std::pair<bool,vector_t*> make(std::pair<T*,std::size_t> v, const bool is_const = false)
{
return std::make_pair(is_const, new vector_t(v.first, v.second));
}
};
struct tie_stdvec
{
template <typename Allocator>
static inline std::pair<bool,vector_t*> make(std::vector<T,Allocator>& v, const bool is_const = false)
{
return std::make_pair(is_const, new vector_t(v));
}
};
struct tie_vecview
{
static inline std::pair<bool,vector_t*> make(exprtk::vector_view<T>& v, const bool is_const = false)
{
return std::make_pair(is_const, new vector_t(v));
}
};
struct tie_stddeq
{
template <typename Allocator>
static inline std::pair<bool,vector_t*> make(std::deque<T,Allocator>& v, const bool is_const = false)
{
return std::make_pair(is_const, new vector_t(v));
}
};
template <std::size_t v_size>
inline bool add(const std::string& symbol_name, T (&v)[v_size], const bool is_const = false)
{
return add_impl<tie_array,std::pair<T*,std::size_t> >
(symbol_name, std::make_pair(v,v_size), is_const);
}
inline bool add(const std::string& symbol_name, T* v, const std::size_t v_size, const bool is_const = false)
{
return add_impl<tie_array,std::pair<T*,std::size_t> >
(symbol_name, std::make_pair(v,v_size), is_const);
}
template <typename Allocator>
inline bool add(const std::string& symbol_name, std::vector<T,Allocator>& v, const bool is_const = false)
{
return add_impl<tie_stdvec,std::vector<T,Allocator>&>
(symbol_name, v, is_const);
}
inline bool add(const std::string& symbol_name, exprtk::vector_view<T>& v, const bool is_const = false)
{
return add_impl<tie_vecview,exprtk::vector_view<T>&>
(symbol_name, v, is_const);
}
template <typename Allocator>
inline bool add(const std::string& symbol_name, std::deque<T,Allocator>& v, const bool is_const = false)
{
return add_impl<tie_stddeq,std::deque<T,Allocator>&>
(symbol_name, v, is_const);
}
inline bool add(const std::string& symbol_name, RawType& t, const bool is_const = false)
{
struct tie
{
static inline std::pair<bool,variable_node_t*> make(T& t,const bool is_const = false)
{
return std::make_pair(is_const, new variable_node_t(t));
}
#ifndef exprtk_disable_string_capabilities
static inline std::pair<bool,stringvar_node_t*> make(std::string& t,const bool is_const = false)
{
return std::make_pair(is_const, new stringvar_node_t(t));
}
#endif
static inline std::pair<bool,function_t*> make(function_t& t, const bool is_constant = false)
{
return std::make_pair(is_constant,&t);
}
static inline std::pair<bool,vararg_function_t*> make(vararg_function_t& t, const bool is_const = false)
{
return std::make_pair(is_const,&t);
}
static inline std::pair<bool,generic_function_t*> make(generic_function_t& t, const bool is_constant = false)
{
return std::make_pair(is_constant,&t);
}
};
const tm_itr_t itr = map.find(symbol_name);
if (map.end() == itr)
{
map[symbol_name] = tie::make(t,is_const);
++size;
}
return true;
}
inline type_ptr get(const std::string& symbol_name) const
{
const tm_const_itr_t itr = map.find(symbol_name);
if (map.end() == itr)
return reinterpret_cast<type_ptr>(0);
else
return itr->second.second;
}
template <typename TType, typename TRawType, typename PtrType>
struct ptr_match
{
static inline bool test(const PtrType, const void*)
{
return false;
}
};
template <typename TType, typename TRawType>
struct ptr_match<TType,TRawType,variable_node_t*>
{
static inline bool test(const variable_node_t* p, const void* ptr)
{
exprtk_debug(("ptr_match::test() - %p <--> %p\n",(void*)(&(p->ref())),ptr));
return (&(p->ref()) == ptr);
}
};
inline type_ptr get_from_varptr(const void* ptr) const
{
tm_const_itr_t itr = map.begin();
while (map.end() != itr)
{
type_ptr ret_ptr = itr->second.second;
if (ptr_match<Type,RawType,type_ptr>::test(ret_ptr,ptr))
{
return ret_ptr;
}
++itr;
}
return type_ptr(0);
}
inline bool remove(const std::string& symbol_name, const bool delete_node = true)
{
const tm_itr_t itr = map.find(symbol_name);
if (map.end() != itr)
{
struct deleter
{
static inline void process(std::pair<bool,variable_node_t*>& n) { delete n.second; }
static inline void process(std::pair<bool,vector_t*>& n) { delete n.second; }
#ifndef exprtk_disable_string_capabilities
static inline void process(std::pair<bool,stringvar_node_t*>& n) { delete n.second; }
#endif
static inline void process(std::pair<bool,function_t*>&) { }
};
if (delete_node)
{
deleter::process((*itr).second);
}
map.erase(itr);
--size;
return true;
}
else
return false;
}
inline RawType& type_ref(const std::string& symbol_name)
{
struct init_type
{
static inline double set(double) { return (0.0); }
static inline double set(long double) { return (0.0); }
static inline float set(float) { return (0.0f); }
static inline std::string set(std::string) { return std::string(""); }
};
static RawType null_type = init_type::set(RawType());
const tm_const_itr_t itr = map.find(symbol_name);
if (map.end() == itr)
return null_type;
else
return itr->second.second->ref();
}
inline void clear(const bool delete_node = true)
{
struct deleter
{
static inline void process(std::pair<bool,variable_node_t*>& n) { delete n.second; }
static inline void process(std::pair<bool,vector_t*>& n) { delete n.second; }
static inline void process(std::pair<bool,function_t*>&) { }
#ifndef exprtk_disable_string_capabilities
static inline void process(std::pair<bool,stringvar_node_t*>& n) { delete n.second; }
#endif
};
if (!map.empty())
{
if (delete_node)
{
tm_itr_t itr = map.begin();
tm_itr_t end = map.end ();
while (end != itr)
{
deleter::process((*itr).second);
++itr;
}
}
map.clear();
}
size = 0;
}
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_list(Sequence<std::pair<std::string,RawType>,Allocator>& list) const
{
std::size_t count = 0;
if (!map.empty())
{
tm_const_itr_t itr = map.begin();
tm_const_itr_t end = map.end ();
while (end != itr)
{
list.push_back(std::make_pair((*itr).first,itr->second.second->ref()));
++itr;
++count;
}
}
return count;
}
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_list(Sequence<std::string,Allocator>& vlist) const
{
std::size_t count = 0;
if (!map.empty())
{
tm_const_itr_t itr = map.begin();
tm_const_itr_t end = map.end ();
while (end != itr)
{
vlist.push_back((*itr).first);
++itr;
++count;
}
}
return count;
}
};
typedef details::expression_node<T>* expression_ptr;
typedef typename details::variable_node<T> variable_t;
typedef typename details::vector_holder<T> vector_holder_t;
typedef variable_t* variable_ptr;
#ifndef exprtk_disable_string_capabilities
typedef typename details::stringvar_node<T> stringvar_t;
typedef stringvar_t* stringvar_ptr;
#endif
typedef ifunction <T> function_t;
typedef ivararg_function <T> vararg_function_t;
typedef igeneric_function<T> generic_function_t;
typedef function_t* function_ptr;
typedef vararg_function_t* vararg_function_ptr;
typedef generic_function_t* generic_function_ptr;
static const std::size_t lut_size = 256;
// Symbol Table Holder
struct control_block
{
struct st_data
{
type_store<typename details::variable_node<T>,T> variable_store;
#ifndef exprtk_disable_string_capabilities
type_store<typename details::stringvar_node<T>,std::string> stringvar_store;
#endif
type_store<ifunction<T>,ifunction<T> > function_store;
type_store<ivararg_function <T>,ivararg_function <T> > vararg_function_store;
type_store<igeneric_function<T>,igeneric_function<T> > generic_function_store;
type_store<igeneric_function<T>,igeneric_function<T> > string_function_store;
type_store<vector_holder_t,vector_holder_t> vector_store;
st_data()
{
for (std::size_t i = 0; i < details::reserved_words_size; ++i)
{
reserved_symbol_table_.insert(details::reserved_words[i]);
}
for (std::size_t i = 0; i < details::reserved_symbols_size; ++i)
{
reserved_symbol_table_.insert(details::reserved_symbols[i]);
}
}
~st_data()
{
for (std::size_t i = 0; i < free_function_list_.size(); ++i)
{
delete free_function_list_[i];
}
}
inline bool is_reserved_symbol(const std::string& symbol) const
{
return (reserved_symbol_table_.end() != reserved_symbol_table_.find(symbol));
}
static inline st_data* create()
{
return (new st_data);
}
static inline void destroy(st_data*& sd)
{
delete sd;
sd = reinterpret_cast<st_data*>(0);
}
std::list<T> local_symbol_list_;
std::list<std::string> local_stringvar_list_;
std::set<std::string> reserved_symbol_table_;
std::vector<ifunction<T>*> free_function_list_;
};
control_block()
: ref_count(1),
data_(st_data::create())
{}
control_block(st_data* data)
: ref_count(1),
data_(data)
{}
~control_block()
{
if (data_ && (0 == ref_count))
{
st_data::destroy(data_);
}
}
static inline control_block* create()
{
return (new control_block);
}
template <typename SymTab>
static inline void destroy(control_block*& cntrl_blck, SymTab* sym_tab)
{
if (cntrl_blck)
{
if (
(0 != cntrl_blck->ref_count) &&
(0 == --cntrl_blck->ref_count)
)
{
if (sym_tab)
sym_tab->clear();
delete cntrl_blck;
}
cntrl_blck = 0;
}
}
std::size_t ref_count;
st_data* data_;
};
public:
symbol_table()
: control_block_(control_block::create())
{
clear();
}
~symbol_table()
{
control_block::destroy(control_block_,this);
}
symbol_table(const symbol_table<T>& st)
{
control_block_ = st.control_block_;
control_block_->ref_count++;
}
inline symbol_table<T>& operator=(const symbol_table<T>& st)
{
if (this != &st)
{
control_block::destroy(control_block_,reinterpret_cast<symbol_table<T>*>(0));
control_block_ = st.control_block_;
control_block_->ref_count++;
}
return (*this);
}
inline bool operator==(const symbol_table<T>& st)
{
return (this == &st) || (control_block_ == st.control_block_);
}
inline void clear_variables(const bool delete_node = true)
{
local_data().variable_store.clear(delete_node);
}
inline void clear_functions()
{
local_data().function_store.clear();
}
inline void clear_strings()
{
#ifndef exprtk_disable_string_capabilities
local_data().stringvar_store.clear();
#endif
}
inline void clear_vectors()
{
local_data().vector_store.clear();
}
inline void clear_local_constants()
{
local_data().local_symbol_list_.clear();
}
inline void clear()
{
if (!valid()) return;
clear_variables ();
clear_functions ();
clear_strings ();
clear_vectors ();
clear_local_constants();
}
inline std::size_t variable_count() const
{
if (valid())
return local_data().variable_store.size;
else
return 0;
}
#ifndef exprtk_disable_string_capabilities
inline std::size_t stringvar_count() const
{
if (valid())
return local_data().stringvar_store.size;
else
return 0;
}
#endif
inline std::size_t function_count() const
{
if (valid())
return local_data().function_store.size;
else
return 0;
}
inline std::size_t vector_count() const
{
if (valid())
return local_data().vector_store.size;
else
return 0;
}
inline variable_ptr get_variable(const std::string& variable_name) const
{
if (!valid())
return reinterpret_cast<variable_ptr>(0);
else if (!valid_symbol(variable_name))
return reinterpret_cast<variable_ptr>(0);
else
return local_data().variable_store.get(variable_name);
}
inline variable_ptr get_variable(const T& var_ref) const
{
if (!valid())
return reinterpret_cast<variable_ptr>(0);
else
return local_data().variable_store.get_from_varptr(
reinterpret_cast<const void*>(&var_ref));
}
#ifndef exprtk_disable_string_capabilities
inline stringvar_ptr get_stringvar(const std::string& string_name) const
{
if (!valid())
return reinterpret_cast<stringvar_ptr>(0);
else if (!valid_symbol(string_name))
return reinterpret_cast<stringvar_ptr>(0);
else
return local_data().stringvar_store.get(string_name);
}
#endif
inline function_ptr get_function(const std::string& function_name) const
{
if (!valid())
return reinterpret_cast<function_ptr>(0);
else if (!valid_symbol(function_name))
return reinterpret_cast<function_ptr>(0);
else
return local_data().function_store.get(function_name);
}
inline vararg_function_ptr get_vararg_function(const std::string& vararg_function_name) const
{
if (!valid())
return reinterpret_cast<vararg_function_ptr>(0);
else if (!valid_symbol(vararg_function_name))
return reinterpret_cast<vararg_function_ptr>(0);
else
return local_data().vararg_function_store.get(vararg_function_name);
}
inline generic_function_ptr get_generic_function(const std::string& function_name) const
{
if (!valid())
return reinterpret_cast<generic_function_ptr>(0);
else if (!valid_symbol(function_name))
return reinterpret_cast<generic_function_ptr>(0);
else
return local_data().generic_function_store.get(function_name);
}
inline generic_function_ptr get_string_function(const std::string& function_name) const
{
if (!valid())
return reinterpret_cast<generic_function_ptr>(0);
else if (!valid_symbol(function_name))
return reinterpret_cast<generic_function_ptr>(0);
else
return local_data().string_function_store.get(function_name);
}
typedef vector_holder_t* vector_holder_ptr;
inline vector_holder_ptr get_vector(const std::string& vector_name) const
{
if (!valid())
return reinterpret_cast<vector_holder_ptr>(0);
else if (!valid_symbol(vector_name))
return reinterpret_cast<vector_holder_ptr>(0);
else
return local_data().vector_store.get(vector_name);
}
inline T& variable_ref(const std::string& symbol_name)
{
static T null_var = T(0);
if (!valid())
return null_var;
else if (!valid_symbol(symbol_name))
return null_var;
else
return local_data().variable_store.type_ref(symbol_name);
}
#ifndef exprtk_disable_string_capabilities
inline std::string& stringvar_ref(const std::string& symbol_name)
{
static std::string null_stringvar;
if (!valid())
return null_stringvar;
else if (!valid_symbol(symbol_name))
return null_stringvar;
else
return local_data().stringvar_store.type_ref(symbol_name);
}
#endif
inline bool is_constant_node(const std::string& symbol_name) const
{
if (!valid())
return false;
else if (!valid_symbol(symbol_name))
return false;
else
return local_data().variable_store.is_constant(symbol_name);
}
#ifndef exprtk_disable_string_capabilities
inline bool is_constant_string(const std::string& symbol_name) const
{
if (!valid())
return false;
else if (!valid_symbol(symbol_name))
return false;
else if (!local_data().stringvar_store.symbol_exists(symbol_name))
return false;
else
return local_data().stringvar_store.is_constant(symbol_name);
}
#endif
inline bool create_variable(const std::string& variable_name, const T& value = T(0))
{
if (!valid())
return false;
else if (!valid_symbol(variable_name))
return false;
else if (symbol_exists(variable_name))
return false;
local_data().local_symbol_list_.push_back(value);
T& t = local_data().local_symbol_list_.back();
return add_variable(variable_name,t);
}
#ifndef exprtk_disable_string_capabilities
inline bool create_stringvar(const std::string& stringvar_name, const std::string& value = std::string(""))
{
if (!valid())
return false;
else if (!valid_symbol(stringvar_name))
return false;
else if (symbol_exists(stringvar_name))
return false;
local_data().local_stringvar_list_.push_back(value);
std::string& s = local_data().local_stringvar_list_.back();
return add_stringvar(stringvar_name,s);
}
#endif
inline bool add_variable(const std::string& variable_name, T& t, const bool is_constant = false)
{
if (!valid())
return false;
else if (!valid_symbol(variable_name))
return false;
else if (symbol_exists(variable_name))
return false;
else
return local_data().variable_store.add(variable_name,t,is_constant);
}
inline bool add_constant(const std::string& constant_name, const T& value)
{
if (!valid())
return false;
else if (!valid_symbol(constant_name))
return false;
else if (symbol_exists(constant_name))
return false;
local_data().local_symbol_list_.push_back(value);
T& t = local_data().local_symbol_list_.back();
return add_variable(constant_name,t,true);
}
#ifndef exprtk_disable_string_capabilities
inline bool add_stringvar(const std::string& stringvar_name, std::string& s, const bool is_constant = false)
{
if (!valid())
return false;
else if (!valid_symbol(stringvar_name))
return false;
else if (symbol_exists(stringvar_name))
return false;
else
return local_data().stringvar_store.add(stringvar_name,s,is_constant);
}
#endif
inline bool add_function(const std::string& function_name, function_t& function)
{
if (!valid())
return false;
else if (!valid_symbol(function_name))
return false;
else if (symbol_exists(function_name))
return false;
else
return local_data().function_store.add(function_name,function);
}
inline bool add_function(const std::string& vararg_function_name, vararg_function_t& vararg_function)
{
if (!valid())
return false;
else if (!valid_symbol(vararg_function_name))
return false;
else if (symbol_exists(vararg_function_name))
return false;
else
return local_data().vararg_function_store.add(vararg_function_name,vararg_function);
}
inline bool add_function(const std::string& function_name, generic_function_t& function)
{
if (!valid())
return false;
else if (!valid_symbol(function_name))
return false;
else if (symbol_exists(function_name))
return false;
else if (std::string::npos != function.parameter_sequence.find_first_not_of("STVZ*?|"))
return false;
else if (generic_function_t::e_rtrn_scalar == function.rtrn_type)
return local_data().generic_function_store.add(function_name,function);
else if (generic_function_t::e_rtrn_string == function.rtrn_type)
return local_data().string_function_store.add(function_name, function);
else
return false;
}
#define exprtk_define_freefunction(NN) \
inline bool add_function(const std::string& function_name, ff##NN##_functor function) \
{ \
if (!valid()) \
return false; \
else if (!valid_symbol(function_name)) \
return false; \
else if (symbol_exists(function_name)) \
return false; \
\
exprtk::ifunction<T>* ifunc = new freefunc##NN(function); \
\
local_data().free_function_list_.push_back(ifunc); \
\
return add_function(function_name,(*local_data().free_function_list_.back())); \
} \
exprtk_define_freefunction(00) exprtk_define_freefunction(01)
exprtk_define_freefunction(02) exprtk_define_freefunction(03)
exprtk_define_freefunction(04) exprtk_define_freefunction(05)
exprtk_define_freefunction(06) exprtk_define_freefunction(07)
exprtk_define_freefunction(08) exprtk_define_freefunction(09)
exprtk_define_freefunction(10) exprtk_define_freefunction(11)
exprtk_define_freefunction(12) exprtk_define_freefunction(13)
exprtk_define_freefunction(14) exprtk_define_freefunction(15)
#undef exprtk_define_freefunction
inline bool add_reserved_function(const std::string& function_name, function_t& function)
{
if (!valid())
return false;
else if (!valid_symbol(function_name,false))
return false;
else if (symbol_exists(function_name,false))
return false;
else
return local_data().function_store.add(function_name,function);
}
inline bool add_reserved_function(const std::string& vararg_function_name, vararg_function_t& vararg_function)
{
if (!valid())
return false;
else if (!valid_symbol(vararg_function_name,false))
return false;
else if (symbol_exists(vararg_function_name,false))
return false;
else
return local_data().vararg_function_store.add(vararg_function_name,vararg_function);
}
inline bool add_reserved_function(const std::string& function_name, generic_function_t& function)
{
if (!valid())
return false;
else if (!valid_symbol(function_name,false))
return false;
else if (symbol_exists(function_name,false))
return false;
else if (std::string::npos != function.parameter_sequence.find_first_not_of("STV*?|"))
return false;
else if (generic_function_t::e_rtrn_scalar == function.rtrn_type)
return local_data().generic_function_store.add(function_name,function);
else if (generic_function_t::e_rtrn_string == function.rtrn_type)
return local_data().string_function_store.add(function_name, function);
else
return false;
}
template <std::size_t N>
inline bool add_vector(const std::string& vector_name, T (&v)[N])
{
if (!valid())
return false;
else if (!valid_symbol(vector_name))
return false;
else if (symbol_exists(vector_name))
return false;
else
return local_data().vector_store.add(vector_name,v);
}
inline bool add_vector(const std::string& vector_name, T* v, const std::size_t& v_size)
{
if (!valid())
return false;
else if (!valid_symbol(vector_name))
return false;
else if (symbol_exists(vector_name))
return false;
else if (0 == v_size)
return false;
else
return local_data().vector_store.add(vector_name,v,v_size);
}
template <typename Allocator>
inline bool add_vector(const std::string& vector_name, std::vector<T,Allocator>& v)
{
if (!valid())
return false;
else if (!valid_symbol(vector_name))
return false;
else if (symbol_exists(vector_name))
return false;
else if (0 == v.size())
return false;
else
return local_data().vector_store.add(vector_name,v);
}
inline bool add_vector(const std::string& vector_name, exprtk::vector_view<T>& v)
{
if (!valid())
return false;
else if (!valid_symbol(vector_name))
return false;
else if (symbol_exists(vector_name))
return false;
else if (0 == v.size())
return false;
else
return local_data().vector_store.add(vector_name,v);
}
inline bool remove_variable(const std::string& variable_name, const bool delete_node = true)
{
if (!valid())
return false;
else
return local_data().variable_store.remove(variable_name, delete_node);
}
#ifndef exprtk_disable_string_capabilities
inline bool remove_stringvar(const std::string& string_name)
{
if (!valid())
return false;
else
return local_data().stringvar_store.remove(string_name);
}
#endif
inline bool remove_function(const std::string& function_name)
{
if (!valid())
return false;
else
return local_data().function_store.remove(function_name);
}
inline bool remove_vararg_function(const std::string& vararg_function_name)
{
if (!valid())
return false;
else
return local_data().vararg_function_store.remove(vararg_function_name);
}
inline bool remove_vector(const std::string& vector_name)
{
if (!valid())
return false;
else
return local_data().vector_store.remove(vector_name);
}
inline bool add_constants()
{
return add_pi () &&
add_epsilon () &&
add_infinity();
}
inline bool add_pi()
{
static const T local_pi = T(details::numeric::constant::pi);
return add_constant("pi",local_pi);
}
inline bool add_epsilon()
{
static const T local_epsilon = details::numeric::details::epsilon_type<T>::value();
return add_constant("epsilon",local_epsilon);
}
inline bool add_infinity()
{
static const T local_infinity = std::numeric_limits<T>::infinity();
return add_constant("inf",local_infinity);
}
template <typename Package>
inline bool add_package(Package& package)
{
return package.register_package(*this);
}
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_variable_list(Sequence<std::pair<std::string,T>,Allocator>& vlist) const
{
if (!valid())
return 0;
else
return local_data().variable_store.get_list(vlist);
}
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_variable_list(Sequence<std::string,Allocator>& vlist) const
{
if (!valid())
return 0;
else
return local_data().variable_store.get_list(vlist);
}
#ifndef exprtk_disable_string_capabilities
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_stringvar_list(Sequence<std::pair<std::string,std::string>,Allocator>& svlist) const
{
if (!valid())
return 0;
else
return local_data().stringvar_store.get_list(svlist);
}
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_stringvar_list(Sequence<std::string,Allocator>& svlist) const
{
if (!valid())
return 0;
else
return local_data().stringvar_store.get_list(svlist);
}
#endif
template <typename Allocator,
template <typename, typename> class Sequence>
inline std::size_t get_vector_list(Sequence<std::string,Allocator>& vlist) const
{
if (!valid())
return 0;
else
return local_data().vector_store.get_list(vlist);
}
inline bool symbol_exists(const std::string& symbol_name, const bool check_reserved_symb = true) const
{
/*
Function will return true if symbol_name exists as either a
reserved symbol, variable, stringvar or function name in any
of the type stores.
*/
if (!valid())
return false;
else if (local_data().variable_store.symbol_exists(symbol_name))
return true;
#ifndef exprtk_disable_string_capabilities
else if (local_data().stringvar_store.symbol_exists(symbol_name))
return true;
#endif
else if (local_data().function_store.symbol_exists(symbol_name))
return true;
else if (check_reserved_symb && local_data().is_reserved_symbol(symbol_name))
return true;
else
return false;
}
inline bool is_variable(const std::string& variable_name) const
{
if (!valid())
return false;
else
return local_data().variable_store.symbol_exists(variable_name);
}
#ifndef exprtk_disable_string_capabilities
inline bool is_stringvar(const std::string& stringvar_name) const
{
if (!valid())
return false;
else
return local_data().stringvar_store.symbol_exists(stringvar_name);
}
inline bool is_conststr_stringvar(const std::string& symbol_name) const
{
if (!valid())
return false;
else if (!valid_symbol(symbol_name))
return false;
else if (!local_data().stringvar_store.symbol_exists(symbol_name))
return false;
return (
local_data().stringvar_store.symbol_exists(symbol_name) ||
local_data().stringvar_store.is_constant (symbol_name)
);
}
#endif
inline bool is_function(const std::string& function_name) const
{
if (!valid())
return false;
else
return local_data().function_store.symbol_exists(function_name);
}
inline bool is_vararg_function(const std::string& vararg_function_name) const
{
if (!valid())
return false;
else
return local_data().vararg_function_store.symbol_exists(vararg_function_name);
}
inline bool is_vector(const std::string& vector_name) const
{
if (!valid())
return false;
else
return local_data().vector_store.symbol_exists(vector_name);
}
inline std::string get_variable_name(const expression_ptr& ptr) const
{
return local_data().variable_store.entity_name(ptr);
}
inline std::string get_vector_name(const vector_holder_ptr& ptr) const
{
return local_data().vector_store.entity_name(ptr);
}
#ifndef exprtk_disable_string_capabilities
inline std::string get_stringvar_name(const expression_ptr& ptr) const
{
return local_data().stringvar_store.entity_name(ptr);
}
inline std::string get_conststr_stringvar_name(const expression_ptr& ptr) const
{
return local_data().stringvar_store.entity_name(ptr);
}
#endif
inline bool valid() const
{
// Symbol table sanity check.
return control_block_ && control_block_->data_;
}
inline void load_from(const symbol_table<T>& st)
{
{
std::vector<std::string> name_list;
st.local_data().function_store.get_list(name_list);
if (!name_list.empty())
{
for (std::size_t i = 0; i < name_list.size(); ++i)
{
exprtk::ifunction<T>& ifunc = *st.get_function(name_list[i]);
add_function(name_list[i],ifunc);
}
}
}
{
std::vector<std::string> name_list;
st.local_data().vararg_function_store.get_list(name_list);
if (!name_list.empty())
{
for (std::size_t i = 0; i < name_list.size(); ++i)
{
exprtk::ivararg_function<T>& ivafunc = *st.get_vararg_function(name_list[i]);
add_function(name_list[i],ivafunc);
}
}
}
{
std::vector<std::string> name_list;
st.local_data().generic_function_store.get_list(name_list);
if (!name_list.empty())
{
for (std::size_t i = 0; i < name_list.size(); ++i)
{
exprtk::igeneric_function<T>& ifunc = *st.get_generic_function(name_list[i]);
add_function(name_list[i],ifunc);
}
}
}
{
std::vector<std::string> name_list;
st.local_data().string_function_store.get_list(name_list);
if (!name_list.empty())
{
for (std::size_t i = 0; i < name_list.size(); ++i)
{
exprtk::igeneric_function<T>& ifunc = *st.get_string_function(name_list[i]);
add_function(name_list[i],ifunc);
}
}
}
}
private:
inline bool valid_symbol(const std::string& symbol, const bool check_reserved_symb = true) const
{
if (symbol.empty())
return false;
else if (!details::is_letter(symbol[0]))
return false;
else if (symbol.size() > 1)
{
for (std::size_t i = 1; i < symbol.size(); ++i)
{
if (
!details::is_letter_or_digit(symbol[i]) &&
('_' != symbol[i])
)
{
if (('.' == symbol[i]) && (i < (symbol.size() - 1)))
continue;
else
return false;
}
}
}
return (check_reserved_symb) ? (!local_data().is_reserved_symbol(symbol)) : true;
}
inline bool valid_function(const std::string& symbol) const
{
if (symbol.empty())
return false;
else if (!details::is_letter(symbol[0]))
return false;
else if (symbol.size() > 1)
{
for (std::size_t i = 1; i < symbol.size(); ++i)
{
if (
!details::is_letter_or_digit(symbol[i]) &&
('_' != symbol[i])
)
{
if (('.' == symbol[i]) && (i < (symbol.size() - 1)))
continue;
else
return false;
}
}
}
return true;
}
typedef typename control_block::st_data local_data_t;
inline local_data_t& local_data()
{
return *(control_block_->data_);
}
inline const local_data_t& local_data() const
{
return *(control_block_->data_);
}
control_block* control_block_;
friend class parser<T>;
};
template <typename T>
class function_compositor;
template <typename T>
class expression
{
private:
typedef details::expression_node<T>* expression_ptr;
typedef details::vector_holder<T>* vector_holder_ptr;
typedef std::vector<symbol_table<T> > symtab_list_t;
struct control_block
{
enum data_type
{
e_unknown ,
e_expr ,
e_vecholder,
e_data ,
e_vecdata ,
e_string
};
struct data_pack
{
data_pack()
: pointer(0),
type(e_unknown),
size(0)
{}
data_pack(void* ptr, data_type dt, std::size_t sz = 0)
: pointer(ptr),
type(dt),
size(sz)
{}
void* pointer;
data_type type;
std::size_t size;
};
typedef std::vector<data_pack> local_data_list_t;
typedef results_context<T> results_context_t;
control_block()
: ref_count(0),
expr (0),
results (0),
retinv_null(false),
return_invoked(&retinv_null)
{}
control_block(expression_ptr e)
: ref_count(1),
expr (e),
results (0),
retinv_null(false),
return_invoked(&retinv_null)
{}
~control_block()
{
if (expr && details::branch_deletable(expr))
{
destroy_node(expr);
}
if (!local_data_list.empty())
{
for (std::size_t i = 0; i < local_data_list.size(); ++i)
{
switch (local_data_list[i].type)
{
case e_expr : delete reinterpret_cast<expression_ptr>(local_data_list[i].pointer);
break;
case e_vecholder : delete reinterpret_cast<vector_holder_ptr>(local_data_list[i].pointer);
break;
case e_data : delete (T*)(local_data_list[i].pointer);
break;
case e_vecdata : delete [] (T*)(local_data_list[i].pointer);
break;
case e_string : delete (std::string*)(local_data_list[i].pointer);
break;
default : break;
}
}
}
if (results)
{
delete results;
}
}
static inline control_block* create(expression_ptr e)
{
return new control_block(e);
}
static inline void destroy(control_block*& cntrl_blck)
{
if (cntrl_blck)
{
if (
(0 != cntrl_blck->ref_count) &&
(0 == --cntrl_blck->ref_count)
)
{
delete cntrl_blck;
}
cntrl_blck = 0;
}
}
std::size_t ref_count;
expression_ptr expr;
local_data_list_t local_data_list;
results_context_t* results;
bool retinv_null;
bool* return_invoked;
friend class function_compositor<T>;
};
public:
expression()
: control_block_(0)
{
set_expression(new details::null_node<T>());
}
expression(const expression<T>& e)
: control_block_ (e.control_block_ ),
symbol_table_list_(e.symbol_table_list_)
{
control_block_->ref_count++;
}
inline expression<T>& operator=(const expression<T>& e)
{
if (this != &e)
{
if (control_block_)
{
if (
(0 != control_block_->ref_count) &&
(0 == --control_block_->ref_count)
)
{
delete control_block_;
}
control_block_ = 0;
}
control_block_ = e.control_block_;
control_block_->ref_count++;
symbol_table_list_ = e.symbol_table_list_;
}
return *this;
}
inline bool operator==(const expression<T>& e)
{
return (this == &e);
}
inline bool operator!() const
{
return (
(0 == control_block_ ) ||
(0 == control_block_->expr)
);
}
inline expression<T>& release()
{
control_block::destroy(control_block_);
return (*this);
}
~expression()
{
control_block::destroy(control_block_);
}
inline T value() const
{
return control_block_->expr->value();
}
inline T operator() () const
{
return value();
}
inline operator T() const
{
return value();
}
inline operator bool() const
{
return details::is_true(value());
}
inline void register_symbol_table(symbol_table<T>& st)
{
symbol_table_list_.push_back(st);
}
inline const symbol_table<T>& get_symbol_table(const std::size_t& index = 0) const
{
return symbol_table_list_[index];
}
inline symbol_table<T>& get_symbol_table(const std::size_t& index = 0)
{
return symbol_table_list_[index];
}
typedef results_context<T> results_context_t;
inline const results_context_t& results() const
{
if (control_block_->results)
return (*control_block_->results);
else
{
static const results_context_t null_results;
return null_results;
}
}
inline bool return_invoked() const
{
return (*control_block_->return_invoked);
}
private:
inline symtab_list_t get_symbol_table_list() const
{
return symbol_table_list_;
}
inline void set_expression(const expression_ptr expr)
{
if (expr)
{
if (control_block_)
{
if (0 == --control_block_->ref_count)
{
delete control_block_;
}
}
control_block_ = control_block::create(expr);
}
}
inline void register_local_var(expression_ptr expr)
{
if (expr)
{
if (control_block_)
{
control_block_->
local_data_list.push_back(
typename expression<T>::control_block::
data_pack(reinterpret_cast<void*>(expr),
control_block::e_expr));
}
}
}
inline void register_local_var(vector_holder_ptr vec_holder)
{
if (vec_holder)
{
if (control_block_)
{
control_block_->
local_data_list.push_back(
typename expression<T>::control_block::
data_pack(reinterpret_cast<void*>(vec_holder),
control_block::e_vecholder));
}
}
}
inline void register_local_data(void* data, const std::size_t& size = 0, const std::size_t data_mode = 0)
{
if (data)
{
if (control_block_)
{
typename control_block::data_type dt = control_block::e_data;
switch (data_mode)
{
case 0 : dt = control_block::e_data; break;
case 1 : dt = control_block::e_vecdata; break;
case 2 : dt = control_block::e_string; break;
}
control_block_->
local_data_list.push_back(
typename expression<T>::control_block::
data_pack(reinterpret_cast<void*>(data),dt,size));
}
}
}
inline const typename control_block::local_data_list_t& local_data_list()
{
if (control_block_)
{
return control_block_->local_data_list;
}
else
{
static typename control_block::local_data_list_t null_local_data_list;
return null_local_data_list;
}
}
inline void register_return_results(results_context_t* rc)
{
if (control_block_ && rc)
{
control_block_->results = rc;
}
}
inline void set_retinvk(bool* retinvk_ptr)
{
if (control_block_)
{
control_block_->return_invoked = retinvk_ptr;
}
}
control_block* control_block_;
symtab_list_t symbol_table_list_;
friend class parser<T>;
friend class expression_helper<T>;
friend class function_compositor<T>;
};
template <typename T>
class expression_helper
{
public:
static inline bool is_constant(const expression<T>& expr)
{
return details::is_constant_node(expr.control_block_->expr);
}
static inline bool is_variable(const expression<T>& expr)
{
return details::is_variable_node(expr.control_block_->expr);
}
static inline bool is_unary(const expression<T>& expr)
{
return details::is_unary_node(expr.control_block_->expr);
}
static inline bool is_binary(const expression<T>& expr)
{
return details::is_binary_node(expr.control_block_->expr);
}
static inline bool is_function(const expression<T>& expr)
{
return details::is_function(expr.control_block_->expr);
}
static inline bool is_null(const expression<T>& expr)
{
return details::is_null_node(expr.control_block_->expr);
}
};
template <typename T>
inline bool is_valid(const expression<T>& expr)
{
return !expression_helper<T>::is_null(expr);
}
namespace parser_error
{
enum error_mode
{
e_unknown = 0,
e_syntax = 1,
e_token = 2,
e_numeric = 4,
e_symtab = 5,
e_lexer = 6,
e_helper = 7
};
struct type
{
type()
: mode(parser_error::e_unknown),
line_no (0),
column_no(0)
{}
lexer::token token;
error_mode mode;
std::string diagnostic;
std::string src_location;
std::string error_line;
std::size_t line_no;
std::size_t column_no;
};
inline type make_error(error_mode mode,
const std::string& diagnostic = "",
const std::string& src_location = "")
{
type t;
t.mode = mode;
t.token.type = lexer::token::e_error;
t.diagnostic = diagnostic;
t.src_location = src_location;
exprtk_debug(("%s\n",diagnostic .c_str()));
return t;
}
inline type make_error(error_mode mode,
const lexer::token& tk,
const std::string& diagnostic = "",
const std::string& src_location = "")
{
type t;
t.mode = mode;
t.token = tk;
t.diagnostic = diagnostic;
t.src_location = src_location;
exprtk_debug(("%s\n",diagnostic .c_str()));
return t;
}
inline std::string to_str(error_mode mode)
{
switch (mode)
{
case e_unknown : return std::string("Unknown Error");
case e_syntax : return std::string("Syntax Error" );
case e_token : return std::string("Token Error" );
case e_numeric : return std::string("Numeric Error");
case e_symtab : return std::string("Symbol Error" );
case e_lexer : return std::string("Lexer Error" );
case e_helper : return std::string("Helper Error" );
default : return std::string("Unknown Error");
}
}
inline bool update_error(type& error, const std::string& expression)
{
if (
expression.empty() ||
(error.token.position > expression.size()) ||
(std::numeric_limits<std::size_t>::max() == error.token.position)
)
{
return false;
}
std::size_t error_line_start = 0;
for (std::size_t i = error.token.position; i > 0; --i)
{
const details::char_t c = expression[i];
if (('\n' == c) || ('\r' == c))
{
error_line_start = i + 1;
break;
}
}
std::size_t next_nl_position = std::min(expression.size(),
expression.find_first_of('\n',error.token.position + 1));
error.column_no = error.token.position - error_line_start;
error.error_line = expression.substr(error_line_start,
next_nl_position - error_line_start);
error.line_no = 0;
for (std::size_t i = 0; i < next_nl_position; ++i)
{
if ('\n' == expression[i])
++error.line_no;
}
return true;
}
inline void dump_error(const type& error)
{
printf("Position: %02d Type: [%s] Msg: %s\n",
static_cast<int>(error.token.position),
exprtk::parser_error::to_str(error.mode).c_str(),
error.diagnostic.c_str());
}
}
namespace details
{
template <typename Parser>
inline void disable_type_checking(Parser& p)
{
p.state_.type_check_enabled = false;
}
}
template <typename T>
class parser : public lexer::parser_helper
{
private:
enum precedence_level
{
e_level00,
e_level01,
e_level02,
e_level03,
e_level04,
e_level05,
e_level06,
e_level07,
e_level08,
e_level09,
e_level10,
e_level11,
e_level12,
e_level13,
e_level14
};
typedef const T& cref_t;
typedef const T const_t;
typedef ifunction <T> F;
typedef ivararg_function <T> VAF;
typedef igeneric_function <T> GF;
typedef ifunction <T> ifunction_t;
typedef ivararg_function <T> ivararg_function_t;
typedef igeneric_function <T> igeneric_function_t;
typedef details::expression_node <T> expression_node_t;
typedef details::literal_node <T> literal_node_t;
typedef details::unary_node <T> unary_node_t;
typedef details::binary_node <T> binary_node_t;
typedef details::trinary_node <T> trinary_node_t;
typedef details::quaternary_node <T> quaternary_node_t;
typedef details::conditional_node<T> conditional_node_t;
typedef details::cons_conditional_node<T> cons_conditional_node_t;
typedef details::while_loop_node <T> while_loop_node_t;
typedef details::repeat_until_loop_node<T> repeat_until_loop_node_t;
typedef details::for_loop_node <T> for_loop_node_t;
#ifndef exprtk_disable_break_continue
typedef details::while_loop_bc_node <T> while_loop_bc_node_t;
typedef details::repeat_until_loop_bc_node<T> repeat_until_loop_bc_node_t;
typedef details::for_loop_bc_node<T> for_loop_bc_node_t;
#endif
typedef details::switch_node <T> switch_node_t;
typedef details::variable_node <T> variable_node_t;
typedef details::vector_elem_node<T> vector_elem_node_t;
typedef details::rebasevector_elem_node<T> rebasevector_elem_node_t;
typedef details::rebasevector_celem_node<T> rebasevector_celem_node_t;
typedef details::vector_node <T> vector_node_t;
typedef details::range_pack <T> range_t;
#ifndef exprtk_disable_string_capabilities
typedef details::stringvar_node <T> stringvar_node_t;
typedef details::string_literal_node<T> string_literal_node_t;
typedef details::string_range_node <T> string_range_node_t;
typedef details::const_string_range_node<T> const_string_range_node_t;
typedef details::generic_string_range_node<T> generic_string_range_node_t;
typedef details::string_concat_node <T> string_concat_node_t;
typedef details::assignment_string_node<T> assignment_string_node_t;
typedef details::assignment_string_range_node<T> assignment_string_range_node_t;
typedef details::conditional_string_node<T> conditional_string_node_t;
typedef details::cons_conditional_str_node<T> cons_conditional_str_node_t;
#endif
typedef details::assignment_node<T> assignment_node_t;
typedef details::assignment_vec_elem_node <T> assignment_vec_elem_node_t;
typedef details::assignment_rebasevec_elem_node <T> assignment_rebasevec_elem_node_t;
typedef details::assignment_rebasevec_celem_node<T> assignment_rebasevec_celem_node_t;
typedef details::assignment_vec_node <T> assignment_vec_node_t;
typedef details::assignment_vecvec_node <T> assignment_vecvec_node_t;
typedef details::scand_node<T> scand_node_t;
typedef details::scor_node<T> scor_node_t;
typedef lexer::token token_t;
typedef expression_node_t* expression_node_ptr;
typedef expression<T> expression_t;
typedef symbol_table<T> symbol_table_t;
typedef typename expression<T>::symtab_list_t symbol_table_list_t;
typedef details::vector_holder<T>* vector_holder_ptr;
typedef typename details::functor_t<T> functor_t;
typedef typename functor_t::qfunc_t quaternary_functor_t;
typedef typename functor_t::tfunc_t trinary_functor_t;
typedef typename functor_t::bfunc_t binary_functor_t;
typedef typename functor_t::ufunc_t unary_functor_t;
typedef details::operator_type operator_t;
typedef std::map<operator_t, unary_functor_t> unary_op_map_t;
typedef std::map<operator_t, binary_functor_t> binary_op_map_t;
typedef std::map<operator_t,trinary_functor_t> trinary_op_map_t;
typedef std::map<std::string,std::pair<trinary_functor_t ,operator_t> > sf3_map_t;
typedef std::map<std::string,std::pair<quaternary_functor_t,operator_t> > sf4_map_t;
typedef std::map<binary_functor_t,operator_t> inv_binary_op_map_t;
typedef std::multimap<std::string,details::base_operation_t,details::ilesscompare> base_ops_map_t;
typedef std::set<std::string,details::ilesscompare> disabled_func_set_t;
typedef details::T0oT1_define<T, cref_t, cref_t> vov_t;
typedef details::T0oT1_define<T, const_t, cref_t> cov_t;
typedef details::T0oT1_define<T, cref_t, const_t> voc_t;
typedef details::T0oT1oT2_define<T, cref_t, cref_t, cref_t> vovov_t;
typedef details::T0oT1oT2_define<T, cref_t, cref_t, const_t> vovoc_t;
typedef details::T0oT1oT2_define<T, cref_t, const_t, cref_t> vocov_t;
typedef details::T0oT1oT2_define<T, const_t, cref_t, cref_t> covov_t;
typedef details::T0oT1oT2_define<T, const_t, cref_t, const_t> covoc_t;
typedef details::T0oT1oT2_define<T, const_t, const_t, cref_t> cocov_t;
typedef details::T0oT1oT2_define<T, cref_t, const_t, const_t> vococ_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, cref_t, cref_t, cref_t> vovovov_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, cref_t, cref_t, const_t> vovovoc_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, cref_t, const_t, cref_t> vovocov_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, const_t, cref_t, cref_t> vocovov_t;
typedef details::T0oT1oT2oT3_define<T, const_t, cref_t, cref_t, cref_t> covovov_t;
typedef details::T0oT1oT2oT3_define<T, const_t, cref_t, const_t, cref_t> covocov_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, const_t, cref_t, const_t> vocovoc_t;
typedef details::T0oT1oT2oT3_define<T, const_t, cref_t, cref_t, const_t> covovoc_t;
typedef details::T0oT1oT2oT3_define<T, cref_t, const_t, const_t, cref_t> vococov_t;
typedef results_context<T> results_context_t;
typedef parser_helper prsrhlpr_t;
struct scope_element
{
enum element_type
{
e_none ,
e_variable,
e_vector ,
e_vecelem ,
e_string
};
typedef details::vector_holder<T> vector_holder_t;
typedef variable_node_t* variable_node_ptr;
typedef vector_holder_t* vector_holder_ptr;
typedef expression_node_t* expression_node_ptr;
#ifndef exprtk_disable_string_capabilities
typedef stringvar_node_t* stringvar_node_ptr;
#endif
scope_element()
: name("???"),
size (std::numeric_limits<std::size_t>::max()),
index(std::numeric_limits<std::size_t>::max()),
depth(std::numeric_limits<std::size_t>::max()),
ref_count(0),
ip_index (0),
type (e_none),
active(false),
data (0),
var_node(0),
vec_node(0)
#ifndef exprtk_disable_string_capabilities
,str_node(0)
#endif
{}
bool operator < (const scope_element& se) const
{
if (ip_index < se.ip_index)
return true;
else if (ip_index > se.ip_index)
return false;
else if (depth < se.depth)
return true;
else if (depth > se.depth)
return false;
else if (index < se.index)
return true;
else if (index > se.index)
return false;
else
return (name < se.name);
}
void clear()
{
name = "???";
size = std::numeric_limits<std::size_t>::max();
index = std::numeric_limits<std::size_t>::max();
depth = std::numeric_limits<std::size_t>::max();
type = e_none;
active = false;
ref_count = 0;
ip_index = 0;
data = 0;
var_node = 0;
vec_node = 0;
#ifndef exprtk_disable_string_capabilities
str_node = 0;
#endif
}
std::string name;
std::size_t size;
std::size_t index;
std::size_t depth;
std::size_t ref_count;
std::size_t ip_index;
element_type type;
bool active;
void* data;
expression_node_ptr var_node;
vector_holder_ptr vec_node;
#ifndef exprtk_disable_string_capabilities
stringvar_node_ptr str_node;
#endif
};
class scope_element_manager
{
public:
typedef expression_node_t* expression_node_ptr;
typedef variable_node_t* variable_node_ptr;
typedef parser<T> parser_t;
scope_element_manager(parser<T>& p)
: parser_(p),
input_param_cnt_(0)
{}
inline std::size_t size() const
{
return element_.size();
}
inline bool empty() const
{
return element_.empty();
}
inline scope_element& get_element(const std::size_t& index)
{
if (index < element_.size())
return element_[index];
else
return null_element_;
}
inline scope_element& get_element(const std::string& var_name,
const std::size_t index = std::numeric_limits<std::size_t>::max())
{
const std::size_t current_depth = parser_.state_.scope_depth;
for (std::size_t i = 0; i < element_.size(); ++i)
{
scope_element& se = element_[i];
if (se.depth > current_depth)
continue;
else if (
details::imatch(se.name, var_name) &&
(se.index == index)
)
return se;
}
return null_element_;
}
inline scope_element& get_active_element(const std::string& var_name,
const std::size_t index = std::numeric_limits<std::size_t>::max())
{
const std::size_t current_depth = parser_.state_.scope_depth;
for (std::size_t i = 0; i < element_.size(); ++i)
{
scope_element& se = element_[i];
if (se.depth > current_depth)
continue;
else if (
details::imatch(se.name, var_name) &&
(se.index == index) &&
(se.active)
)
return se;
}
return null_element_;
}
inline bool add_element(const scope_element& se)
{
for (std::size_t i = 0; i < element_.size(); ++i)
{
scope_element& cse = element_[i];
if (
details::imatch(cse.name, se.name) &&
(cse.depth <= se.depth) &&
(cse.index == se.index) &&
(cse.size == se.size ) &&
(cse.type == se.type ) &&
(cse.active)
)
return false;
}
element_.push_back(se);
std::sort(element_.begin(),element_.end());
return true;
}
inline void deactivate(const std::size_t& scope_depth)
{
exprtk_debug(("deactivate() - Scope depth: %d\n",
static_cast<int>(parser_.state_.scope_depth)));
for (std::size_t i = 0; i < element_.size(); ++i)
{
scope_element& se = element_[i];
if (se.active && (se.depth >= scope_depth))
{
exprtk_debug(("deactivate() - element[%02d] '%s'\n",
static_cast<int>(i),
se.name.c_str()));
se.active = false;
}
}
}
inline void free_element(scope_element& se)
{
switch (se.type)
{
case scope_element::e_variable : if (se.data ) delete (T*) se.data;
if (se.var_node) delete se.var_node;
break;
case scope_element::e_vector : if (se.data ) delete[] (T*) se.data;
if (se.vec_node) delete se.vec_node;
break;
case scope_element::e_vecelem : if (se.var_node) delete se.var_node;
break;
#ifndef exprtk_disable_string_capabilities
case scope_element::e_string : if (se.data ) delete (std::string*) se.data;
if (se.str_node) delete se.str_node;
break;
#endif
default : return;
}
se.clear();
}
inline void cleanup()
{
for (std::size_t i = 0; i < element_.size(); ++i)
{
free_element(element_[i]);
}
element_.clear();
input_param_cnt_ = 0;
}
inline std::size_t next_ip_index()
{
return ++input_param_cnt_;
}
inline expression_node_ptr get_variable(const T& v)
{
for (std::size_t i = 0; i < element_.size(); ++i)
{
scope_element& se = element_[i];
if (
se.active &&
se.var_node &&
details::is_variable_node(se.var_node)
)
{
variable_node_ptr vn = reinterpret_cast<variable_node_ptr>(se.var_node);
if (&(vn->ref()) == (&v))
{
return se.var_node;
}
}
}
return expression_node_ptr(0);
}
private:
scope_element_manager& operator=(const scope_element_manager&);
parser_t& parser_;
std::vector<scope_element> element_;
scope_element null_element_;
std::size_t input_param_cnt_;
};
class scope_handler
{
public:
typedef parser<T> parser_t;
scope_handler(parser<T>& p)
: parser_(p)
{
parser_.state_.scope_depth++;
#ifdef exprtk_enable_debugging
std::string depth(2 * parser_.state_.scope_depth,'-');
exprtk_debug(("%s> Scope Depth: %02d\n",
depth.c_str(),
static_cast<int>(parser_.state_.scope_depth)));
#endif
}
~scope_handler()
{
parser_.sem_.deactivate(parser_.state_.scope_depth);
parser_.state_.scope_depth--;
#ifdef exprtk_enable_debugging
std::string depth(2 * parser_.state_.scope_depth,'-');
exprtk_debug(("<%s Scope Depth: %02d\n",
depth.c_str(),
static_cast<int>(parser_.state_.scope_depth)));
#endif
}
private:
scope_handler& operator=(const scope_handler&);
parser_t& parser_;
};
struct symtab_store
{
symbol_table_list_t symtab_list_;
typedef typename symbol_table_t::local_data_t local_data_t;
typedef typename symbol_table_t::variable_ptr variable_ptr;
typedef typename symbol_table_t::function_ptr function_ptr;
#ifndef exprtk_disable_string_capabilities
typedef typename symbol_table_t::stringvar_ptr stringvar_ptr;
#endif
typedef typename symbol_table_t::vector_holder_ptr vector_holder_ptr;
typedef typename symbol_table_t::vararg_function_ptr vararg_function_ptr;
typedef typename symbol_table_t::generic_function_ptr generic_function_ptr;
inline bool empty() const
{
return symtab_list_.empty();
}
inline void clear()
{
symtab_list_.clear();
}
inline bool valid() const
{
if (!empty())
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (symtab_list_[i].valid())
return true;
}
}
return false;
}
inline bool valid_symbol(const std::string& symbol) const
{
if (!symtab_list_.empty())
return symtab_list_[0].valid_symbol(symbol);
else
return false;
}
inline bool valid_function_name(const std::string& symbol) const
{
if (!symtab_list_.empty())
return symtab_list_[0].valid_function(symbol);
else
return false;
}
inline variable_ptr get_variable(const std::string& variable_name) const
{
if (!valid_symbol(variable_name))
return reinterpret_cast<variable_ptr>(0);
variable_ptr result = reinterpret_cast<variable_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i)
.variable_store.get(variable_name);
if (result) break;
}
return result;
}
inline variable_ptr get_variable(const T& var_ref) const
{
variable_ptr result = reinterpret_cast<variable_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i).variable_store
.get_from_varptr(reinterpret_cast<const void*>(&var_ref));
if (result) break;
}
return result;
}
#ifndef exprtk_disable_string_capabilities
inline stringvar_ptr get_stringvar(const std::string& string_name) const
{
if (!valid_symbol(string_name))
return reinterpret_cast<stringvar_ptr>(0);
stringvar_ptr result = reinterpret_cast<stringvar_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i)
.stringvar_store.get(string_name);
if (result) break;
}
return result;
}
#endif
inline function_ptr get_function(const std::string& function_name) const
{
if (!valid_function_name(function_name))
return reinterpret_cast<function_ptr>(0);
function_ptr result = reinterpret_cast<function_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i)
.function_store.get(function_name);
if (result) break;
}
return result;
}
inline vararg_function_ptr get_vararg_function(const std::string& vararg_function_name) const
{
if (!valid_function_name(vararg_function_name))
return reinterpret_cast<vararg_function_ptr>(0);
vararg_function_ptr result = reinterpret_cast<vararg_function_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i)
.vararg_function_store.get(vararg_function_name);
if (result) break;
}
return result;
}
inline generic_function_ptr get_generic_function(const std::string& function_name) const
{
if (!valid_function_name(function_name))
return reinterpret_cast<generic_function_ptr>(0);
generic_function_ptr result = reinterpret_cast<generic_function_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result = local_data(i)
.generic_function_store.get(function_name);
if (result) break;
}
return result;
}
inline generic_function_ptr get_string_function(const std::string& function_name) const
{
if (!valid_function_name(function_name))
return reinterpret_cast<generic_function_ptr>(0);
generic_function_ptr result = reinterpret_cast<generic_function_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result =
local_data(i).string_function_store.get(function_name);
if (result) break;
}
return result;
}
inline vector_holder_ptr get_vector(const std::string& vector_name) const
{
if (!valid_symbol(vector_name))
return reinterpret_cast<vector_holder_ptr>(0);
vector_holder_ptr result = reinterpret_cast<vector_holder_ptr>(0);
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else
result =
local_data(i).vector_store.get(vector_name);
if (result) break;
}
return result;
}
inline bool is_constant_node(const std::string& symbol_name) const
{
if (!valid_symbol(symbol_name))
return false;
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (local_data(i).variable_store.is_constant(symbol_name))
return true;
}
return false;
}
#ifndef exprtk_disable_string_capabilities
inline bool is_constant_string(const std::string& symbol_name) const
{
if (!valid_symbol(symbol_name))
return false;
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (!local_data(i).stringvar_store.symbol_exists(symbol_name))
continue;
else if ( local_data(i).stringvar_store.is_constant(symbol_name))
return true;
}
return false;
}
#endif
inline bool symbol_exists(const std::string& symbol) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (symtab_list_[i].symbol_exists(symbol))
return true;
}
return false;
}
inline bool is_variable(const std::string& variable_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
symtab_list_[i].local_data().variable_store
.symbol_exists(variable_name)
)
return true;
}
return false;
}
#ifndef exprtk_disable_string_capabilities
inline bool is_stringvar(const std::string& stringvar_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
symtab_list_[i].local_data().stringvar_store
.symbol_exists(stringvar_name)
)
return true;
}
return false;
}
inline bool is_conststr_stringvar(const std::string& symbol_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
symtab_list_[i].local_data().stringvar_store
.symbol_exists(symbol_name)
)
{
return (
local_data(i).stringvar_store.symbol_exists(symbol_name) ||
local_data(i).stringvar_store.is_constant (symbol_name)
);
}
}
return false;
}
#endif
inline bool is_function(const std::string& function_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
local_data(i).vararg_function_store
.symbol_exists(function_name)
)
return true;
}
return false;
}
inline bool is_vararg_function(const std::string& vararg_function_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
local_data(i).vararg_function_store
.symbol_exists(vararg_function_name)
)
return true;
}
return false;
}
inline bool is_vector(const std::string& vector_name) const
{
for (std::size_t i = 0; i < symtab_list_.size(); ++i)
{
if (!symtab_list_[i].valid())
continue;
else if (
local_data(i).vector_store
.symbol_exists(vector_name)
)
return true;
}
return false;
}
inline std::string get_variable_name(const expression_node_ptr& ptr) const
{
return local_data().variable_store.entity_name(ptr);
}
inline std::string get_vector_name(const vector_holder_ptr& ptr) const
{
return local_data().vector_store.entity_name(ptr);
}
#ifndef exprtk_disable_string_capabilities
inline std::string get_stringvar_name(const expression_node_ptr& ptr) const
{
return local_data().stringvar_store.entity_name(ptr);
}
inline std::string get_conststr_stringvar_name(const expression_node_ptr& ptr) const
{
return local_data().stringvar_store.entity_name(ptr);
}
#endif
inline local_data_t& local_data(const std::size_t& index = 0)
{
return symtab_list_[index].local_data();
}
inline const local_data_t& local_data(const std::size_t& index = 0) const
{
return symtab_list_[index].local_data();
}
inline symbol_table_t& get_symbol_table(const std::size_t& index = 0)
{
return symtab_list_[index];
}
};
struct parser_state
{
parser_state()
: type_check_enabled(true)
{
reset();
}
void reset()
{
parsing_return_stmt = false;
parsing_break_stmt = false;
return_stmt_present = false;
side_effect_present = false;
scope_depth = 0;
}
#ifndef exprtk_enable_debugging
void activate_side_effect(const std::string&)
#else
void activate_side_effect(const std::string& source)
#endif
{
if (!side_effect_present)
{
side_effect_present = true;
exprtk_debug(("activate_side_effect() - caller: %s\n",source.c_str()));
}
}
bool parsing_return_stmt;
bool parsing_break_stmt;
bool return_stmt_present;
bool side_effect_present;
bool type_check_enabled;
std::size_t scope_depth;
};
public:
struct unknown_symbol_resolver
{
enum usr_symbol_type
{
e_usr_variable_type = 0,
e_usr_constant_type = 1
};
enum usr_mode
{
e_usrmode_default = 0,
e_usrmode_extended = 1
};
usr_mode mode;
unknown_symbol_resolver(const usr_mode m = e_usrmode_default)
: mode(m)
{}
virtual ~unknown_symbol_resolver()
{}
virtual bool process(const std::string& /*unknown_symbol*/,
usr_symbol_type& st,
T& default_value,
std::string& error_message)
{
if (e_usrmode_default != mode)
return false;
st = e_usr_variable_type;
default_value = T(0);
error_message.clear();
return true;
}
virtual bool process(const std::string& /* unknown_symbol */,
symbol_table_t& /* symbol_table */,
std::string& /* error_message */)
{
return false;
}
};
enum collect_type
{
e_ct_none = 0,
e_ct_variables = 1,
e_ct_functions = 2,
e_ct_assignments = 4
};
enum symbol_type
{
e_st_unknown = 0,
e_st_variable = 1,
e_st_vector = 2,
e_st_vecelem = 3,
e_st_string = 4,
e_st_function = 5,
e_st_local_variable = 6,
e_st_local_vector = 7,
e_st_local_string = 8
};
class dependent_entity_collector
{
public:
typedef std::pair<std::string,symbol_type> symbol_t;
typedef std::vector<symbol_t> symbol_list_t;
dependent_entity_collector(const std::size_t options = e_ct_none)
: options_(options),
collect_variables_ ((options_ & e_ct_variables ) == e_ct_variables ),
collect_functions_ ((options_ & e_ct_functions ) == e_ct_functions ),
collect_assignments_((options_ & e_ct_assignments) == e_ct_assignments),
return_present_ (false),
final_stmt_return_(false)
{}
template <typename Allocator,
template <typename,typename> class Sequence>
inline std::size_t symbols(Sequence<symbol_t,Allocator>& symbols_list)
{
if (!collect_variables_ && !collect_functions_)
return 0;
else if (symbol_name_list_.empty())
return 0;
for (std::size_t i = 0; i < symbol_name_list_.size(); ++i)
{
details::case_normalise(symbol_name_list_[i].first);
}
std::sort(symbol_name_list_.begin(),symbol_name_list_.end());
std::unique_copy(symbol_name_list_.begin(),
symbol_name_list_.end (),
std::back_inserter(symbols_list));
return symbols_list.size();
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline std::size_t assignment_symbols(Sequence<symbol_t,Allocator>& assignment_list)
{
if (!collect_assignments_)
return 0;
else if (assignment_name_list_.empty())
return 0;
for (std::size_t i = 0; i < assignment_name_list_.size(); ++i)
{
details::case_normalise(assignment_name_list_[i].first);
}
std::sort(assignment_name_list_.begin(),assignment_name_list_.end());
std::unique_copy(assignment_name_list_.begin(),
assignment_name_list_.end (),
std::back_inserter(assignment_list));
return assignment_list.size();
}
void clear()
{
symbol_name_list_ .clear();
assignment_name_list_.clear();
retparam_list_ .clear();
return_present_ = false;
final_stmt_return_ = false;
}
bool& collect_variables()
{
return collect_variables_;
}
bool& collect_functions()
{
return collect_functions_;
}
bool& collect_assignments()
{
return collect_assignments_;
}
bool return_present() const
{
return return_present_;
}
bool final_stmt_return() const
{
return final_stmt_return_;
}
typedef std::vector<std::string> retparam_list_t;
retparam_list_t return_param_type_list() const
{
return retparam_list_;
}
private:
inline void add_symbol(const std::string& symbol, const symbol_type st)
{
switch (st)
{
case e_st_variable :
case e_st_vector :
case e_st_string :
case e_st_local_variable :
case e_st_local_vector :
case e_st_local_string : if (collect_variables_)
symbol_name_list_
.push_back(std::make_pair(symbol, st));
break;
case e_st_function : if (collect_functions_)
symbol_name_list_
.push_back(std::make_pair(symbol, st));
break;
default : return;
}
}
inline void add_assignment(const std::string& symbol, const symbol_type st)
{
switch (st)
{
case e_st_variable :
case e_st_vector :
case e_st_string : if (collect_assignments_)
assignment_name_list_
.push_back(std::make_pair(symbol, st));
break;
default : return;
}
}
std::size_t options_;
bool collect_variables_;
bool collect_functions_;
bool collect_assignments_;
bool return_present_;
bool final_stmt_return_;
symbol_list_t symbol_name_list_;
symbol_list_t assignment_name_list_;
retparam_list_t retparam_list_;
friend class parser<T>;
};
class settings_store
{
private:
typedef std::set<std::string,details::ilesscompare> disabled_entity_set_t;
typedef disabled_entity_set_t::iterator des_itr_t;
public:
enum settings_compilation_options
{
e_unknown = 0,
e_replacer = 1,
e_joiner = 2,
e_numeric_check = 4,
e_bracket_check = 8,
e_sequence_check = 16,
e_commutative_check = 32,
e_strength_reduction = 64,
e_disable_vardef = 128,
e_collect_vars = 256,
e_collect_funcs = 512,
e_collect_assings = 1024,
e_disable_usr_on_rsrvd = 2048,
e_disable_zero_return = 4096
};
enum settings_base_funcs
{
e_bf_unknown = 0,
e_bf_abs , e_bf_acos , e_bf_acosh , e_bf_asin ,
e_bf_asinh , e_bf_atan , e_bf_atan2 , e_bf_atanh ,
e_bf_avg , e_bf_ceil , e_bf_clamp , e_bf_cos ,
e_bf_cosh , e_bf_cot , e_bf_csc , e_bf_equal ,
e_bf_erf , e_bf_erfc , e_bf_exp , e_bf_expm1 ,
e_bf_floor , e_bf_frac , e_bf_hypot , e_bf_iclamp ,
e_bf_like , e_bf_log , e_bf_log10 , e_bf_log1p ,
e_bf_log2 , e_bf_logn , e_bf_mand , e_bf_max ,
e_bf_min , e_bf_mod , e_bf_mor , e_bf_mul ,
e_bf_ncdf , e_bf_pow , e_bf_root , e_bf_round ,
e_bf_roundn , e_bf_sec , e_bf_sgn , e_bf_sin ,
e_bf_sinc , e_bf_sinh , e_bf_sqrt , e_bf_sum ,
e_bf_swap , e_bf_tan , e_bf_tanh , e_bf_trunc ,
e_bf_not_equal , e_bf_inrange , e_bf_deg2grad , e_bf_deg2rad,
e_bf_rad2deg , e_bf_grad2deg
};
enum settings_control_structs
{
e_ctrl_unknown = 0,
e_ctrl_ifelse,
e_ctrl_switch,
e_ctrl_for_loop,
e_ctrl_while_loop,
e_ctrl_repeat_loop,
e_ctrl_return
};
enum settings_logic_opr
{
e_logic_unknown = 0,
e_logic_and, e_logic_nand, e_logic_nor,
e_logic_not, e_logic_or, e_logic_xnor,
e_logic_xor, e_logic_scand, e_logic_scor
};
enum settings_arithmetic_opr
{
e_arith_unknown = 0,
e_arith_add, e_arith_sub, e_arith_mul,
e_arith_div, e_arith_mod, e_arith_pow
};
enum settings_assignment_opr
{
e_assign_unknown = 0,
e_assign_assign, e_assign_addass, e_assign_subass,
e_assign_mulass, e_assign_divass, e_assign_modass
};
enum settings_inequality_opr
{
e_ineq_unknown = 0,
e_ineq_lt, e_ineq_lte, e_ineq_eq,
e_ineq_equal, e_ineq_ne, e_ineq_nequal,
e_ineq_gte, e_ineq_gt
};
static const std::size_t compile_all_opts = e_replacer +
e_joiner +
e_numeric_check +
e_bracket_check +
e_sequence_check +
e_commutative_check +
e_strength_reduction;
settings_store(const std::size_t compile_options = compile_all_opts)
{
load_compile_options(compile_options);
}
settings_store& enable_all_base_functions()
{
disabled_func_set_.clear();
return (*this);
}
settings_store& enable_all_control_structures()
{
disabled_ctrl_set_.clear();
return (*this);
}
settings_store& enable_all_logic_ops()
{
disabled_logic_set_.clear();
return (*this);
}
settings_store& enable_all_arithmetic_ops()
{
disabled_arithmetic_set_.clear();
return (*this);
}
settings_store& enable_all_assignment_ops()
{
disabled_assignment_set_.clear();
return (*this);
}
settings_store& enable_all_inequality_ops()
{
disabled_inequality_set_.clear();
return (*this);
}
settings_store& enable_local_vardef()
{
disable_vardef_ = false;
return (*this);
}
settings_store& disable_all_base_functions()
{
std::copy(details::base_function_list,
details::base_function_list + details::base_function_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_func_set_, disabled_func_set_.begin()));
return (*this);
}
settings_store& disable_all_control_structures()
{
std::copy(details::cntrl_struct_list,
details::cntrl_struct_list + details::cntrl_struct_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_ctrl_set_, disabled_ctrl_set_.begin()));
return (*this);
}
settings_store& disable_all_logic_ops()
{
std::copy(details::logic_ops_list,
details::logic_ops_list + details::logic_ops_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_logic_set_, disabled_logic_set_.begin()));
return (*this);
}
settings_store& disable_all_arithmetic_ops()
{
std::copy(details::arithmetic_ops_list,
details::arithmetic_ops_list + details::arithmetic_ops_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_arithmetic_set_, disabled_arithmetic_set_.begin()));
return (*this);
}
settings_store& disable_all_assignment_ops()
{
std::copy(details::assignment_ops_list,
details::assignment_ops_list + details::assignment_ops_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_assignment_set_, disabled_assignment_set_.begin()));
return (*this);
}
settings_store& disable_all_inequality_ops()
{
std::copy(details::inequality_ops_list,
details::inequality_ops_list + details::inequality_ops_list_size,
std::insert_iterator<disabled_entity_set_t>
(disabled_inequality_set_, disabled_inequality_set_.begin()));
return (*this);
}
settings_store& disable_local_vardef()
{
disable_vardef_ = true;
return (*this);
}
bool replacer_enabled () const { return enable_replacer_; }
bool commutative_check_enabled () const { return enable_commutative_check_; }
bool joiner_enabled () const { return enable_joiner_; }
bool numeric_check_enabled () const { return enable_numeric_check_; }
bool bracket_check_enabled () const { return enable_bracket_check_; }
bool sequence_check_enabled () const { return enable_sequence_check_; }
bool strength_reduction_enabled () const { return enable_strength_reduction_; }
bool collect_variables_enabled () const { return enable_collect_vars_; }
bool collect_functions_enabled () const { return enable_collect_funcs_; }
bool collect_assignments_enabled() const { return enable_collect_assings_; }
bool vardef_disabled () const { return disable_vardef_; }
bool rsrvd_sym_usr_disabled () const { return disable_rsrvd_sym_usr_; }
bool zero_return_disabled () const { return disable_zero_return_; }
bool function_enabled(const std::string& function_name)
{
if (disabled_func_set_.empty())
return true;
else
return (disabled_func_set_.end() == disabled_func_set_.find(function_name));
}
bool control_struct_enabled(const std::string& control_struct)
{
if (disabled_ctrl_set_.empty())
return true;
else
return (disabled_ctrl_set_.end() == disabled_ctrl_set_.find(control_struct));
}
bool logic_enabled(const std::string& logic_operation)
{
if (disabled_logic_set_.empty())
return true;
else
return (disabled_logic_set_.end() == disabled_logic_set_.find(logic_operation));
}
bool arithmetic_enabled(const details::operator_type& arithmetic_operation)
{
if (disabled_logic_set_.empty())
return true;
else
return disabled_arithmetic_set_.end() == disabled_arithmetic_set_
.find(arith_opr_to_string(arithmetic_operation));
}
bool assignment_enabled(const details::operator_type& assignment)
{
if (disabled_assignment_set_.empty())
return true;
else
return disabled_assignment_set_.end() == disabled_assignment_set_
.find(assign_opr_to_string(assignment));
}
bool inequality_enabled(const details::operator_type& inequality)
{
if (disabled_inequality_set_.empty())
return true;
else
return disabled_inequality_set_.end() == disabled_inequality_set_
.find(inequality_opr_to_string(inequality));
}
bool function_disabled(const std::string& function_name)
{
if (disabled_func_set_.empty())
return false;
else
return (disabled_func_set_.end() != disabled_func_set_.find(function_name));
}
bool control_struct_disabled(const std::string& control_struct)
{
if (disabled_ctrl_set_.empty())
return false;
else
return (disabled_ctrl_set_.end() != disabled_ctrl_set_.find(control_struct));
}
bool logic_disabled(const std::string& logic_operation)
{
if (disabled_logic_set_.empty())
return false;
else
return (disabled_logic_set_.end() != disabled_logic_set_.find(logic_operation));
}
bool assignment_disabled(const details::operator_type assignment_operation)
{
if (disabled_assignment_set_.empty())
return false;
else
return disabled_assignment_set_.end() != disabled_assignment_set_
.find(assign_opr_to_string(assignment_operation));
}
bool arithmetic_disabled(const details::operator_type arithmetic_operation)
{
if (disabled_arithmetic_set_.empty())
return false;
else
return disabled_arithmetic_set_.end() != disabled_arithmetic_set_
.find(arith_opr_to_string(arithmetic_operation));
}
bool inequality_disabled(const details::operator_type& inequality)
{
if (disabled_inequality_set_.empty())
return false;
else
return disabled_inequality_set_.end() != disabled_inequality_set_
.find(inequality_opr_to_string(inequality));
}
settings_store& disable_base_function(settings_base_funcs bf)
{
if (
(e_bf_unknown != bf) &&
(static_cast<std::size_t>(bf) < (details::base_function_list_size + 1))
)
{
disabled_func_set_.insert(details::base_function_list[bf - 1]);
}
return (*this);
}
settings_store& disable_control_structure(settings_control_structs ctrl_struct)
{
if (
(e_ctrl_unknown != ctrl_struct) &&
(static_cast<std::size_t>(ctrl_struct) < (details::cntrl_struct_list_size + 1))
)
{
disabled_ctrl_set_.insert(details::cntrl_struct_list[ctrl_struct - 1]);
}
return (*this);
}
settings_store& disable_logic_operation(settings_logic_opr logic)
{
if (
(e_logic_unknown != logic) &&
(static_cast<std::size_t>(logic) < (details::logic_ops_list_size + 1))
)
{
disabled_logic_set_.insert(details::logic_ops_list[logic - 1]);
}
return (*this);
}
settings_store& disable_arithmetic_operation(settings_arithmetic_opr arithmetic)
{
if (
(e_arith_unknown != arithmetic) &&
(static_cast<std::size_t>(arithmetic) < (details::arithmetic_ops_list_size + 1))
)
{
disabled_arithmetic_set_.insert(details::arithmetic_ops_list[arithmetic - 1]);
}
return (*this);
}
settings_store& disable_assignment_operation(settings_assignment_opr assignment)
{
if (
(e_assign_unknown != assignment) &&
(static_cast<std::size_t>(assignment) < (details::assignment_ops_list_size + 1))
)
{
disabled_assignment_set_.insert(details::assignment_ops_list[assignment - 1]);
}
return (*this);
}
settings_store& disable_inequality_operation(settings_inequality_opr inequality)
{
if (
(e_ineq_unknown != inequality) &&
(static_cast<std::size_t>(inequality) < (details::inequality_ops_list_size + 1))
)
{
disabled_inequality_set_.insert(details::inequality_ops_list[inequality - 1]);
}
return (*this);
}
settings_store& enable_base_function(settings_base_funcs bf)
{
if (
(e_bf_unknown != bf) &&
(static_cast<std::size_t>(bf) < (details::base_function_list_size + 1))
)
{
const des_itr_t itr = disabled_func_set_.find(details::base_function_list[bf - 1]);
if (disabled_func_set_.end() != itr)
{
disabled_func_set_.erase(itr);
}
}
return (*this);
}
settings_store& enable_control_structure(settings_control_structs ctrl_struct)
{
if (
(e_ctrl_unknown != ctrl_struct) &&
(static_cast<std::size_t>(ctrl_struct) < (details::cntrl_struct_list_size + 1))
)
{
const des_itr_t itr = disabled_ctrl_set_.find(details::cntrl_struct_list[ctrl_struct - 1]);
if (disabled_ctrl_set_.end() != itr)
{
disabled_ctrl_set_.erase(itr);
}
}
return (*this);
}
settings_store& enable_logic_operation(settings_logic_opr logic)
{
if (
(e_logic_unknown != logic) &&
(static_cast<std::size_t>(logic) < (details::logic_ops_list_size + 1))
)
{
const des_itr_t itr = disabled_logic_set_.find(details::logic_ops_list[logic - 1]);
if (disabled_logic_set_.end() != itr)
{
disabled_logic_set_.erase(itr);
}
}
return (*this);
}
settings_store& enable_arithmetic_operation(settings_arithmetic_opr arithmetic)
{
if (
(e_arith_unknown != arithmetic) &&
(static_cast<std::size_t>(arithmetic) < (details::arithmetic_ops_list_size + 1))
)
{
const des_itr_t itr = disabled_arithmetic_set_.find(details::arithmetic_ops_list[arithmetic - 1]);
if (disabled_arithmetic_set_.end() != itr)
{
disabled_arithmetic_set_.erase(itr);
}
}
return (*this);
}
settings_store& enable_assignment_operation(settings_assignment_opr assignment)
{
if (
(e_assign_unknown != assignment) &&
(static_cast<std::size_t>(assignment) < (details::assignment_ops_list_size + 1))
)
{
const des_itr_t itr = disabled_assignment_set_.find(details::assignment_ops_list[assignment - 1]);
if (disabled_assignment_set_.end() != itr)
{
disabled_assignment_set_.erase(itr);
}
}
return (*this);
}
settings_store& enable_inequality_operation(settings_inequality_opr inequality)
{
if (
(e_ineq_unknown != inequality) &&
(static_cast<std::size_t>(inequality) < (details::inequality_ops_list_size + 1))
)
{
const des_itr_t itr = disabled_inequality_set_.find(details::inequality_ops_list[inequality - 1]);
if (disabled_inequality_set_.end() != itr)
{
disabled_inequality_set_.erase(itr);
}
}
return (*this);
}
private:
void load_compile_options(const std::size_t compile_options)
{
enable_replacer_ = (compile_options & e_replacer ) == e_replacer;
enable_joiner_ = (compile_options & e_joiner ) == e_joiner;
enable_numeric_check_ = (compile_options & e_numeric_check ) == e_numeric_check;
enable_bracket_check_ = (compile_options & e_bracket_check ) == e_bracket_check;
enable_sequence_check_ = (compile_options & e_sequence_check ) == e_sequence_check;
enable_commutative_check_ = (compile_options & e_commutative_check ) == e_commutative_check;
enable_strength_reduction_ = (compile_options & e_strength_reduction ) == e_strength_reduction;
enable_collect_vars_ = (compile_options & e_collect_vars ) == e_collect_vars;
enable_collect_funcs_ = (compile_options & e_collect_funcs ) == e_collect_funcs;
enable_collect_assings_ = (compile_options & e_collect_assings ) == e_collect_assings;
disable_vardef_ = (compile_options & e_disable_vardef ) == e_disable_vardef;
disable_rsrvd_sym_usr_ = (compile_options & e_disable_usr_on_rsrvd) == e_disable_usr_on_rsrvd;
disable_zero_return_ = (compile_options & e_disable_zero_return ) == e_disable_zero_return;
}
std::string assign_opr_to_string(details::operator_type opr)
{
switch (opr)
{
case details::e_assign : return ":=";
case details::e_addass : return "+=";
case details::e_subass : return "-=";
case details::e_mulass : return "*=";
case details::e_divass : return "/=";
case details::e_modass : return "%=";
default : return "";
}
}
std::string arith_opr_to_string(details::operator_type opr)
{
switch (opr)
{
case details::e_add : return "+";
case details::e_sub : return "-";
case details::e_mul : return "*";
case details::e_div : return "/";
case details::e_mod : return "%";
default : return "";
}
}
std::string inequality_opr_to_string(details::operator_type opr)
{
switch (opr)
{
case details::e_lt : return "<";
case details::e_lte : return "<=";
case details::e_eq : return "==";
case details::e_equal : return "=";
case details::e_ne : return "!=";
case details::e_nequal: return "<>";
case details::e_gte : return ">=";
case details::e_gt : return ">";
default : return "";
}
}
bool enable_replacer_;
bool enable_joiner_;
bool enable_numeric_check_;
bool enable_bracket_check_;
bool enable_sequence_check_;
bool enable_commutative_check_;
bool enable_strength_reduction_;
bool enable_collect_vars_;
bool enable_collect_funcs_;
bool enable_collect_assings_;
bool disable_vardef_;
bool disable_rsrvd_sym_usr_;
bool disable_zero_return_;
disabled_entity_set_t disabled_func_set_ ;
disabled_entity_set_t disabled_ctrl_set_ ;
disabled_entity_set_t disabled_logic_set_;
disabled_entity_set_t disabled_arithmetic_set_;
disabled_entity_set_t disabled_assignment_set_;
disabled_entity_set_t disabled_inequality_set_;
friend class parser<T>;
};
typedef settings_store settings_t;
parser(const settings_t& settings = settings_t())
: settings_(settings),
resolve_unknown_symbol_(false),
results_context_(0),
unknown_symbol_resolver_(reinterpret_cast<unknown_symbol_resolver*>(0)),
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning (disable:4355)
#endif
sem_(*this),
#ifdef _MSC_VER
#pragma warning(pop)
#endif
operator_joiner_2_(2),
operator_joiner_3_(3)
{
init_precompilation();
load_operations_map (base_ops_map_ );
load_unary_operations_map (unary_op_map_ );
load_binary_operations_map (binary_op_map_ );
load_inv_binary_operations_map(inv_binary_op_map_);
load_sf3_map (sf3_map_ );
load_sf4_map (sf4_map_ );
expression_generator_.init_synthesize_map();
expression_generator_.set_parser(*this);
expression_generator_.set_uom(unary_op_map_);
expression_generator_.set_bom(binary_op_map_);
expression_generator_.set_ibom(inv_binary_op_map_);
expression_generator_.set_sf3m(sf3_map_);
expression_generator_.set_sf4m(sf4_map_);
expression_generator_.set_strength_reduction_state(settings_.strength_reduction_enabled());
}
~parser()
{}
inline void init_precompilation()
{
if (settings_.collect_variables_enabled())
dec_.collect_variables() = true;
if (settings_.collect_functions_enabled())
dec_.collect_functions() = true;
if (settings_.collect_assignments_enabled())
dec_.collect_assignments() = true;
if (settings_.replacer_enabled())
{
symbol_replacer_.clear();
symbol_replacer_.add_replace("true" ,"1",lexer::token::e_number);
symbol_replacer_.add_replace("false","0",lexer::token::e_number);
helper_assembly_.token_modifier_list.clear();
helper_assembly_.register_modifier(&symbol_replacer_);
}
if (settings_.commutative_check_enabled())
{
for (std::size_t i = 0; i < details::reserved_words_size; ++i)
{
commutative_inserter_.ignore_symbol(details::reserved_words[i]);
}
helper_assembly_.token_inserter_list.clear();
helper_assembly_.register_inserter(&commutative_inserter_);
}
if (settings_.joiner_enabled())
{
helper_assembly_.token_joiner_list.clear();
helper_assembly_.register_joiner(&operator_joiner_2_);
helper_assembly_.register_joiner(&operator_joiner_3_);
}
if (
settings_.numeric_check_enabled () ||
settings_.bracket_check_enabled () ||
settings_.sequence_check_enabled()
)
{
helper_assembly_.token_scanner_list.clear();
if (settings_.numeric_check_enabled())
{
helper_assembly_.register_scanner(&numeric_checker_);
}
if (settings_.bracket_check_enabled())
{
helper_assembly_.register_scanner(&bracket_checker_);
}
if (settings_.sequence_check_enabled())
{
helper_assembly_.register_scanner(&sequence_validator_);
}
}
}
inline bool compile(const std::string& expression_string, expression<T>& expr)
{
state_ .reset();
error_list_ .clear();
brkcnt_list_ .clear();
synthesis_error_.clear();
sem_ .cleanup();
return_cleanup();
expression_generator_.set_allocator(node_allocator_);
if (expression_string.empty())
{
set_error(
make_error(parser_error::e_syntax,
"ERR000 - Empty expression!",
exprtk_error_location));
return false;
}
if (!init(expression_string))
{
process_lexer_errors();
return false;
}
if (lexer().empty())
{
set_error(
make_error(parser_error::e_syntax,
"ERR001 - Empty expression!",
exprtk_error_location));
return false;
}
if (!run_assemblies())
{
return false;
}
symtab_store_.symtab_list_ = expr.get_symbol_table_list();
dec_.clear();
lexer().begin();
next_token();
expression_node_ptr e = parse_corpus();
if ((0 != e) && (token_t::e_eof == current_token().type))
{
bool* retinvk_ptr = 0;
if (state_.return_stmt_present)
{
dec_.return_present_ = true;
e = expression_generator_
.return_envelope(e,results_context_,retinvk_ptr);
}
expr.set_expression(e);
expr.set_retinvk(retinvk_ptr);
register_local_vars(expr);
register_return_results(expr);
return !(!expr);
}
else
{
if (error_list_.empty())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR002 - Invalid expression encountered",
exprtk_error_location));
}
dec_.clear ();
sem_.cleanup ();
return_cleanup();
if ((0 != e) && branch_deletable(e))
{
destroy_node(e);
}
return false;
}
}
inline expression_t compile(const std::string& expression_string, symbol_table_t& symtab)
{
expression_t expr;
expr.register_symbol_table(symtab);
compile(expression_string,expr);
return expr;
}
void process_lexer_errors()
{
for (std::size_t i = 0; i < lexer().size(); ++i)
{
if (lexer()[i].is_error())
{
std::string diagnostic = "ERR003 - ";
switch (lexer()[i].type)
{
case lexer::token::e_error : diagnostic += "General token error";
break;
case lexer::token::e_err_symbol : diagnostic += "Symbol error";
break;
case lexer::token::e_err_number : diagnostic += "Invalid numeric token";
break;
case lexer::token::e_err_string : diagnostic += "Invalid string token";
break;
case lexer::token::e_err_sfunc : diagnostic += "Invalid special function token";
break;
default : diagnostic += "Unknown compiler error";
}
set_error(
make_error(parser_error::e_lexer,
lexer()[i],
diagnostic + ": " + lexer()[i].value,
exprtk_error_location));
}
}
}
inline bool run_assemblies()
{
if (settings_.commutative_check_enabled())
{
helper_assembly_.run_inserters(lexer());
}
if (settings_.joiner_enabled())
{
helper_assembly_.run_joiners(lexer());
}
if (settings_.replacer_enabled())
{
helper_assembly_.run_modifiers(lexer());
}
if (
settings_.numeric_check_enabled () ||
settings_.bracket_check_enabled () ||
settings_.sequence_check_enabled()
)
{
if (!helper_assembly_.run_scanners(lexer()))
{
if (helper_assembly_.error_token_scanner)
{
lexer::helper::bracket_checker* bracket_checker_ptr = 0;
lexer::helper::numeric_checker* numeric_checker_ptr = 0;
lexer::helper::sequence_validator* sequence_validator_ptr = 0;
if (0 != (bracket_checker_ptr = dynamic_cast<lexer::helper::bracket_checker*>(helper_assembly_.error_token_scanner)))
{
set_error(
make_error(parser_error::e_token,
bracket_checker_ptr->error_token(),
"ERR004 - Mismatched brackets: '" + bracket_checker_ptr->error_token().value + "'",
exprtk_error_location));
}
else if (0 != (numeric_checker_ptr = dynamic_cast<lexer::helper::numeric_checker*>(helper_assembly_.error_token_scanner)))
{
for (std::size_t i = 0; i < numeric_checker_ptr->error_count(); ++i)
{
lexer::token error_token = lexer()[numeric_checker_ptr->error_index(i)];
set_error(
make_error(parser_error::e_token,
error_token,
"ERR005 - Invalid numeric token: '" + error_token.value + "'",
exprtk_error_location));
}
if (numeric_checker_ptr->error_count())
{
numeric_checker_ptr->clear_errors();
}
}
else if (0 != (sequence_validator_ptr = dynamic_cast<lexer::helper::sequence_validator*>(helper_assembly_.error_token_scanner)))
{
for (std::size_t i = 0; i < sequence_validator_ptr->error_count(); ++i)
{
std::pair<lexer::token,lexer::token> error_token = sequence_validator_ptr->error(i);
set_error(
make_error(parser_error::e_token,
error_token.first,
"ERR006 - Invalid token sequence: '" +
error_token.first.value + "' and '" +
error_token.second.value + "'",
exprtk_error_location));
}
if (sequence_validator_ptr->error_count())
{
sequence_validator_ptr->clear_errors();
}
}
}
return false;
}
}
return true;
}
inline settings_store& settings()
{
return settings_;
}
inline parser_error::type get_error(const std::size_t& index)
{
if (index < error_list_.size())
return error_list_[index];
else
throw std::invalid_argument("parser::get_error() - Invalid error index specificed");
}
inline std::string error() const
{
if (!error_list_.empty())
{
return error_list_[0].diagnostic;
}
else
return std::string("No Error");
}
inline std::size_t error_count() const
{
return error_list_.size();
}
inline dependent_entity_collector& dec()
{
return dec_;
}
inline bool replace_symbol(const std::string& old_symbol, const std::string& new_symbol)
{
if (!settings_.replacer_enabled())
return false;
else if (details::is_reserved_word(old_symbol))
return false;
else
return symbol_replacer_.add_replace(old_symbol,new_symbol,lexer::token::e_symbol);
}
inline bool remove_replace_symbol(const std::string& symbol)
{
if (!settings_.replacer_enabled())
return false;
else if (details::is_reserved_word(symbol))
return false;
else
return symbol_replacer_.remove(symbol);
}
inline void enable_unknown_symbol_resolver(unknown_symbol_resolver* usr = reinterpret_cast<unknown_symbol_resolver*>(0))
{
resolve_unknown_symbol_ = true;
if (usr)
unknown_symbol_resolver_ = usr;
else
unknown_symbol_resolver_ = &default_usr_;
}
inline void enable_unknown_symbol_resolver(unknown_symbol_resolver& usr)
{
enable_unknown_symbol_resolver(&usr);
}
inline void disable_unknown_symbol_resolver()
{
resolve_unknown_symbol_ = false;
unknown_symbol_resolver_ = &default_usr_;
}
private:
inline bool valid_base_operation(const std::string& symbol)
{
const std::size_t length = symbol.size();
if (
(length < 3) || // Shortest base op symbol length
(length > 9) // Longest base op symbol length
)
return false;
else
return settings_.function_enabled(symbol) &&
(base_ops_map_.end() != base_ops_map_.find(symbol));
}
inline bool valid_vararg_operation(const std::string& symbol)
{
static const std::string s_sum = "sum" ;
static const std::string s_mul = "mul" ;
static const std::string s_avg = "avg" ;
static const std::string s_min = "min" ;
static const std::string s_max = "max" ;
static const std::string s_mand = "mand";
static const std::string s_mor = "mor" ;
static const std::string s_multi = "~" ;
static const std::string s_mswitch = "[*]" ;
return
(
details::imatch(symbol,s_sum ) ||
details::imatch(symbol,s_mul ) ||
details::imatch(symbol,s_avg ) ||
details::imatch(symbol,s_min ) ||
details::imatch(symbol,s_max ) ||
details::imatch(symbol,s_mand ) ||
details::imatch(symbol,s_mor ) ||
details::imatch(symbol,s_multi ) ||
details::imatch(symbol,s_mswitch)
) &&
settings_.function_enabled(symbol);
}
bool is_invalid_arithmetic_operation(const details::operator_type operation)
{
return settings_.arithmetic_disabled(operation);
}
bool is_invalid_assignment_operation(const details::operator_type operation)
{
return settings_.assignment_disabled(operation);
}
bool is_invalid_inequality_operation(const details::operator_type operation)
{
return settings_.inequality_disabled(operation);
}
#ifdef exprtk_enable_debugging
inline void next_token()
{
std::string ct_str = current_token().value;
parser_helper::next_token();
std::string depth(2 * state_.scope_depth,' ');
exprtk_debug(("%s"
"prev[%s] --> curr[%s]\n",
depth.c_str(),
ct_str.c_str(),
current_token().value.c_str()));
}
#endif
inline expression_node_ptr parse_corpus()
{
std::vector<expression_node_ptr> arg_list;
std::vector<bool> side_effect_list;
expression_node_ptr result = error_node();
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
lexer::token begin_token;
lexer::token end_token;
for ( ; ; )
{
state_.side_effect_present = false;
begin_token = current_token();
expression_node_ptr arg = parse_expression();
if (0 == arg)
{
if (error_list_.empty())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR007 - Invalid expression encountered",
exprtk_error_location));
}
return error_node();
}
else
{
arg_list.push_back(arg);
side_effect_list.push_back(state_.side_effect_present);
end_token = current_token();
std::string sub_expr = construct_subexpr(begin_token,end_token);
exprtk_debug(("parse_corpus(%02d) Subexpr: %s\n",
static_cast<int>(arg_list.size() - 1),
sub_expr.c_str()));
exprtk_debug(("parse_corpus(%02d) - Side effect present: %s\n",
static_cast<int>(arg_list.size() - 1),
state_.side_effect_present ? "true" : "false"));
exprtk_debug(("-------------------------------------------------\n"));
}
if (lexer().finished())
break;
else if (token_is(token_t::e_eof,prsrhlpr_t::e_hold))
{
if (lexer().finished())
break;
else
next_token();
}
}
if (
!arg_list.empty() &&
is_return_node(arg_list.back())
)
{
dec_.final_stmt_return_ = true;
}
result = simplify(arg_list,side_effect_list);
sdd.delete_ptr = (0 == result);
return result;
}
std::string construct_subexpr(lexer::token& begin_token, lexer::token& end_token)
{
std::string result = lexer().substr(begin_token.position,end_token.position);
for (std::size_t i = 0; i < result.size(); ++i)
{
if (details::is_whitespace(result[i])) result[i] = ' ';
}
return result;
}
static const precedence_level default_precedence = e_level00;
struct state_t
{
inline void set(const precedence_level& l,
const precedence_level& r,
const details::operator_type& o)
{
left = l;
right = r;
operation = o;
}
inline void reset()
{
left = e_level00;
right = e_level00;
operation = details::e_default;
}
precedence_level left;
precedence_level right;
details::operator_type operation;
};
inline expression_node_ptr parse_expression(precedence_level precedence = e_level00)
{
expression_node_ptr expression = parse_branch(precedence);
if (0 == expression)
{
return error_node();
}
bool break_loop = false;
state_t current_state;
for ( ; ; )
{
current_state.reset();
switch (current_token().type)
{
case token_t::e_assign : current_state.set(e_level00,e_level00,details::e_assign); break;
case token_t::e_addass : current_state.set(e_level00,e_level00,details::e_addass); break;
case token_t::e_subass : current_state.set(e_level00,e_level00,details::e_subass); break;
case token_t::e_mulass : current_state.set(e_level00,e_level00,details::e_mulass); break;
case token_t::e_divass : current_state.set(e_level00,e_level00,details::e_divass); break;
case token_t::e_modass : current_state.set(e_level00,e_level00,details::e_modass); break;
case token_t::e_swap : current_state.set(e_level00,e_level00,details::e_swap ); break;
case token_t::e_lt : current_state.set(e_level05,e_level06,details:: e_lt); break;
case token_t::e_lte : current_state.set(e_level05,e_level06,details:: e_lte); break;
case token_t::e_eq : current_state.set(e_level05,e_level06,details:: e_eq); break;
case token_t::e_ne : current_state.set(e_level05,e_level06,details:: e_ne); break;
case token_t::e_gte : current_state.set(e_level05,e_level06,details:: e_gte); break;
case token_t::e_gt : current_state.set(e_level05,e_level06,details:: e_gt); break;
case token_t::e_add : current_state.set(e_level07,e_level08,details:: e_add); break;
case token_t::e_sub : current_state.set(e_level07,e_level08,details:: e_sub); break;
case token_t::e_div : current_state.set(e_level10,e_level11,details:: e_div); break;
case token_t::e_mul : current_state.set(e_level10,e_level11,details:: e_mul); break;
case token_t::e_mod : current_state.set(e_level10,e_level11,details:: e_mod); break;
case token_t::e_pow : current_state.set(e_level12,e_level12,details:: e_pow); break;
default : if (token_t::e_symbol == current_token().type)
{
static const std::string s_and = "and";
static const std::string s_nand = "nand";
static const std::string s_or = "or";
static const std::string s_nor = "nor";
static const std::string s_xor = "xor";
static const std::string s_xnor = "xnor";
static const std::string s_in = "in";
static const std::string s_like = "like";
static const std::string s_ilike = "ilike";
static const std::string s_and1 = "&";
static const std::string s_or1 = "|";
if (details::imatch(current_token().value,s_and))
{
current_state.set(e_level03, e_level04, details::e_and);
break;
}
else if (details::imatch(current_token().value,s_and1))
{
#ifndef exprtk_disable_sc_andor
current_state.set(e_level03, e_level04, details::e_scand);
#else
current_state.set(e_level03, e_level04, details::e_and);
#endif
break;
}
else if (details::imatch(current_token().value,s_nand))
{
current_state.set(e_level03, e_level04, details::e_nand);
break;
}
else if (details::imatch(current_token().value,s_or))
{
current_state.set(e_level01, e_level02, details::e_or);
break;
}
else if (details::imatch(current_token().value,s_or1))
{
#ifndef exprtk_disable_sc_andor
current_state.set(e_level01, e_level02, details::e_scor);
#else
current_state.set(e_level01, e_level02, details::e_or);
#endif
break;
}
else if (details::imatch(current_token().value,s_nor))
{
current_state.set(e_level01, e_level02, details::e_nor);
break;
}
else if (details::imatch(current_token().value,s_xor))
{
current_state.set(e_level01, e_level02, details::e_xor);
break;
}
else if (details::imatch(current_token().value,s_xnor))
{
current_state.set(e_level01, e_level02, details::e_xnor);
break;
}
else if (details::imatch(current_token().value,s_in))
{
current_state.set(e_level04, e_level04, details::e_in);
break;
}
else if (details::imatch(current_token().value,s_like))
{
current_state.set(e_level04, e_level04, details::e_like);
break;
}
else if (details::imatch(current_token().value,s_ilike))
{
current_state.set(e_level04, e_level04, details::e_ilike);
break;
}
}
break_loop = true;
}
if (break_loop)
{
parse_pending_string_rangesize(expression);
break;
}
else if (current_state.left < precedence)
break;
lexer::token prev_token = current_token();
next_token();
expression_node_ptr right_branch = error_node();
expression_node_ptr new_expression = error_node();
if (is_invalid_arithmetic_operation(current_state.operation))
{
free_node(node_allocator_,expression);
set_error(
make_error(parser_error::e_syntax,
prev_token,
"ERR008 - Invalid arithmetic operation '" + details::to_str(current_state.operation) + "'",
exprtk_error_location));
return error_node();
}
else if (is_invalid_inequality_operation(current_state.operation))
{
free_node(node_allocator_,expression);
set_error(
make_error(parser_error::e_syntax,
prev_token,
"ERR009 - Invalid inequality operation '" + details::to_str(current_state.operation) + "'",
exprtk_error_location));
return error_node();
}
else if (is_invalid_assignment_operation(current_state.operation))
{
free_node(node_allocator_,expression);
set_error(
make_error(parser_error::e_syntax,
prev_token,
"ERR010 - Invalid assignment operation '" + details::to_str(current_state.operation) + "'",
exprtk_error_location));
return error_node();
}
if (0 != (right_branch = parse_expression(current_state.right)))
{
if (
details::is_return_node( expression) ||
details::is_return_node(right_branch)
)
{
free_node(node_allocator_, expression);
free_node(node_allocator_,right_branch);
set_error(
make_error(parser_error::e_syntax,
prev_token,
"ERR011 - Return statements cannot be part of sub-expressions",
exprtk_error_location));
return error_node();
}
new_expression = expression_generator_
(
current_state.operation,
expression,
right_branch
);
}
if (0 == new_expression)
{
if (error_list_.empty())
{
set_error(
make_error(parser_error::e_syntax,
prev_token,
!synthesis_error_.empty() ?
synthesis_error_ :
"ERR012 - General parsing error at token: '" + prev_token.value + "'",
exprtk_error_location));
}
free_node(node_allocator_,expression);
return error_node();
}
else
{
if (
token_is(token_t::e_ternary,prsrhlpr_t::e_hold) &&
(precedence == e_level00)
)
{
expression = parse_ternary_conditional_statement(new_expression);
}
else
expression = new_expression;
parse_pending_string_rangesize(expression);
}
}
return expression;
}
bool simplify_unary_negation_branch(expression_node_ptr& node)
{
{
typedef details::unary_branch_node<T,details::neg_op<T> > ubn_t;
ubn_t* n = dynamic_cast<ubn_t*>(node);
if (n)
{
expression_node_ptr un_r = n->branch(0);
n->release();
free_node(node_allocator_,node);
node = un_r;
return true;
}
}
{
typedef details::unary_variable_node<T,details::neg_op<T> > uvn_t;
uvn_t* n = dynamic_cast<uvn_t*>(node);
if (n)
{
const T& v = n->v();
expression_node_ptr return_node = error_node();
if (
(0 != (return_node = symtab_store_.get_variable(v))) ||
(0 != (return_node = sem_ .get_variable(v)))
)
{
free_node(node_allocator_,node);
node = return_node;
return true;
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR013 - Failed to find variable node in symbol table",
exprtk_error_location));
free_node(node_allocator_,node);
return false;
}
}
}
return false;
}
static inline expression_node_ptr error_node()
{
return reinterpret_cast<expression_node_ptr>(0);
}
template <typename Type, std::size_t N>
struct scoped_delete
{
typedef Type* ptr_t;
scoped_delete(parser<T>& pr, ptr_t& p)
: delete_ptr(true),
parser_(pr),
p_(&p)
{}
scoped_delete(parser<T>& pr, ptr_t (&p)[N])
: delete_ptr(true),
parser_(pr),
p_(&p[0])
{}
~scoped_delete()
{
if (delete_ptr)
{
for (std::size_t i = 0; i < N; ++i)
{
free_node(parser_.node_allocator_,p_[i]);
}
}
}
bool delete_ptr;
parser<T>& parser_;
ptr_t* p_;
private:
scoped_delete<Type,N>& operator=(const scoped_delete<Type,N>&);
};
template <typename Type>
struct scoped_deq_delete
{
typedef Type* ptr_t;
scoped_deq_delete(parser<T>& pr, std::deque<ptr_t>& deq)
: delete_ptr(true),
parser_(pr),
deq_(deq)
{}
~scoped_deq_delete()
{
if (delete_ptr && !deq_.empty())
{
for (std::size_t i = 0; i < deq_.size(); ++i)
{
free_node(parser_.node_allocator_,deq_[i]);
}
deq_.clear();
}
}
bool delete_ptr;
parser<T>& parser_;
std::deque<ptr_t>& deq_;
private:
scoped_deq_delete<Type>& operator=(const scoped_deq_delete<Type>&);
};
template <typename Type>
struct scoped_vec_delete
{
typedef Type* ptr_t;
scoped_vec_delete(parser<T>& pr, std::vector<ptr_t>& vec)
: delete_ptr(true),
parser_(pr),
vec_(vec)
{}
~scoped_vec_delete()
{
if (delete_ptr && !vec_.empty())
{
for (std::size_t i = 0; i < vec_.size(); ++i)
{
free_node(parser_.node_allocator_,vec_[i]);
}
vec_.clear();
}
}
bool delete_ptr;
parser<T>& parser_;
std::vector<ptr_t>& vec_;
private:
scoped_vec_delete<Type>& operator=(const scoped_vec_delete<Type>&);
};
struct scoped_bool_negator
{
scoped_bool_negator(bool& bb)
: b(bb)
{ b = !b; }
~scoped_bool_negator()
{ b = !b; }
bool& b;
};
struct scoped_bool_or_restorer
{
scoped_bool_or_restorer(bool& bb)
: b(bb),
original_value_(bb)
{}
~scoped_bool_or_restorer()
{
b = b || original_value_;
}
bool& b;
bool original_value_;
};
inline expression_node_ptr parse_function_invocation(ifunction<T>* function, const std::string& function_name)
{
expression_node_ptr func_node = reinterpret_cast<expression_node_ptr>(0);
switch (function->param_count)
{
case 0 : func_node = parse_function_call_0 (function,function_name); break;
case 1 : func_node = parse_function_call< 1>(function,function_name); break;
case 2 : func_node = parse_function_call< 2>(function,function_name); break;
case 3 : func_node = parse_function_call< 3>(function,function_name); break;
case 4 : func_node = parse_function_call< 4>(function,function_name); break;
case 5 : func_node = parse_function_call< 5>(function,function_name); break;
case 6 : func_node = parse_function_call< 6>(function,function_name); break;
case 7 : func_node = parse_function_call< 7>(function,function_name); break;
case 8 : func_node = parse_function_call< 8>(function,function_name); break;
case 9 : func_node = parse_function_call< 9>(function,function_name); break;
case 10 : func_node = parse_function_call<10>(function,function_name); break;
case 11 : func_node = parse_function_call<11>(function,function_name); break;
case 12 : func_node = parse_function_call<12>(function,function_name); break;
case 13 : func_node = parse_function_call<13>(function,function_name); break;
case 14 : func_node = parse_function_call<14>(function,function_name); break;
case 15 : func_node = parse_function_call<15>(function,function_name); break;
case 16 : func_node = parse_function_call<16>(function,function_name); break;
case 17 : func_node = parse_function_call<17>(function,function_name); break;
case 18 : func_node = parse_function_call<18>(function,function_name); break;
case 19 : func_node = parse_function_call<19>(function,function_name); break;
case 20 : func_node = parse_function_call<20>(function,function_name); break;
default : {
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR014 - Invalid number of parameters for function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
}
if (func_node)
return func_node;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR015 - Failed to generate call to function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
}
template <std::size_t NumberofParameters>
inline expression_node_ptr parse_function_call(ifunction<T>* function, const std::string& function_name)
{
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (0 == NumberofParameters)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR016 - Expecting ifunction '" + function_name + "' to have non-zero parameter count",
exprtk_error_location));
return error_node();
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
expression_node_ptr branch[NumberofParameters];
expression_node_ptr result = error_node();
std::fill_n(branch, NumberofParameters, reinterpret_cast<expression_node_ptr>(0));
scoped_delete<expression_node_t,NumberofParameters> sd((*this),branch);
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR017 - Expecting argument list for function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
for (int i = 0; i < static_cast<int>(NumberofParameters); ++i)
{
branch[i] = parse_expression();
if (0 == branch[i])
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR018 - Failed to parse argument " + details::to_str(i) + " for function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
else if (i < static_cast<int>(NumberofParameters - 1))
{
if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR019 - Invalid number of arguments for function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
}
}
if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR020 - Invalid number of arguments for function: '" + function_name + "'",
exprtk_error_location));
return error_node();
}
else
result = expression_generator_.function(function,branch);
sd.delete_ptr = false;
return result;
}
inline expression_node_ptr parse_function_call_0(ifunction<T>* function, const std::string& function_name)
{
expression_node_ptr result = expression_generator_.function(function);
state_.side_effect_present = function->has_side_effects();
next_token();
if (
token_is(token_t::e_lbracket) &&
!token_is(token_t::e_rbracket)
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR021 - Expecting '()' to proceed call to function: '" + function_name + "'",
exprtk_error_location));
free_node(node_allocator_,result);
return error_node();
}
else
return result;
}
template <std::size_t MaxNumberofParameters>
inline std::size_t parse_base_function_call(expression_node_ptr (&param_list)[MaxNumberofParameters])
{
std::fill_n(param_list, MaxNumberofParameters, reinterpret_cast<expression_node_ptr>(0));
scoped_delete<expression_node_t,MaxNumberofParameters> sd((*this),param_list);
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR022 - Expected a '(' at start of function call, instead got: '" + current_token().value + "'",
exprtk_error_location));
return 0;
}
std::size_t param_index = 0;
for (; param_index < MaxNumberofParameters; ++param_index)
{
param_list[param_index] = parse_expression();
if (0 == param_list[param_index])
return 0;
else if (token_is(token_t::e_rbracket))
break;
else if (token_is(token_t::e_comma))
continue;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR023 - Expected a ',' between function input parameters, instead got: '" + current_token().value + "'",
exprtk_error_location));
return 0;
}
}
sd.delete_ptr = false;
return (param_index + 1);
}
inline expression_node_ptr parse_base_operation()
{
typedef std::pair<base_ops_map_t::iterator,base_ops_map_t::iterator> map_range_t;
const std::string operation_name = current_token().value;
map_range_t itr_range = base_ops_map_.equal_range(operation_name);
if (0 == std::distance(itr_range.first,itr_range.second))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR024 - No entry found for base operation: " + operation_name,
exprtk_error_location));
return error_node();
}
static const std::size_t MaxNumberofParameters = 4;
expression_node_ptr param_list[MaxNumberofParameters] = {0};
const std::size_t parameter_count = parse_base_function_call(param_list);
if (0 == parameter_count)
{
return error_node();
}
else if (parameter_count <= MaxNumberofParameters)
{
for (base_ops_map_t::iterator itr = itr_range.first; itr != itr_range.second; ++itr)
{
details::base_operation_t& operation = itr->second;
if (operation.num_params == parameter_count)
{
switch (parameter_count)
{
#define base_opr_case(N) \
case N : { \
expression_node_ptr pl##N[N] = {0}; \
std::copy(param_list, param_list + N, pl##N); \
lodge_symbol(operation_name, e_st_function); \
return expression_generator_(operation.type, pl##N); \
} \
base_opr_case(1)
base_opr_case(2)
base_opr_case(3)
base_opr_case(4)
#undef base_opr_case
}
}
}
}
for (std::size_t i = 0; i < MaxNumberofParameters; ++i)
{
free_node(node_allocator_,param_list[i]);
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR025 - Invalid number of parameters for call to function: '" + operation_name + "'",
exprtk_error_location));
return error_node();
}
inline expression_node_ptr parse_conditional_statement_01(expression_node_ptr condition)
{
// Parse: [if][(][condition][,][consequent][,][alternative][)]
expression_node_ptr consequent = error_node();
expression_node_ptr alternative = error_node();
bool result = true;
if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR026 - Expected ',' between if-statement condition and consequent",
exprtk_error_location));
result = false;
}
else if (0 == (consequent = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR027 - Failed to parse consequent for if-statement",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR028 - Expected ',' between if-statement consequent and alternative",
exprtk_error_location));
result = false;
}
else if (0 == (alternative = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR029 - Failed to parse alternative for if-statement",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR030 - Expected ')' at the end of if-statement",
exprtk_error_location));
result = false;
}
#ifndef exprtk_disable_string_capabilities
if (result)
{
const bool consq_is_str = is_generally_string_node( consequent);
const bool alter_is_str = is_generally_string_node(alternative);
if (consq_is_str || alter_is_str)
{
if (consq_is_str && alter_is_str)
{
return expression_generator_
.conditional_string(condition,consequent,alternative);
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR031 - Return types of ternary if-statement differ",
exprtk_error_location));
result = false;
}
}
#endif
if (!result)
{
free_node(node_allocator_, condition);
free_node(node_allocator_, consequent);
free_node(node_allocator_,alternative);
return error_node();
}
else
return expression_generator_
.conditional(condition,consequent,alternative);
}
inline expression_node_ptr parse_conditional_statement_02(expression_node_ptr condition)
{
expression_node_ptr consequent = error_node();
expression_node_ptr alternative = error_node();
bool result = true;
if (token_is(token_t::e_lcrlbracket,prsrhlpr_t::e_hold))
{
if (0 == (consequent = parse_multi_sequence("if-statement-01")))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR032 - Failed to parse body of consequent for if-statement",
exprtk_error_location));
result = false;
}
}
else
{
if (
settings_.commutative_check_enabled() &&
token_is(token_t::e_mul,prsrhlpr_t::e_hold)
)
{
next_token();
}
if (0 != (consequent = parse_expression()))
{
if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR033 - Expected ';' at the end of the consequent for if-statement",
exprtk_error_location));
result = false;
}
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR034 - Failed to parse body of consequent for if-statement",
exprtk_error_location));
result = false;
}
}
if (result)
{
if (details::imatch(current_token().value,"else"))
{
next_token();
if (token_is(token_t::e_lcrlbracket,prsrhlpr_t::e_hold))
{
if (0 == (alternative = parse_multi_sequence("else-statement-01")))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR035 - Failed to parse body of the 'else' for if-statement",
exprtk_error_location));
result = false;
}
}
else if (details::imatch(current_token().value,"if"))
{
if (0 == (alternative = parse_conditional_statement()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR036 - Failed to parse body of if-else statement",
exprtk_error_location));
result = false;
}
}
else if (0 != (alternative = parse_expression()))
{
if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR037 - Expected ';' at the end of the 'else-if' for the if-statement",
exprtk_error_location));
result = false;
}
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR038 - Failed to parse body of the 'else' for if-statement",
exprtk_error_location));
result = false;
}
}
}
#ifndef exprtk_disable_string_capabilities
if (result)
{
const bool consq_is_str = is_generally_string_node( consequent);
const bool alter_is_str = is_generally_string_node(alternative);
if (consq_is_str || alter_is_str)
{
if (consq_is_str && alter_is_str)
{
return expression_generator_
.conditional_string(condition,consequent,alternative);
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR039 - Return types of ternary if-statement differ",
exprtk_error_location));
result = false;
}
}
#endif
if (!result)
{
free_node(node_allocator_, condition);
free_node(node_allocator_, consequent);
free_node(node_allocator_,alternative);
return error_node();
}
else
return expression_generator_
.conditional(condition,consequent,alternative);
}
inline expression_node_ptr parse_conditional_statement()
{
expression_node_ptr condition = error_node();
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR040 - Expected '(' at start of if-statement, instead got: '" + current_token().value + "'",
exprtk_error_location));
return error_node();
}
else if (0 == (condition = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR041 - Failed to parse condition for if-statement",
exprtk_error_location));
return error_node();
}
else if (token_is(token_t::e_comma,prsrhlpr_t::e_hold))
{
// if (x,y,z)
return parse_conditional_statement_01(condition);
}
else if (token_is(token_t::e_rbracket))
{
// 00. if (x) y;
// 01. if (x) y; else z;
// 02. if (x) y; else {z0; ... zn;}
// 03. if (x) y; else if (z) w;
// 04. if (x) y; else if (z) w; else u;
// 05. if (x) y; else if (z) w; else {u0; ... un;}
// 06. if (x) y; else if (z) {w0; ... wn;}
// 07. if (x) {y0; ... yn;}
// 08. if (x) {y0; ... yn;} else z;
// 09. if (x) {y0; ... yn;} else {z0; ... zn;};
// 10. if (x) {y0; ... yn;} else if (z) w;
// 11. if (x) {y0; ... yn;} else if (z) w; else u;
// 12. if (x) {y0; ... nex;} else if (z) w; else {u0 ... un;}
// 13. if (x) {y0; ... yn;} else if (z) {w0; ... wn;}
return parse_conditional_statement_02(condition);
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR042 - Invalid if-statement",
exprtk_error_location));
free_node(node_allocator_,condition);
return error_node();
}
inline expression_node_ptr parse_ternary_conditional_statement(expression_node_ptr condition)
{
// Parse: [condition][?][consequent][:][alternative]
expression_node_ptr consequent = error_node();
expression_node_ptr alternative = error_node();
bool result = true;
if (0 == condition)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR043 - Encountered invalid condition branch for ternary if-statement",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_ternary))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR044 - Expected '?' after condition of ternary if-statement",
exprtk_error_location));
result = false;
}
else if (0 == (consequent = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR045 - Failed to parse consequent for ternary if-statement",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_colon))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR046 - Expected ':' between ternary if-statement consequent and alternative",
exprtk_error_location));
result = false;
}
else if (0 == (alternative = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR047 - Failed to parse alternative for ternary if-statement",
exprtk_error_location));
result = false;
}
#ifndef exprtk_disable_string_capabilities
if (result)
{
const bool consq_is_str = is_generally_string_node( consequent);
const bool alter_is_str = is_generally_string_node(alternative);
if (consq_is_str || alter_is_str)
{
if (consq_is_str && alter_is_str)
{
return expression_generator_
.conditional_string(condition, consequent, alternative);
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR048 - Return types of ternary if-statement differ",
exprtk_error_location));
result = false;
}
}
#endif
if (!result)
{
free_node(node_allocator_, condition);
free_node(node_allocator_, consequent);
free_node(node_allocator_, alternative);
return error_node();
}
else
return expression_generator_
.conditional(condition, consequent, alternative);
}
inline expression_node_ptr parse_while_loop()
{
// Parse: [while][(][test expr][)][{][expression][}]
expression_node_ptr condition = error_node();
expression_node_ptr branch = error_node();
expression_node_ptr result_node = error_node();
bool result = true;
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR049 - Expected '(' at start of while-loop condition statement",
exprtk_error_location));
return error_node();
}
else if (0 == (condition = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR050 - Failed to parse condition for while-loop",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR051 - Expected ')' at end of while-loop condition statement",
exprtk_error_location));
result = false;
}
brkcnt_list_.push_front(false);
if (result)
{
if (0 == (branch = parse_multi_sequence("while-loop")))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR052 - Failed to parse body of while-loop"));
result = false;
}
else if (0 == (result_node = expression_generator_.while_loop(condition,
branch,
brkcnt_list_.front())))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR053 - Failed to synthesize while-loop",
exprtk_error_location));
result = false;
}
}
if (!result)
{
free_node(node_allocator_, branch);
free_node(node_allocator_, condition);
free_node(node_allocator_,result_node);
brkcnt_list_.pop_front();
return error_node();
}
else
return result_node;
}
inline expression_node_ptr parse_repeat_until_loop()
{
// Parse: [repeat][{][expression][}][until][(][test expr][)]
expression_node_ptr condition = error_node();
expression_node_ptr branch = error_node();
next_token();
std::vector<expression_node_ptr> arg_list;
std::vector<bool> side_effect_list;
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
brkcnt_list_.push_front(false);
if (details::imatch(current_token().value,"until"))
{
next_token();
branch = node_allocator_.allocate<details::null_node<T> >();
}
else
{
token_t::token_type seperator = token_t::e_eof;
scope_handler sh(*this);
scoped_bool_or_restorer sbr(state_.side_effect_present);
for ( ; ; )
{
state_.side_effect_present = false;
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
else
{
arg_list.push_back(arg);
side_effect_list.push_back(state_.side_effect_present);
}
if (details::imatch(current_token().value,"until"))
{
next_token();
break;
}
bool is_next_until = peek_token_is(token_t::e_symbol) &&
peek_token_is("until");
if (!token_is(seperator) && is_next_until)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR054 - Expected '" + token_t::to_str(seperator) + "' in body of repeat until loop",
exprtk_error_location));
return error_node();
}
if (details::imatch(current_token().value,"until"))
{
next_token();
break;
}
}
branch = simplify(arg_list,side_effect_list);
sdd.delete_ptr = (0 == branch);
if (sdd.delete_ptr)
{
brkcnt_list_.pop_front();
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR055 - Failed to parse body of repeat until loop",
exprtk_error_location));
return error_node();
}
}
if (!token_is(token_t::e_lbracket))
{
brkcnt_list_.pop_front();
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR056 - Expected '(' before condition statement of repeat until loop",
exprtk_error_location));
free_node(node_allocator_,branch);
return error_node();
}
else if (0 == (condition = parse_expression()))
{
brkcnt_list_.pop_front();
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR057 - Failed to parse condition for repeat until loop",
exprtk_error_location));
free_node(node_allocator_,branch);
return error_node();
}
else if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR058 - Expected ')' after condition of repeat until loop",
exprtk_error_location));
free_node(node_allocator_, branch);
free_node(node_allocator_, condition);
brkcnt_list_.pop_front();
return error_node();
}
expression_node_ptr result;
result = expression_generator_
.repeat_until_loop(condition, branch, brkcnt_list_.front());
if (0 == result)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR059 - Failed to synthesize repeat until loop",
exprtk_error_location));
free_node(node_allocator_,condition);
brkcnt_list_.pop_front();
return error_node();
}
else
{
brkcnt_list_.pop_front();
return result;
}
}
inline expression_node_ptr parse_for_loop()
{
expression_node_ptr initialiser = error_node();
expression_node_ptr condition = error_node();
expression_node_ptr incrementor = error_node();
expression_node_ptr loop_body = error_node();
scope_element* se = 0;
bool result = true;
std::string loop_counter_symbol;
next_token();
scope_handler sh(*this);
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR060 - Expected '(' at start of for-loop",
exprtk_error_location));
return error_node();
}
if (!token_is(token_t::e_eof))
{
if (
!token_is(token_t::e_symbol,prsrhlpr_t::e_hold) &&
details::imatch(current_token().value,"var")
)
{
next_token();
if (!token_is(token_t::e_symbol,prsrhlpr_t::e_hold))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR061 - Expected a variable at the start of initialiser section of for-loop",
exprtk_error_location));
return error_node();
}
else if (!peek_token_is(token_t::e_assign))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR062 - Expected variable assignment of initialiser section of for-loop",
exprtk_error_location));
return error_node();
}
loop_counter_symbol = current_token().value;
se = &sem_.get_element(loop_counter_symbol);
if ((se->name == loop_counter_symbol) && se->active)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR063 - For-loop variable '" + loop_counter_symbol+ "' is being shadowed by a previous declaration",
exprtk_error_location));
return error_node();
}
else if (!symtab_store_.is_variable(loop_counter_symbol))
{
if (
!se->active &&
(se->name == loop_counter_symbol) &&
(se->type == scope_element::e_variable)
)
{
se->active = true;
se->ref_count++;
}
else
{
scope_element nse;
nse.name = loop_counter_symbol;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_variable;
nse.depth = state_.scope_depth;
nse.data = new T(T(0));
nse.var_node = node_allocator_.allocate<variable_node_t>(*(T*)(nse.data));
if (!sem_.add_element(nse))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR064 - Failed to add new local variable '" + loop_counter_symbol + "' to SEM",
exprtk_error_location));
sem_.free_element(nse);
result = false;
}
else
{
exprtk_debug(("parse_for_loop() - INFO - Added new local variable: %s\n",nse.name.c_str()));
state_.activate_side_effect("parse_for_loop()");
}
}
}
}
if (0 == (initialiser = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR065 - Failed to parse initialiser of for-loop",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR066 - Expected ';' after initialiser of for-loop",
exprtk_error_location));
result = false;
}
}
if (!token_is(token_t::e_eof))
{
if (0 == (condition = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR067 - Failed to parse condition of for-loop",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR068 - Expected ';' after condition section of for-loop",
exprtk_error_location));
result = false;
}
}
if (!token_is(token_t::e_rbracket))
{
if (0 == (incrementor = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR069 - Failed to parse incrementor of for-loop",
exprtk_error_location));
result = false;
}
else if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR070 - Expected ')' after incrementor section of for-loop",
exprtk_error_location));
result = false;
}
}
if (result)
{
brkcnt_list_.push_front(false);
if (0 == (loop_body = parse_multi_sequence("for-loop")))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR071 - Failed to parse body of for-loop",
exprtk_error_location));
result = false;
}
}
if (!result)
{
if (se)
{
se->ref_count--;
}
sem_.cleanup();
free_node(node_allocator_, initialiser);
free_node(node_allocator_, condition);
free_node(node_allocator_, incrementor);
free_node(node_allocator_, loop_body);
if (!brkcnt_list_.empty())
{
brkcnt_list_.pop_front();
}
return error_node();
}
else
{
expression_node_ptr result_node =
expression_generator_.for_loop(initialiser,
condition,
incrementor,
loop_body,
brkcnt_list_.front());
brkcnt_list_.pop_front();
return result_node;
}
}
inline expression_node_ptr parse_switch_statement()
{
std::vector<expression_node_ptr> arg_list;
expression_node_ptr result = error_node();
if (!details::imatch(current_token().value,"switch"))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR072 - Expected keyword 'switch'",
exprtk_error_location));
return error_node();
}
scoped_vec_delete<expression_node_t> svd((*this),arg_list);
next_token();
if (!token_is(token_t::e_lcrlbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR073 - Expected '{' for call to switch statement",
exprtk_error_location));
return error_node();
}
for ( ; ; )
{
if (!details::imatch("case",current_token().value))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR074 - Expected either a 'case' or 'default' statement",
exprtk_error_location));
return error_node();
}
next_token();
expression_node_ptr condition = parse_expression();
if (0 == condition)
return error_node();
else if (!token_is(token_t::e_colon))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR075 - Expected ':' for case of switch statement",
exprtk_error_location));
return error_node();
}
expression_node_ptr consequent = parse_expression();
if (0 == consequent)
return error_node();
else if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR076 - Expected ';' at end of case for switch statement",
exprtk_error_location));
return error_node();
}
// Can we optimise away the case statement?
if (is_constant_node(condition) && is_false(condition))
{
free_node(node_allocator_, condition);
free_node(node_allocator_, consequent);
}
else
{
arg_list.push_back( condition);
arg_list.push_back(consequent);
}
if (details::imatch("default",current_token().value))
{
next_token();
if (!token_is(token_t::e_colon))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR077 - Expected ':' for default of switch statement",
exprtk_error_location));
return error_node();
}
expression_node_ptr default_statement = error_node();
if (token_is(token_t::e_lcrlbracket,prsrhlpr_t::e_hold))
default_statement = parse_multi_sequence("switch-default");
else
default_statement = parse_expression();
if (0 == default_statement)
return error_node();
else if (!token_is(token_t::e_eof))
{
free_node(node_allocator_,default_statement);
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR078 - Expected ';' at end of default for switch statement",
exprtk_error_location));
return error_node();
}
arg_list.push_back(default_statement);
break;
}
}
if (!token_is(token_t::e_rcrlbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR079 - Expected '}' at end of switch statement",
exprtk_error_location));
return error_node();
}
result = expression_generator_.switch_statement(arg_list);
svd.delete_ptr = (0 == result);
return result;
}
inline expression_node_ptr parse_multi_switch_statement()
{
std::vector<expression_node_ptr> arg_list;
expression_node_ptr result = error_node();
if (!details::imatch(current_token().value,"[*]"))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR080 - Expected token '[*]'",
exprtk_error_location));
return error_node();
}
scoped_vec_delete<expression_node_t> svd((*this),arg_list);
next_token();
if (!token_is(token_t::e_lcrlbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR081 - Expected '{' for call to [*] statement",
exprtk_error_location));
return error_node();
}
for ( ; ; )
{
if (!details::imatch("case",current_token().value))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR082 - Expected a 'case' statement for multi-switch",
exprtk_error_location));
return error_node();
}
next_token();
expression_node_ptr condition = parse_expression();
if (0 == condition)
return error_node();
if (!token_is(token_t::e_colon))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR083 - Expected ':' for case of [*] statement",
exprtk_error_location));
return error_node();
}
expression_node_ptr consequent = parse_expression();
if (0 == consequent)
return error_node();
if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR084 - Expected ';' at end of case for [*] statement",
exprtk_error_location));
return error_node();
}
// Can we optimise away the case statement?
if (is_constant_node(condition) && is_false(condition))
{
free_node(node_allocator_, condition);
free_node(node_allocator_, consequent);
}
else
{
arg_list.push_back(condition);
arg_list.push_back(consequent);
}
if (token_is(token_t::e_rcrlbracket,prsrhlpr_t::e_hold))
{
break;
}
}
if (!token_is(token_t::e_rcrlbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR085 - Expected '}' at end of [*] statement",
exprtk_error_location));
return error_node();
}
result = expression_generator_.multi_switch_statement(arg_list);
svd.delete_ptr = (0 == result);
return result;
}
inline expression_node_ptr parse_vararg_function()
{
std::vector<expression_node_ptr> arg_list;
expression_node_ptr result = error_node();
details::operator_type opt_type = details::e_default;
const std::string symbol = current_token().value;
if (details::imatch(symbol,"~"))
{
next_token();
return parse_multi_sequence();
}
else if (details::imatch(symbol,"[*]"))
{
return parse_multi_switch_statement();
}
else if (details::imatch(symbol,"avg" )) opt_type = details::e_avg ;
else if (details::imatch(symbol,"mand")) opt_type = details::e_mand;
else if (details::imatch(symbol,"max" )) opt_type = details::e_max ;
else if (details::imatch(symbol,"min" )) opt_type = details::e_min ;
else if (details::imatch(symbol,"mor" )) opt_type = details::e_mor ;
else if (details::imatch(symbol,"mul" )) opt_type = details::e_prod;
else if (details::imatch(symbol,"sum" )) opt_type = details::e_sum ;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR086 - Unsupported vararg function: " + symbol,
exprtk_error_location));
return error_node();
}
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
lodge_symbol(symbol,e_st_function);
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR087 - Expected '(' for call to vararg function: " + symbol,
exprtk_error_location));
return error_node();
}
for ( ; ; )
{
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
else
arg_list.push_back(arg);
if (token_is(token_t::e_rbracket))
break;
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR088 - Expected ',' for call to vararg function: " + symbol,
exprtk_error_location));
return error_node();
}
}
result = expression_generator_.vararg_function(opt_type,arg_list);
sdd.delete_ptr = (0 == result);
return result;
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr parse_string_range_statement(expression_node_ptr& expression)
{
if (!token_is(token_t::e_lsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR089 - Expected '[' as start of string range definition",
exprtk_error_location));
free_node(node_allocator_,expression);
return error_node();
}
else if (token_is(token_t::e_rsqrbracket))
{
return node_allocator_.allocate<details::string_size_node<T> >(expression);
}
range_t rp;
if (!parse_range(rp,true))
{
free_node(node_allocator_,expression);
return error_node();
}
expression_node_ptr result = expression_generator_(expression,rp);
if (0 == result)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR090 - Failed to generate string range node",
exprtk_error_location));
free_node(node_allocator_,expression);
}
rp.clear();
return result;
}
#else
inline expression_node_ptr parse_string_range_statement(expression_node_ptr&)
{
return error_node();
}
#endif
inline void parse_pending_string_rangesize(expression_node_ptr& expression)
{
// Allow no more than 100 range calls, eg: s[][][]...[][]
const std::size_t max_rangesize_parses = 100;
std::size_t i = 0;
while
(
(0 != expression) &&
(i++ < max_rangesize_parses) &&
error_list_.empty() &&
is_generally_string_node(expression) &&
token_is(token_t::e_lsqrbracket,prsrhlpr_t::e_hold)
)
{
expression = parse_string_range_statement(expression);
}
}
template <typename Allocator1,
typename Allocator2,
template <typename,typename> class Sequence>
inline expression_node_ptr simplify(Sequence<expression_node_ptr,Allocator1>& expression_list,
Sequence<bool,Allocator2>& side_effect_list,
const bool specialise_on_final_type = false)
{
if (expression_list.empty())
return error_node();
else if (1 == expression_list.size())
return expression_list[0];
Sequence<expression_node_ptr,Allocator1> tmp_expression_list;
bool return_node_present = false;
for (std::size_t i = 0; i < (expression_list.size() - 1); ++i)
{
if (is_variable_node(expression_list[i]))
continue;
else if (
is_return_node (expression_list[i]) ||
is_break_node (expression_list[i]) ||
is_continue_node(expression_list[i])
)
{
tmp_expression_list.push_back(expression_list[i]);
// Remove all subexpressions after first short-circuit
// node has been encountered.
for (std::size_t j = i + 1; j < expression_list.size(); ++j)
{
free_node(node_allocator_,expression_list[j]);
}
return_node_present = true;
break;
}
else if (
is_constant_node(expression_list[i]) ||
is_null_node (expression_list[i]) ||
!side_effect_list[i]
)
{
free_node(node_allocator_,expression_list[i]);
continue;
}
else
tmp_expression_list.push_back(expression_list[i]);
}
if (!return_node_present)
{
tmp_expression_list.push_back(expression_list.back());
}
expression_list.swap(tmp_expression_list);
if (tmp_expression_list.size() > expression_list.size())
{
exprtk_debug(("simplify() - Reduced subexpressions from %d to %d\n",
static_cast<int>(tmp_expression_list.size()),
static_cast<int>(expression_list .size())));
}
if (
return_node_present ||
side_effect_list.back() ||
(expression_list.size() > 1)
)
state_.activate_side_effect("simplify()");
if (1 == expression_list.size())
return expression_list[0];
else if (specialise_on_final_type && is_generally_string_node(expression_list.back()))
return expression_generator_.vararg_function(details::e_smulti,expression_list);
else
return expression_generator_.vararg_function(details::e_multi,expression_list);
}
inline expression_node_ptr parse_multi_sequence(const std::string& source = "")
{
token_t::token_type close_bracket = token_t::e_rcrlbracket;
token_t::token_type seperator = token_t::e_eof;
if (!token_is(token_t::e_lcrlbracket))
{
if (token_is(token_t::e_lbracket))
{
close_bracket = token_t::e_rbracket;
seperator = token_t::e_comma;
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR091 - Expected '" + token_t::to_str(close_bracket) + "' for call to multi-sequence" +
((!source.empty()) ? std::string(" section of " + source): ""),
exprtk_error_location));
return error_node();
}
}
else if (token_is(token_t::e_rcrlbracket))
{
return node_allocator_.allocate<details::null_node<T> >();
}
std::vector<expression_node_ptr> arg_list;
std::vector<bool> side_effect_list;
expression_node_ptr result = error_node();
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
scope_handler sh(*this);
scoped_bool_or_restorer sbr(state_.side_effect_present);
for ( ; ; )
{
state_.side_effect_present = false;
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
else
{
arg_list.push_back(arg);
side_effect_list.push_back(state_.side_effect_present);
}
if (token_is(close_bracket))
break;
bool is_next_close = peek_token_is(close_bracket);
if (!token_is(seperator) && is_next_close)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR092 - Expected '" + details::to_str(seperator) + "' for call to multi-sequence section of " + source,
exprtk_error_location));
return error_node();
}
if (token_is(close_bracket))
break;
}
result = simplify(arg_list,side_effect_list,source.empty());
sdd.delete_ptr = (0 == result);
return result;
}
inline bool parse_range(range_t& rp, const bool skip_lsqr = false)
{
// Examples of valid ranges:
// 1. [1:5] -> 1..5
// 2. [ :5] -> 0..5
// 3. [1: ] -> 1..end
// 4. [x:y] -> x..y where x <= y
// 5. [x+1:y/2] -> x+1..y/2 where x+1 <= y/2
// 6. [ :y] -> 0..y where 0 <= y
// 7. [x: ] -> x..end where x <= end
rp.clear();
if (!skip_lsqr && !token_is(token_t::e_lsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR093 - Expected '[' for start of range",
exprtk_error_location));
return false;
}
if (token_is(token_t::e_colon))
{
rp.n0_c.first = true;
rp.n0_c.second = 0;
rp.cache.first = 0;
}
else
{
expression_node_ptr r0 = parse_expression();
if (0 == r0)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR094 - Failed parse begin section of range",
exprtk_error_location));
return false;
}
else if (is_constant_node(r0))
{
const T r0_value = r0->value();
if (r0_value >= T(0))
{
rp.n0_c.first = true;
rp.n0_c.second = static_cast<std::size_t>(details::numeric::to_int64(r0_value));
rp.cache.first = rp.n0_c.second;
}
free_node(node_allocator_,r0);
if (r0_value < T(0))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR095 - Range lower bound less than zero! Constraint: r0 >= 0",
exprtk_error_location));
return false;
}
}
else
{
rp.n0_e.first = true;
rp.n0_e.second = r0;
}
if (!token_is(token_t::e_colon))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR096 - Expected ':' for break in range",
exprtk_error_location));
rp.free();
return false;
}
}
if (token_is(token_t::e_rsqrbracket))
{
rp.n1_c.first = true;
rp.n1_c.second = std::numeric_limits<std::size_t>::max();
}
else
{
expression_node_ptr r1 = parse_expression();
if (0 == r1)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR097 - Failed parse end section of range",
exprtk_error_location));
rp.free();
return false;
}
else if (is_constant_node(r1))
{
const T r1_value = r1->value();
if (r1_value >= T(0))
{
rp.n1_c.first = true;
rp.n1_c.second = static_cast<std::size_t>(details::numeric::to_int64(r1_value));
rp.cache.second = rp.n1_c.second;
}
free_node(node_allocator_,r1);
if (r1_value < T(0))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR098 - Range upper bound less than zero! Constraint: r1 >= 0",
exprtk_error_location));
return false;
}
}
else
{
rp.n1_e.first = true;
rp.n1_e.second = r1;
}
if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR099 - Expected ']' for start of range",
exprtk_error_location));
rp.free();
return false;
}
}
if (rp.const_range())
{
std::size_t r0 = 0;
std::size_t r1 = 0;
const bool rp_result = rp(r0,r1);
if (!rp_result || (r0 > r1))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR100 - Invalid range, Constraint: r0 <= r1",
exprtk_error_location));
return false;
}
}
return true;
}
inline void lodge_symbol(const std::string& symbol,
const symbol_type st)
{
dec_.add_symbol(symbol,st);
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr parse_string()
{
const std::string symbol = current_token().value;
typedef details::stringvar_node<T>* strvar_node_t;
expression_node_ptr result = error_node();
strvar_node_t const_str_node = static_cast<strvar_node_t>(0);
scope_element& se = sem_.get_active_element(symbol);
if (scope_element::e_string == se.type)
{
se.active = true;
result = se.str_node;
lodge_symbol(symbol,e_st_local_string);
}
else
{
if (!symtab_store_.is_conststr_stringvar(symbol))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR101 - Unknown string symbol",
exprtk_error_location));
return error_node();
}
result = symtab_store_.get_stringvar(symbol);
if (symtab_store_.is_constant_string(symbol))
{
const_str_node = static_cast<strvar_node_t>(result);
result = expression_generator_(const_str_node->str());
}
lodge_symbol(symbol,e_st_string);
}
if (peek_token_is(token_t::e_lsqrbracket))
{
next_token();
if (peek_token_is(token_t::e_rsqrbracket))
{
next_token();
next_token();
if (const_str_node)
{
free_node(node_allocator_,result);
return expression_generator_(T(const_str_node->size()));
}
else
return node_allocator_.allocate<details::stringvar_size_node<T> >
(static_cast<details::stringvar_node<T>*>(result)->ref());
}
range_t rp;
if (!parse_range(rp))
{
free_node(node_allocator_,result);
return error_node();
}
else if (const_str_node)
{
free_node(node_allocator_,result);
result = expression_generator_(const_str_node->ref(),rp);
}
else
result = expression_generator_(static_cast<details::stringvar_node<T>*>
(result)->ref(), rp);
if (result)
rp.clear();
}
else
next_token();
return result;
}
#else
inline expression_node_ptr parse_string()
{
return error_node();
}
#endif
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr parse_const_string()
{
const std::string const_str = current_token().value;
expression_node_ptr result = expression_generator_(const_str);
if (peek_token_is(token_t::e_lsqrbracket))
{
next_token();
if (peek_token_is(token_t::e_rsqrbracket))
{
next_token();
next_token();
free_node(node_allocator_,result);
return expression_generator_(T(const_str.size()));
}
range_t rp;
if (!parse_range(rp))
{
free_node(node_allocator_,result);
return error_node();
}
free_node(node_allocator_,result);
if (rp.n1_c.first && (rp.n1_c.second == std::numeric_limits<std::size_t>::max()))
{
rp.n1_c.second = const_str.size() - 1;
rp.cache.second = rp.n1_c.second;
}
if (
(rp.n0_c.first && (rp.n0_c.second >= const_str.size())) ||
(rp.n1_c.first && (rp.n1_c.second >= const_str.size()))
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR102 - Overflow in range for string: '" + const_str + "'[" +
(rp.n0_c.first ? details::to_str(static_cast<int>(rp.n0_c.second)) : "?") + ":" +
(rp.n1_c.first ? details::to_str(static_cast<int>(rp.n1_c.second)) : "?") + "]",
exprtk_error_location));
return error_node();
}
result = expression_generator_(const_str,rp);
if (result)
rp.clear();
}
else
next_token();
return result;
}
#else
inline expression_node_ptr parse_const_string()
{
return error_node();
}
#endif
inline expression_node_ptr parse_vector()
{
const std::string symbol = current_token().value;
vector_holder_ptr vec = vector_holder_ptr(0);
const scope_element& se = sem_.get_active_element(symbol);
if (
!details::imatch(se.name, symbol) ||
(se.depth > state_.scope_depth) ||
(scope_element::e_vector != se.type)
)
{
if (0 == (vec = symtab_store_.get_vector(symbol)))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR103 - Symbol '" + symbol+ " not a vector",
exprtk_error_location));
return error_node();
}
}
else
vec = se.vec_node;
expression_node_ptr index_expr = error_node();
next_token();
if (!token_is(token_t::e_lsqrbracket))
{
return node_allocator_.allocate<vector_node_t>(vec);
}
else if (token_is(token_t::e_rsqrbracket))
{
return expression_generator_(T(vec->size()));
}
else if (0 == (index_expr = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR104 - Failed to parse index for vector: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR105 - Expected ']' for index of vector: '" + symbol + "'",
exprtk_error_location));
free_node(node_allocator_,index_expr);
return error_node();
}
// Perform compile-time range check
if (details::is_constant_node(index_expr))
{
const std::size_t index = static_cast<std::size_t>(details::numeric::to_int32(index_expr->value()));
const std::size_t vec_size = vec->size();
if (index >= vec_size)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR106 - Index of " + details::to_str(index) + " out of range for "
"vector '" + symbol + "' of size " + details::to_str(vec_size),
exprtk_error_location));
free_node(node_allocator_,index_expr);
return error_node();
}
}
return expression_generator_.vector_element(symbol,vec,index_expr);
}
inline expression_node_ptr parse_vararg_function_call(ivararg_function<T>* vararg_function, const std::string& vararg_function_name)
{
std::vector<expression_node_ptr> arg_list;
expression_node_ptr result = error_node();
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
next_token();
if (token_is(token_t::e_lbracket))
{
if (token_is(token_t::e_rbracket))
{
if (!vararg_function->allow_zero_parameters())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR107 - Zero parameter call to vararg function: "
+ vararg_function_name + " not allowed",
exprtk_error_location));
return error_node();
}
}
else
{
for ( ; ; )
{
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
else
arg_list.push_back(arg);
if (token_is(token_t::e_rbracket))
break;
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR108 - Expected ',' for call to vararg function: "
+ vararg_function_name,
exprtk_error_location));
return error_node();
}
}
}
}
else if (!vararg_function->allow_zero_parameters())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR109 - Zero parameter call to vararg function: "
+ vararg_function_name + " not allowed",
exprtk_error_location));
return error_node();
}
if (arg_list.size() < vararg_function->min_num_args())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR110 - Invalid number of parameters to call to vararg function: "
+ vararg_function_name + ", require at least "
+ details::to_str(static_cast<int>(vararg_function->min_num_args())) + " parameters",
exprtk_error_location));
return error_node();
}
else if (arg_list.size() > vararg_function->max_num_args())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR111 - Invalid number of parameters to call to vararg function: "
+ vararg_function_name + ", require no more than "
+ details::to_str(static_cast<int>(vararg_function->max_num_args())) + " parameters",
exprtk_error_location));
return error_node();
}
result = expression_generator_.vararg_function_call(vararg_function,arg_list);
sdd.delete_ptr = (0 == result);
return result;
}
class type_checker
{
public:
typedef parser<T> parser_t;
typedef std::vector<std::string> param_seq_list_t;
type_checker(parser_t& p,
const std::string& func_name,
const std::string& param_seq)
: invalid_state_(true),
parser_(p),
function_name_(func_name)
{
split(param_seq);
}
bool verify(const std::string& param_seq, std::size_t& pseq_index)
{
if (param_seq_list_.empty())
return true;
std::vector<std::pair<std::size_t,char> > error_list;
for (std::size_t i = 0; i < param_seq_list_.size(); ++i)
{
details::char_t diff_value = 0;
std::size_t diff_index = 0;
bool result = details::sequence_match(param_seq_list_[i],
param_seq,
diff_index,diff_value);
if (result)
{
pseq_index = i;
return true;
}
else
error_list.push_back(std::make_pair(diff_index,diff_value));
}
if (1 == error_list.size())
{
parser_.
set_error(
make_error(parser_error::e_syntax,
parser_.current_token(),
"ERR112 - Failed parameter type check for function '" + function_name_ + "', "
"Expected '" + param_seq_list_[0] + "' call set: '" + param_seq +"'",
exprtk_error_location));
}
else
{
// find first with largest diff_index;
std::size_t max_diff_index = 0;
for (std::size_t i = 1; i < error_list.size(); ++i)
{
if (error_list[i].first > error_list[max_diff_index].first)
{
max_diff_index = i;
}
}
parser_.
set_error(
make_error(parser_error::e_syntax,
parser_.current_token(),
"ERR113 - Failed parameter type check for function '" + function_name_ + "', "
"Best match: '" + param_seq_list_[max_diff_index] + "' call set: '" + param_seq +"'",
exprtk_error_location));
}
return false;
}
std::size_t paramseq_count() const
{
return param_seq_list_.size();
}
std::string paramseq(const std::size_t& index) const
{
return param_seq_list_[index];
}
bool invalid() const
{
return !invalid_state_;
}
bool allow_zero_parameters() const
{
return
param_seq_list_.end() != std::find(param_seq_list_.begin(),
param_seq_list_.end(),
"Z");
}
private:
void split(const std::string& s)
{
if (s.empty())
return;
std::size_t start = 0;
std::size_t end = 0;
param_seq_list_t param_seq_list;
struct token_validator
{
static inline bool process(const std::string& str,
std::size_t s, std::size_t e,
param_seq_list_t& psl)
{
if (
(e - s) &&
(std::string::npos == str.find("?*")) &&
(std::string::npos == str.find("**"))
)
{
const std::string curr_str = str.substr(s, e - s);
if ("Z" == curr_str)
{
psl.push_back(curr_str);
return true;
}
else if (std::string::npos == curr_str.find_first_not_of("STV*?|"))
{
psl.push_back(curr_str);
return true;
}
}
return false;
}
};
while (std::string::npos != (end = s.find('|',start)))
{
if (!token_validator::process(s, start, end, param_seq_list))
{
invalid_state_ = false;
const std::string err_param_seq = s.substr(start, end - start);
parser_.
set_error(
make_error(parser_error::e_syntax,
parser_.current_token(),
"ERR114 - Invalid parameter sequence of '" + err_param_seq +
"' for function: " + function_name_,
exprtk_error_location));
return;
}
else
start = end + 1;
}
if (start < s.size())
{
if (token_validator::process(s, start, s.size(), param_seq_list))
param_seq_list_ = param_seq_list;
else
{
const std::string err_param_seq = s.substr(start, s.size() - start);
parser_.
set_error(
make_error(parser_error::e_syntax,
parser_.current_token(),
"ERR115 - Invalid parameter sequence of '" + err_param_seq +
"' for function: " + function_name_,
exprtk_error_location));
return;
}
}
}
type_checker(const type_checker&);
type_checker& operator=(const type_checker&);
bool invalid_state_;
parser_t& parser_;
std::string function_name_;
param_seq_list_t param_seq_list_;
};
inline expression_node_ptr parse_generic_function_call(igeneric_function<T>* function, const std::string& function_name)
{
std::vector<expression_node_ptr> arg_list;
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
next_token();
std::string param_type_list;
type_checker tc((*this), function_name, function->parameter_sequence);
if (tc.invalid())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR116 - Type checker instantiation failure for generic function: " + function_name,
exprtk_error_location));
return error_node();
}
if (
!function->parameter_sequence.empty() &&
function->allow_zero_parameters () &&
!tc .allow_zero_parameters ()
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR117 - Mismatch in zero parameter condition for generic function: "
+ function_name,
exprtk_error_location));
return error_node();
}
if (token_is(token_t::e_lbracket))
{
if (token_is(token_t::e_rbracket))
{
if (
!function->allow_zero_parameters() &&
!tc .allow_zero_parameters()
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR118 - Zero parameter call to generic function: "
+ function_name + " not allowed",
exprtk_error_location));
return error_node();
}
}
else
{
for ( ; ; )
{
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
if (is_ivector_node(arg))
param_type_list += 'V';
else if (is_generally_string_node(arg))
param_type_list += 'S';
else // Everything else is assumed to be a scalar returning expression
param_type_list += 'T';
arg_list.push_back(arg);
if (token_is(token_t::e_rbracket))
break;
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR119 - Expected ',' for call to generic function: " + function_name,
exprtk_error_location));
return error_node();
}
}
}
}
else if (
!function->parameter_sequence.empty() &&
function->allow_zero_parameters () &&
!tc .allow_zero_parameters ()
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR120 - Zero parameter call to generic function: "
+ function_name + " not allowed",
exprtk_error_location));
return error_node();
}
std::size_t param_seq_index = 0;
if (
state_.type_check_enabled &&
!tc.verify(param_type_list, param_seq_index)
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR121 - Expected ',' for call to generic function: " + function_name,
exprtk_error_location));
return error_node();
}
expression_node_ptr result = error_node();
if (tc.paramseq_count() <= 1)
result = expression_generator_
.generic_function_call(function, arg_list);
else
result = expression_generator_
.generic_function_call(function, arg_list, param_seq_index);
sdd.delete_ptr = (0 == result);
return result;
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr parse_string_function_call(igeneric_function<T>* function, const std::string& function_name)
{
std::vector<expression_node_ptr> arg_list;
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
next_token();
std::string param_type_list;
type_checker tc((*this), function_name, function->parameter_sequence);
if (
(!function->parameter_sequence.empty()) &&
(0 == tc.paramseq_count())
)
{
return error_node();
}
if (token_is(token_t::e_lbracket))
{
if (!token_is(token_t::e_rbracket))
{
for ( ; ; )
{
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
if (is_ivector_node(arg))
param_type_list += 'V';
else if (is_generally_string_node(arg))
param_type_list += 'S';
else // Everything else is a scalar returning expression
param_type_list += 'T';
arg_list.push_back(arg);
if (token_is(token_t::e_rbracket))
break;
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR122 - Expected ',' for call to string function: " + function_name,
exprtk_error_location));
return error_node();
}
}
}
}
std::size_t param_seq_index = 0;
if (!tc.verify(param_type_list, param_seq_index))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR123 - Expected ',' for call to string function: " + function_name,
exprtk_error_location));
return error_node();
}
expression_node_ptr result = error_node();
if (tc.paramseq_count() <= 1)
result = expression_generator_
.string_function_call(function, arg_list);
else
result = expression_generator_
.string_function_call(function, arg_list, param_seq_index);
sdd.delete_ptr = (0 == result);
return result;
}
#endif
template <typename Type, std::size_t NumberOfParameters>
struct parse_special_function_impl
{
static inline expression_node_ptr process(parser<Type>& p,const details::operator_type opt_type)
{
expression_node_ptr branch[NumberOfParameters];
expression_node_ptr result = error_node();
std::fill_n(branch,NumberOfParameters,reinterpret_cast<expression_node_ptr>(0));
scoped_delete<expression_node_t,NumberOfParameters> sd(p,branch);
p.next_token();
if (!p.token_is(token_t::e_lbracket))
{
p.set_error(
make_error(parser_error::e_syntax,
p.current_token(),
"ERR124 - Expected '(' for special function",
exprtk_error_location));
return error_node();
}
for (std::size_t i = 0; i < NumberOfParameters; ++i)
{
branch[i] = p.parse_expression();
if (0 == branch[i])
{
return p.error_node();
}
else if (i < (NumberOfParameters - 1))
{
if (!p.token_is(token_t::e_comma))
{
p.set_error(
make_error(parser_error::e_syntax,
p.current_token(),
"ERR125 - Expected ',' before next parameter of special function",
exprtk_error_location));
return p.error_node();
}
}
}
if (!p.token_is(token_t::e_rbracket))
return p.error_node();
else
result = p.expression_generator_.special_function(opt_type,branch);
sd.delete_ptr = (0 == result);
return result;
}
};
inline expression_node_ptr parse_special_function()
{
// Expect: $fDD(expr0,expr1,expr2) or $fDD(expr0,expr1,expr2,expr3)
if (
!details::is_digit(current_token().value[2]) ||
!details::is_digit(current_token().value[3])
)
{
set_error(
make_error(parser_error::e_token,
current_token(),
"ERR126 - Invalid special function[1]: " + current_token().value,
exprtk_error_location));
return error_node();
}
const int id = (current_token().value[2] - '0') * 10 +
(current_token().value[3] - '0');
if (id >= details::e_sffinal)
{
set_error(
make_error(parser_error::e_token,
current_token(),
"ERR127 - Invalid special function[2]: " + current_token().value,
exprtk_error_location));
return error_node();
}
const int sf_3_to_4 = details::e_sf48;
const details::operator_type opt_type = details::operator_type(id + 1000);
const std::size_t NumberOfParameters = (id < (sf_3_to_4 - 1000)) ? 3U : 4U;
switch (NumberOfParameters)
{
case 3 : return parse_special_function_impl<T,3>::process((*this),opt_type);
case 4 : return parse_special_function_impl<T,4>::process((*this),opt_type);
default : return error_node();
}
}
inline expression_node_ptr parse_null_statement()
{
next_token();
return node_allocator_.allocate<details::null_node<T> >();
}
#ifndef exprtk_disable_break_continue
inline expression_node_ptr parse_break_statement()
{
if (state_.parsing_break_stmt)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR128 - Break call within a break call is not allowed",
exprtk_error_location));
return error_node();
}
scoped_bool_negator sbn(state_.parsing_break_stmt);
if (!brkcnt_list_.empty())
{
next_token();
brkcnt_list_.front() = true;
expression_node_ptr return_expr = error_node();
if (token_is(token_t::e_lsqrbracket))
{
if (0 == (return_expr = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR129 - Failed to parse return expression for 'break' statement",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR130 - Expected ']' at the completion of break's return expression",
exprtk_error_location));
free_node(node_allocator_,return_expr);
return error_node();
}
}
state_.activate_side_effect("parse_break_statement()");
return node_allocator_.allocate<details::break_node<T> >(return_expr);
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR131 - Invalid use of 'break', allowed only in the scope of a loop",
exprtk_error_location));
}
return error_node();
}
inline expression_node_ptr parse_continue_statement()
{
if (!brkcnt_list_.empty())
{
next_token();
brkcnt_list_.front() = true;
state_.activate_side_effect("parse_continue_statement()");
return node_allocator_.allocate<details::continue_node<T> >();
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR132 - Invalid use of 'continue', allowed only in the scope of a loop",
exprtk_error_location));
return error_node();
}
}
#endif
inline expression_node_ptr parse_define_vector_statement(const std::string& vec_name)
{
expression_node_ptr size_expr = error_node();
if (!token_is(token_t::e_lsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR133 - Expected '[' as part of vector size definition",
exprtk_error_location));
return error_node();
}
else if (0 == (size_expr = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR134 - Failed to determine size of vector '" + vec_name + "'",
exprtk_error_location));
return error_node();
}
else if (!is_constant_node(size_expr))
{
free_node(node_allocator_,size_expr);
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR135 - Expected a literal number as size of vector '" + vec_name + "'",
exprtk_error_location));
return error_node();
}
T vector_size = size_expr->value();
free_node(node_allocator_,size_expr);
if (
(vector_size <= T(0)) ||
std::not_equal_to<T>()
(T(0),vector_size - details::numeric::trunc(vector_size))
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR136 - Invalid vector size. Must be an integer greater than zero, size: " +
details::to_str(details::numeric::to_int32(vector_size)),
exprtk_error_location));
return error_node();
}
std::vector<expression_node_ptr> vec_initilizer_list;
scoped_vec_delete<expression_node_t> svd((*this),vec_initilizer_list);
bool single_value_initialiser = false;
bool vec_to_vec_initialiser = false;
bool null_initialisation = false;
if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR137 - Expected ']' as part of vector size definition",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_eof))
{
if (!token_is(token_t::e_assign))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR138 - Expected ':=' as part of vector definition",
exprtk_error_location));
return error_node();
}
else if (token_is(token_t::e_lsqrbracket))
{
expression_node_ptr initialiser = parse_expression();
if (0 == initialiser)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR139 - Failed to parse single vector initialiser",
exprtk_error_location));
return error_node();
}
vec_initilizer_list.push_back(initialiser);
if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR140 - Expected ']' to close single value vector initialiser",
exprtk_error_location));
return error_node();
}
single_value_initialiser = true;
}
else if (!token_is(token_t::e_lcrlbracket))
{
expression_node_ptr initialiser = error_node();
// Is this a vector to vector assignment and initialisation?
if (token_t::e_symbol == current_token().type)
{
// Is it a locally defined vector?
scope_element& se = sem_.get_active_element(current_token().value);
if (scope_element::e_vector == se.type)
{
if (0 != (initialiser = parse_expression()))
vec_initilizer_list.push_back(initialiser);
else
return error_node();
}
// Are we dealing with a user defined vector?
else if (symtab_store_.is_vector(current_token().value))
{
lodge_symbol(current_token().value,e_st_vector);
if (0 != (initialiser = parse_expression()))
vec_initilizer_list.push_back(initialiser);
else
return error_node();
}
// Are we dealing with a null initialisation vector definition?
else if (token_is(token_t::e_symbol,"null"))
null_initialisation = true;
}
if (!null_initialisation)
{
if (0 == initialiser)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR141 - Expected '{' as part of vector initialiser list",
exprtk_error_location));
return error_node();
}
else
vec_to_vec_initialiser = true;
}
}
else if (!token_is(token_t::e_rcrlbracket))
{
for ( ; ; )
{
expression_node_ptr initialiser = parse_expression();
if (0 == initialiser)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR142 - Expected '{' as part of vector initialiser list",
exprtk_error_location));
return error_node();
}
else
vec_initilizer_list.push_back(initialiser);
if (token_is(token_t::e_rcrlbracket))
break;
bool is_next_close = peek_token_is(token_t::e_rcrlbracket);
if (!token_is(token_t::e_comma) && is_next_close)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR143 - Expected ',' between vector initialisers",
exprtk_error_location));
return error_node();
}
if (token_is(token_t::e_rcrlbracket))
break;
}
}
if (
!token_is(token_t::e_rbracket ,prsrhlpr_t::e_hold) &&
!token_is(token_t::e_rcrlbracket,prsrhlpr_t::e_hold) &&
!token_is(token_t::e_rsqrbracket,prsrhlpr_t::e_hold)
)
{
if (!token_is(token_t::e_eof))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR144 - Expected ';' at end of vector definition",
exprtk_error_location));
return error_node();
}
}
if (vec_initilizer_list.size() > vector_size)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR145 - Initialiser list larger than the number of elements in the vector: '" + vec_name + "'",
exprtk_error_location));
return error_node();
}
}
typename symbol_table_t::vector_holder_ptr vec_holder = typename symbol_table_t::vector_holder_ptr(0);
const std::size_t vec_size = static_cast<std::size_t>(details::numeric::to_int32(vector_size));
scope_element& se = sem_.get_element(vec_name);
if (se.name == vec_name)
{
if (se.active)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR146 - Illegal redefinition of local vector: '" + vec_name + "'",
exprtk_error_location));
return error_node();
}
else if (
(se.size == vec_size) &&
(scope_element::e_vector == se.type)
)
{
vec_holder = se.vec_node;
se.active = true;
se.depth = state_.scope_depth;
se.ref_count++;
}
}
if (0 == vec_holder)
{
scope_element nse;
nse.name = vec_name;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_vector;
nse.depth = state_.scope_depth;
nse.size = vec_size;
nse.data = new T[vec_size];
nse.vec_node = new typename scope_element::vector_holder_t((T*)(nse.data),nse.size);
if (!sem_.add_element(nse))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR147 - Failed to add new local vector '" + vec_name + "' to SEM",
exprtk_error_location));
sem_.free_element(nse);
return error_node();
}
vec_holder = nse.vec_node;
exprtk_debug(("parse_define_vector_statement() - INFO - Added new local vector: %s[%d]\n",
nse.name.c_str(),
static_cast<int>(nse.size)));
}
state_.activate_side_effect("parse_define_vector_statement()");
lodge_symbol(vec_name,e_st_local_vector);
expression_node_ptr result = error_node();
if (null_initialisation)
result = expression_generator_(T(0.0));
else if (vec_to_vec_initialiser)
result = expression_generator_(
details::e_assign,
node_allocator_.allocate<vector_node_t>(vec_holder),
vec_initilizer_list[0]);
else
result = node_allocator_
.allocate<details::vector_assignment_node<T> >(
(*vec_holder)[0],
vec_size,
vec_initilizer_list,
single_value_initialiser);
svd.delete_ptr = (0 == result);
return result;
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr parse_define_string_statement(const std::string& str_name, expression_node_ptr initialisation_expression)
{
stringvar_node_t* str_node = reinterpret_cast<stringvar_node_t*>(0);
scope_element& se = sem_.get_element(str_name);
if (se.name == str_name)
{
if (se.active)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR148 - Illegal redefinition of local variable: '" + str_name + "'",
exprtk_error_location));
free_node(node_allocator_,initialisation_expression);
return error_node();
}
else if (scope_element::e_string == se.type)
{
str_node = se.str_node;
se.active = true;
se.depth = state_.scope_depth;
se.ref_count++;
}
}
if (0 == str_node)
{
scope_element nse;
nse.name = str_name;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_string;
nse.depth = state_.scope_depth;
nse.data = new std::string;
nse.str_node = new stringvar_node_t(*(std::string*)(nse.data));
if (!sem_.add_element(nse))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR149 - Failed to add new local string variable '" + str_name + "' to SEM",
exprtk_error_location));
free_node(node_allocator_,initialisation_expression);
sem_.free_element(nse);
return error_node();
}
str_node = nse.str_node;
exprtk_debug(("parse_define_string_statement() - INFO - Added new local string variable: %s\n",nse.name.c_str()));
}
lodge_symbol(str_name,e_st_local_string);
state_.activate_side_effect("parse_define_string_statement()");
expression_node_ptr branch[2] = {0};
branch[0] = str_node;
branch[1] = initialisation_expression;
return expression_generator_(details::e_assign,branch);
}
#else
inline expression_node_ptr parse_define_string_statement(const std::string&, expression_node_ptr)
{
return error_node();
}
#endif
inline bool local_variable_is_shadowed(const std::string& symbol)
{
const scope_element& se = sem_.get_element(symbol);
return (se.name == symbol) && se.active;
}
inline expression_node_ptr parse_define_var_statement()
{
if (settings_.vardef_disabled())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR150 - Illegal variable definition",
exprtk_error_location));
return error_node();
}
else if (!details::imatch(current_token().value,"var"))
{
return error_node();
}
else
next_token();
const std::string var_name = current_token().value;
expression_node_ptr initialisation_expression = error_node();
if (!token_is(token_t::e_symbol))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR151 - Expected a symbol for variable definition",
exprtk_error_location));
return error_node();
}
else if (details::is_reserved_symbol(var_name))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR152 - Illegal redefinition of reserved keyword: '" + var_name + "'",
exprtk_error_location));
return error_node();
}
else if (symtab_store_.symbol_exists(var_name))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR153 - Illegal redefinition of variable '" + var_name + "'",
exprtk_error_location));
return error_node();
}
else if (local_variable_is_shadowed(var_name))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR154 - Illegal redefinition of local variable: '" + var_name + "'",
exprtk_error_location));
return error_node();
}
else if (token_is(token_t::e_lsqrbracket,prsrhlpr_t::e_hold))
{
return parse_define_vector_statement(var_name);
}
else if (token_is(token_t::e_lcrlbracket,prsrhlpr_t::e_hold))
{
return parse_uninitialised_var_statement(var_name);
}
else if (token_is(token_t::e_assign))
{
if (0 == (initialisation_expression = parse_expression()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR155 - Failed to parse initialisation expression",
exprtk_error_location));
return error_node();
}
}
if (
!token_is(token_t::e_rbracket ,prsrhlpr_t::e_hold) &&
!token_is(token_t::e_rcrlbracket,prsrhlpr_t::e_hold) &&
!token_is(token_t::e_rsqrbracket,prsrhlpr_t::e_hold)
)
{
if (!token_is(token_t::e_eof,prsrhlpr_t::e_hold))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR156 - Expected ';' after variable definition",
exprtk_error_location));
free_node(node_allocator_,initialisation_expression);
return error_node();
}
}
if (
(0 != initialisation_expression) &&
details::is_generally_string_node(initialisation_expression)
)
{
return parse_define_string_statement(var_name,initialisation_expression);
}
expression_node_ptr var_node = reinterpret_cast<expression_node_ptr>(0);
scope_element& se = sem_.get_element(var_name);
if (se.name == var_name)
{
if (se.active)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR157 - Illegal redefinition of local variable: '" + var_name + "'",
exprtk_error_location));
free_node(node_allocator_, initialisation_expression);
return error_node();
}
else if (scope_element::e_variable == se.type)
{
var_node = se.var_node;
se.active = true;
se.depth = state_.scope_depth;
se.ref_count++;
}
}
if (0 == var_node)
{
scope_element nse;
nse.name = var_name;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_variable;
nse.depth = state_.scope_depth;
nse.data = new T(T(0));
nse.var_node = node_allocator_.allocate<variable_node_t>(*(T*)(nse.data));
if (!sem_.add_element(nse))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR158 - Failed to add new local variable '" + var_name + "' to SEM",
exprtk_error_location));
free_node(node_allocator_, initialisation_expression);
sem_.free_element(nse);
return error_node();
}
var_node = nse.var_node;
exprtk_debug(("parse_define_var_statement() - INFO - Added new local variable: %s\n",nse.name.c_str()));
}
state_.activate_side_effect("parse_define_var_statement()");
lodge_symbol(var_name,e_st_local_variable);
expression_node_ptr branch[2] = {0};
branch[0] = var_node;
branch[1] = initialisation_expression ? initialisation_expression : expression_generator_(T(0));
return expression_generator_(details::e_assign,branch);
}
inline expression_node_ptr parse_uninitialised_var_statement(const std::string& var_name)
{
if (
!token_is(token_t::e_lcrlbracket) ||
!token_is(token_t::e_rcrlbracket)
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR159 - Expected a '{}' for uninitialised var definition",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_eof,prsrhlpr_t::e_hold))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR160 - Expected ';' after uninitialised variable definition",
exprtk_error_location));
return error_node();
}
expression_node_ptr var_node = reinterpret_cast<expression_node_ptr>(0);
scope_element& se = sem_.get_element(var_name);
if (se.name == var_name)
{
if (se.active)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR161 - Illegal redefinition of local variable: '" + var_name + "'",
exprtk_error_location));
return error_node();
}
else if (scope_element::e_variable == se.type)
{
var_node = se.var_node;
se.active = true;
se.ref_count++;
}
}
if (0 == var_node)
{
scope_element nse;
nse.name = var_name;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_variable;
nse.depth = state_.scope_depth;
nse.ip_index = sem_.next_ip_index();
nse.data = new T(T(0));
nse.var_node = node_allocator_.allocate<variable_node_t>(*(T*)(nse.data));
if (!sem_.add_element(nse))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR162 - Failed to add new local variable '" + var_name + "' to SEM",
exprtk_error_location));
sem_.free_element(nse);
return error_node();
}
exprtk_debug(("parse_uninitialised_var_statement() - INFO - Added new local variable: %s\n",
nse.name.c_str()));
}
lodge_symbol(var_name,e_st_local_variable);
state_.activate_side_effect("parse_uninitialised_var_statement()");
return expression_generator_(T(0));
}
inline expression_node_ptr parse_swap_statement()
{
if (!details::imatch(current_token().value,"swap"))
{
return error_node();
}
else
next_token();
if (!token_is(token_t::e_lbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR163 - Expected '(' at start of swap statement",
exprtk_error_location));
return error_node();
}
expression_node_ptr variable0 = error_node();
expression_node_ptr variable1 = error_node();
bool variable0_generated = false;
bool variable1_generated = false;
const std::string var0_name = current_token().value;
if (!token_is(token_t::e_symbol,prsrhlpr_t::e_hold))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR164 - Expected a symbol for variable or vector element definition",
exprtk_error_location));
return error_node();
}
else if (peek_token_is(token_t::e_lsqrbracket))
{
if (0 == (variable0 = parse_vector()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR165 - First parameter to swap is an invalid vector element: '" + var0_name + "'",
exprtk_error_location));
return error_node();
}
variable0_generated = true;
}
else
{
if (symtab_store_.is_variable(var0_name))
{
variable0 = symtab_store_.get_variable(var0_name);
}
scope_element& se = sem_.get_element(var0_name);
if (
(se.active) &&
(se.name == var0_name) &&
(scope_element::e_variable == se.type)
)
{
variable0 = se.var_node;
}
lodge_symbol(var0_name,e_st_variable);
if (0 == variable0)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR166 - First parameter to swap is an invalid variable: '" + var0_name + "'",
exprtk_error_location));
return error_node();
}
else
next_token();
}
if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR167 - Expected ',' between parameters to swap",
exprtk_error_location));
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
return error_node();
}
const std::string var1_name = current_token().value;
if (!token_is(token_t::e_symbol,prsrhlpr_t::e_hold))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR168 - Expected a symbol for variable or vector element definition",
exprtk_error_location));
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
return error_node();
}
else if (peek_token_is(token_t::e_lsqrbracket))
{
if (0 == (variable1 = parse_vector()))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR169 - Second parameter to swap is an invalid vector element: '" + var1_name + "'",
exprtk_error_location));
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
return error_node();
}
variable1_generated = true;
}
else
{
if (symtab_store_.is_variable(var1_name))
{
variable1 = symtab_store_.get_variable(var1_name);
}
scope_element& se = sem_.get_element(var1_name);
if (
(se.active) &&
(se.name == var1_name) &&
(scope_element::e_variable == se.type)
)
{
variable1 = se.var_node;
}
lodge_symbol(var1_name,e_st_variable);
if (0 == variable1)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR170 - Second parameter to swap is an invalid variable: '" + var1_name + "'",
exprtk_error_location));
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
return error_node();
}
else
next_token();
}
if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR171 - Expected ')' at end of swap statement",
exprtk_error_location));
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
if (variable1_generated)
{
free_node(node_allocator_,variable1);
}
return error_node();
}
typedef details::variable_node<T>* variable_node_ptr;
variable_node_ptr v0 = variable_node_ptr(0);
variable_node_ptr v1 = variable_node_ptr(0);
expression_node_ptr result = error_node();
if (
(0 != (v0 = dynamic_cast<variable_node_ptr>(variable0))) &&
(0 != (v1 = dynamic_cast<variable_node_ptr>(variable1)))
)
{
result = node_allocator_.allocate<details::swap_node<T> >(v0, v1);
if (variable0_generated)
{
free_node(node_allocator_,variable0);
}
if (variable1_generated)
{
free_node(node_allocator_,variable1);
}
}
else
result = node_allocator_.allocate<details::swap_generic_node<T> >
(variable0, variable1);
state_.activate_side_effect("parse_swap_statement()");
return result;
}
#ifndef exprtk_disable_return_statement
inline expression_node_ptr parse_return_statement()
{
if (state_.parsing_return_stmt)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR172 - Return call within a return call is not allowed",
exprtk_error_location));
return error_node();
}
scoped_bool_negator sbn(state_.parsing_return_stmt);
std::vector<expression_node_ptr> arg_list;
scoped_vec_delete<expression_node_t> sdd((*this),arg_list);
if (!details::imatch(current_token().value,"return"))
{
return error_node();
}
else
next_token();
if (!token_is(token_t::e_lsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR173 - Expected '[' at start of return statement",
exprtk_error_location));
return error_node();
}
else if (!token_is(token_t::e_rsqrbracket))
{
for ( ; ; )
{
expression_node_ptr arg = parse_expression();
if (0 == arg)
return error_node();
arg_list.push_back(arg);
if (token_is(token_t::e_rsqrbracket))
break;
else if (!token_is(token_t::e_comma))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR174 - Expected ',' between values during call to return",
exprtk_error_location));
return error_node();
}
}
}
else if (settings_.zero_return_disabled())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR175 - Zero parameter return statement not allowed",
exprtk_error_location));
return error_node();
}
lexer::token prev_token = current_token();
if (token_is(token_t::e_rsqrbracket))
{
if (!arg_list.empty())
{
set_error(
make_error(parser_error::e_syntax,
prev_token,
"ERR176 - Invalid ']' found during return call",
exprtk_error_location));
return error_node();
}
}
std::string ret_param_type_list;
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
if (0 == arg_list[i])
return error_node();
else if (is_ivector_node(arg_list[i]))
ret_param_type_list += 'V';
else if (is_generally_string_node(arg_list[i]))
ret_param_type_list += 'S';
else
ret_param_type_list += 'T';
}
dec_.retparam_list_.push_back(ret_param_type_list);
expression_node_ptr result = expression_generator_.return_call(arg_list);
sdd.delete_ptr = (0 == result);
state_.return_stmt_present = true;
state_.activate_side_effect("parse_return_statement()");
return result;
}
#else
inline expression_node_ptr parse_return_statement()
{
return error_node();
}
#endif
inline bool post_variable_process(const std::string& symbol)
{
if (
peek_token_is(token_t::e_lbracket ) ||
peek_token_is(token_t::e_lcrlbracket) ||
peek_token_is(token_t::e_lsqrbracket)
)
{
if (!settings_.commutative_check_enabled())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR177 - Invalid sequence of variable '"+ symbol + "' and bracket",
exprtk_error_location));
return false;
}
lexer().insert_front(token_t::e_mul);
}
return true;
}
inline bool post_bracket_process(const typename token_t::token_type& token, expression_node_ptr& branch)
{
bool implied_mul = false;
if (is_generally_string_node(branch))
return true;
const lexer::parser_helper::token_advance_mode hold = prsrhlpr_t::e_hold;
switch (token)
{
case token_t::e_lcrlbracket : implied_mul = token_is(token_t::e_lbracket ,hold) ||
token_is(token_t::e_lcrlbracket,hold) ||
token_is(token_t::e_lsqrbracket,hold) ;
break;
case token_t::e_lbracket : implied_mul = token_is(token_t::e_lbracket ,hold) ||
token_is(token_t::e_lcrlbracket,hold) ||
token_is(token_t::e_lsqrbracket,hold) ;
break;
case token_t::e_lsqrbracket : implied_mul = token_is(token_t::e_lbracket ,hold) ||
token_is(token_t::e_lcrlbracket,hold) ||
token_is(token_t::e_lsqrbracket,hold) ;
break;
default : return true;
}
if (implied_mul)
{
if (!settings_.commutative_check_enabled())
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR178 - Invalid sequence of brackets",
exprtk_error_location));
return false;
}
else if (token_t::e_eof != current_token().type)
{
lexer().insert_front(current_token().type);
lexer().insert_front(token_t::e_mul);
next_token();
}
}
return true;
}
inline expression_node_ptr parse_symtab_symbol()
{
const std::string symbol = current_token().value;
// Are we dealing with a variable or a special constant?
expression_node_ptr variable = symtab_store_.get_variable(symbol);
if (variable)
{
if (symtab_store_.is_constant_node(symbol))
{
variable = expression_generator_(variable->value());
}
if (!post_variable_process(symbol))
return error_node();
lodge_symbol(symbol,e_st_variable);
next_token();
return variable;
}
// Are we dealing with a locally defined variable, vector or string?
if (!sem_.empty())
{
scope_element& se = sem_.get_active_element(symbol);
if (se.active && details::imatch(se.name, symbol))
{
if (scope_element::e_variable == se.type)
{
se.active = true;
lodge_symbol(symbol,e_st_local_variable);
if (!post_variable_process(symbol))
return error_node();
next_token();
return se.var_node;
}
else if (scope_element::e_vector == se.type)
{
return parse_vector();
}
#ifndef exprtk_disable_string_capabilities
else if (scope_element::e_string == se.type)
{
return parse_string();
}
#endif
}
}
#ifndef exprtk_disable_string_capabilities
// Are we dealing with a string variable?
if (symtab_store_.is_stringvar(symbol))
{
return parse_string();
}
#endif
{
// Are we dealing with a function?
ifunction<T>* function = symtab_store_.get_function(symbol);
if (function)
{
lodge_symbol(symbol,e_st_function);
expression_node_ptr func_node =
parse_function_invocation(function,symbol);
if (func_node)
return func_node;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR179 - Failed to generate node for function: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
}
}
{
// Are we dealing with a vararg function?
ivararg_function<T>* vararg_function = symtab_store_.get_vararg_function(symbol);
if (vararg_function)
{
lodge_symbol(symbol,e_st_function);
expression_node_ptr vararg_func_node =
parse_vararg_function_call(vararg_function, symbol);
if (vararg_func_node)
return vararg_func_node;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR180 - Failed to generate node for vararg function: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
}
}
{
// Are we dealing with a vararg generic function?
igeneric_function<T>* generic_function = symtab_store_.get_generic_function(symbol);
if (generic_function)
{
lodge_symbol(symbol,e_st_function);
expression_node_ptr genericfunc_node =
parse_generic_function_call(generic_function, symbol);
if (genericfunc_node)
return genericfunc_node;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR181 - Failed to generate node for generic function: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
}
}
#ifndef exprtk_disable_string_capabilities
{
// Are we dealing with a vararg string returning function?
igeneric_function<T>* string_function = symtab_store_.get_string_function(symbol);
if (string_function)
{
lodge_symbol(symbol,e_st_function);
expression_node_ptr stringfunc_node =
parse_string_function_call(string_function, symbol);
if (stringfunc_node)
return stringfunc_node;
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR182 - Failed to generate node for string function: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
}
}
#endif
// Are we dealing with a vector?
if (symtab_store_.is_vector(symbol))
{
lodge_symbol(symbol,e_st_vector);
return parse_vector();
}
if (details::is_reserved_symbol(symbol))
{
if (
settings_.function_enabled(symbol) ||
!details::is_base_function(symbol)
)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR183 - Invalid use of reserved symbol '" + symbol + "'",
exprtk_error_location));
return error_node();
}
}
// Should we handle unknown symbols?
if (resolve_unknown_symbol_ && unknown_symbol_resolver_)
{
if (!(settings_.rsrvd_sym_usr_disabled() && details::is_reserved_symbol(symbol)))
{
symbol_table_t& symtab = symtab_store_.get_symbol_table();
std::string error_message;
if (unknown_symbol_resolver::e_usrmode_default == unknown_symbol_resolver_->mode)
{
T default_value = T(0);
typename unknown_symbol_resolver::usr_symbol_type usr_symbol_type;
if (unknown_symbol_resolver_->process(symbol, usr_symbol_type, default_value, error_message))
{
bool create_result = false;
switch (usr_symbol_type)
{
case unknown_symbol_resolver::e_usr_variable_type : create_result = symtab.create_variable(symbol, default_value);
break;
case unknown_symbol_resolver::e_usr_constant_type : create_result = symtab.add_constant(symbol, default_value);
break;
default : create_result = false;
}
if (create_result)
{
expression_node_ptr var = symtab_store_.get_variable(symbol);
if (var)
{
if (symtab_store_.is_constant_node(symbol))
{
var = expression_generator_(var->value());
}
lodge_symbol(symbol,e_st_variable);
if (!post_variable_process(symbol))
return error_node();
next_token();
return var;
}
}
}
set_error(
make_error(parser_error::e_symtab,
current_token(),
"ERR184 - Failed to create variable: '" + symbol + "'" +
(error_message.empty() ? "" : " - " + error_message),
exprtk_error_location));
}
else if (unknown_symbol_resolver::e_usrmode_extended == unknown_symbol_resolver_->mode)
{
if (unknown_symbol_resolver_->process(symbol, symtab, error_message))
{
expression_node_ptr result = parse_symtab_symbol();
if (result)
{
return result;
}
}
set_error(
make_error(parser_error::e_symtab,
current_token(),
"ERR185 - Failed to resolve symbol: '" + symbol + "'" +
(error_message.empty() ? "" : " - " + error_message),
exprtk_error_location));
}
return error_node();
}
}
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR186 - Undefined symbol: '" + symbol + "'",
exprtk_error_location));
return error_node();
}
inline expression_node_ptr parse_symbol()
{
static const std::string symbol_if = "if" ;
static const std::string symbol_while = "while" ;
static const std::string symbol_repeat = "repeat" ;
static const std::string symbol_for = "for" ;
static const std::string symbol_switch = "switch" ;
static const std::string symbol_null = "null" ;
static const std::string symbol_break = "break" ;
static const std::string symbol_continue = "continue";
static const std::string symbol_var = "var" ;
static const std::string symbol_swap = "swap" ;
static const std::string symbol_return = "return" ;
if (valid_vararg_operation(current_token().value))
{
return parse_vararg_function();
}
else if (valid_base_operation(current_token().value))
{
return parse_base_operation();
}
else if (
details::imatch(current_token().value, symbol_if) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_conditional_statement();
}
else if (
details::imatch(current_token().value, symbol_while) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_while_loop();
}
else if (
details::imatch(current_token().value, symbol_repeat) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_repeat_until_loop();
}
else if (
details::imatch(current_token().value, symbol_for) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_for_loop();
}
else if (
details::imatch(current_token().value, symbol_switch) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_switch_statement();
}
else if (details::is_valid_sf_symbol(current_token().value))
{
return parse_special_function();
}
else if (details::imatch(current_token().value, symbol_null))
{
return parse_null_statement();
}
#ifndef exprtk_disable_break_continue
else if (details::imatch(current_token().value, symbol_break))
{
return parse_break_statement();
}
else if (details::imatch(current_token().value, symbol_continue))
{
return parse_continue_statement();
}
#endif
else if (details::imatch(current_token().value, symbol_var))
{
return parse_define_var_statement();
}
else if (details::imatch(current_token().value, symbol_swap))
{
return parse_swap_statement();
}
#ifndef exprtk_disable_return_statement
else if (
details::imatch(current_token().value, symbol_return) &&
settings_.control_struct_enabled(current_token().value)
)
{
return parse_return_statement();
}
#endif
else if (symtab_store_.valid() || !sem_.empty())
{
return parse_symtab_symbol();
}
else
{
set_error(
make_error(parser_error::e_symtab,
current_token(),
"ERR187 - Variable or function detected, yet symbol-table is invalid, Symbol: " + current_token().value,
exprtk_error_location));
return error_node();
}
}
inline expression_node_ptr parse_branch(precedence_level precedence = e_level00)
{
expression_node_ptr branch = error_node();
if (token_t::e_number == current_token().type)
{
T numeric_value = T(0);
if (details::string_to_real(current_token().value, numeric_value))
{
expression_node_ptr literal_exp = expression_generator_(numeric_value);
if (0 == literal_exp)
{
set_error(
make_error(parser_error::e_numeric,
current_token(),
"ERR188 - Failed generate node for scalar: '" + current_token().value + "'",
exprtk_error_location));
return error_node();
}
next_token();
branch = literal_exp;
}
else
{
set_error(
make_error(parser_error::e_numeric,
current_token(),
"ERR189 - Failed to convert '" + current_token().value + "' to a number",
exprtk_error_location));
return error_node();
}
}
else if (token_t::e_symbol == current_token().type)
{
branch = parse_symbol();
}
#ifndef exprtk_disable_string_capabilities
else if (token_t::e_string == current_token().type)
{
branch = parse_const_string();
}
#endif
else if (token_t::e_lbracket == current_token().type)
{
next_token();
if (0 == (branch = parse_expression()))
return error_node();
else if (!token_is(token_t::e_rbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR190 - Expected ')' instead of: '" + current_token().value + "'",
exprtk_error_location));
free_node(node_allocator_,branch);
return error_node();
}
else if (!post_bracket_process(token_t::e_lbracket,branch))
{
free_node(node_allocator_,branch);
return error_node();
}
}
else if (token_t::e_lsqrbracket == current_token().type)
{
next_token();
if (0 == (branch = parse_expression()))
return error_node();
else if (!token_is(token_t::e_rsqrbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR191 - Expected ']' instead of: '" + current_token().value + "'",
exprtk_error_location));
free_node(node_allocator_,branch);
return error_node();
}
else if (!post_bracket_process(token_t::e_lsqrbracket,branch))
{
free_node(node_allocator_,branch);
return error_node();
}
}
else if (token_t::e_lcrlbracket == current_token().type)
{
next_token();
if (0 == (branch = parse_expression()))
return error_node();
else if (!token_is(token_t::e_rcrlbracket))
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR192 - Expected '}' instead of: '" + current_token().value + "'",
exprtk_error_location));
free_node(node_allocator_,branch);
return error_node();
}
else if (!post_bracket_process(token_t::e_lcrlbracket,branch))
{
free_node(node_allocator_,branch);
return error_node();
}
}
else if (token_t::e_sub == current_token().type)
{
next_token();
branch = parse_expression(e_level11);
if (
branch &&
!(
details::is_neg_unary_node (branch) &&
simplify_unary_negation_branch(branch)
)
)
{
branch = expression_generator_(details::e_neg,branch);
}
}
else if (token_t::e_add == current_token().type)
{
next_token();
branch = parse_expression(e_level13);
}
else if (token_t::e_eof == current_token().type)
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR193 - Premature end of expression[1]",
exprtk_error_location));
return error_node();
}
else
{
set_error(
make_error(parser_error::e_syntax,
current_token(),
"ERR194 - Premature end of expression[2]",
exprtk_error_location));
return error_node();
}
if (
branch &&
(e_level00 == precedence) &&
token_is(token_t::e_ternary,prsrhlpr_t::e_hold)
)
{
branch = parse_ternary_conditional_statement(branch);
}
parse_pending_string_rangesize(branch);
return branch;
}
template <typename Type>
class expression_generator
{
public:
typedef details::expression_node<Type>* expression_node_ptr;
typedef expression_node_ptr (*synthesize_functor_t)(expression_generator<T>&, const details::operator_type& operation, expression_node_ptr (&branch)[2]);
typedef std::map<std::string,synthesize_functor_t> synthesize_map_t;
typedef typename exprtk::parser<Type> parser_t;
typedef const Type& vtype;
typedef const Type ctype;
inline void init_synthesize_map()
{
#ifndef exprtk_disable_enhanced_features
synthesize_map_["(v)o(v)"] = synthesize_vov_expression::process;
synthesize_map_["(c)o(v)"] = synthesize_cov_expression::process;
synthesize_map_["(v)o(c)"] = synthesize_voc_expression::process;
#define register_synthezier(S) \
synthesize_map_[S ::node_type::id()] = S ::process; \
register_synthezier(synthesize_vovov_expression0)
register_synthezier(synthesize_vovov_expression1)
register_synthezier(synthesize_vovoc_expression0)
register_synthezier(synthesize_vovoc_expression1)
register_synthezier(synthesize_vocov_expression0)
register_synthezier(synthesize_vocov_expression1)
register_synthezier(synthesize_covov_expression0)
register_synthezier(synthesize_covov_expression1)
register_synthezier(synthesize_covoc_expression0)
register_synthezier(synthesize_covoc_expression1)
register_synthezier(synthesize_cocov_expression1)
register_synthezier(synthesize_vococ_expression0)
register_synthezier(synthesize_vovovov_expression0)
register_synthezier(synthesize_vovovoc_expression0)
register_synthezier(synthesize_vovocov_expression0)
register_synthezier(synthesize_vocovov_expression0)
register_synthezier(synthesize_covovov_expression0)
register_synthezier(synthesize_covocov_expression0)
register_synthezier(synthesize_vocovoc_expression0)
register_synthezier(synthesize_covovoc_expression0)
register_synthezier(synthesize_vococov_expression0)
register_synthezier(synthesize_vovovov_expression1)
register_synthezier(synthesize_vovovoc_expression1)
register_synthezier(synthesize_vovocov_expression1)
register_synthezier(synthesize_vocovov_expression1)
register_synthezier(synthesize_covovov_expression1)
register_synthezier(synthesize_covocov_expression1)
register_synthezier(synthesize_vocovoc_expression1)
register_synthezier(synthesize_covovoc_expression1)
register_synthezier(synthesize_vococov_expression1)
register_synthezier(synthesize_vovovov_expression2)
register_synthezier(synthesize_vovovoc_expression2)
register_synthezier(synthesize_vovocov_expression2)
register_synthezier(synthesize_vocovov_expression2)
register_synthezier(synthesize_covovov_expression2)
register_synthezier(synthesize_covocov_expression2)
register_synthezier(synthesize_vocovoc_expression2)
register_synthezier(synthesize_covovoc_expression2)
register_synthezier(synthesize_vovovov_expression3)
register_synthezier(synthesize_vovovoc_expression3)
register_synthezier(synthesize_vovocov_expression3)
register_synthezier(synthesize_vocovov_expression3)
register_synthezier(synthesize_covovov_expression3)
register_synthezier(synthesize_covocov_expression3)
register_synthezier(synthesize_vocovoc_expression3)
register_synthezier(synthesize_covovoc_expression3)
register_synthezier(synthesize_vococov_expression3)
register_synthezier(synthesize_vovovov_expression4)
register_synthezier(synthesize_vovovoc_expression4)
register_synthezier(synthesize_vovocov_expression4)
register_synthezier(synthesize_vocovov_expression4)
register_synthezier(synthesize_covovov_expression4)
register_synthezier(synthesize_covocov_expression4)
register_synthezier(synthesize_vocovoc_expression4)
register_synthezier(synthesize_covovoc_expression4)
#endif
}
inline void set_parser(parser_t& p)
{
parser_ = &p;
}
inline void set_uom(unary_op_map_t& unary_op_map)
{
unary_op_map_ = &unary_op_map;
}
inline void set_bom(binary_op_map_t& binary_op_map)
{
binary_op_map_ = &binary_op_map;
}
inline void set_ibom(inv_binary_op_map_t& inv_binary_op_map)
{
inv_binary_op_map_ = &inv_binary_op_map;
}
inline void set_sf3m(sf3_map_t& sf3_map)
{
sf3_map_ = &sf3_map;
}
inline void set_sf4m(sf4_map_t& sf4_map)
{
sf4_map_ = &sf4_map;
}
inline void set_allocator(details::node_allocator& na)
{
node_allocator_ = &na;
}
inline void set_strength_reduction_state(const bool enabled)
{
strength_reduction_enabled_ = enabled;
}
inline bool strength_reduction_enabled() const
{
return strength_reduction_enabled_;
}
inline bool valid_operator(const details::operator_type& operation, binary_functor_t& bop)
{
typename binary_op_map_t::iterator bop_itr = binary_op_map_->find(operation);
if ((*binary_op_map_).end() == bop_itr)
return false;
bop = bop_itr->second;
return true;
}
inline bool valid_operator(const details::operator_type& operation, unary_functor_t& uop)
{
typename unary_op_map_t::iterator uop_itr = unary_op_map_->find(operation);
if ((*unary_op_map_).end() == uop_itr)
return false;
uop = uop_itr->second;
return true;
}
inline details::operator_type get_operator(const binary_functor_t& bop)
{
return (*inv_binary_op_map_).find(bop)->second;
}
inline expression_node_ptr operator() (const Type& v) const
{
return node_allocator_->allocate<literal_node_t>(v);
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr operator() (const std::string& s) const
{
return node_allocator_->allocate<string_literal_node_t>(s);
}
inline expression_node_ptr operator() (std::string& s, range_t& rp) const
{
return node_allocator_->allocate_rr<string_range_node_t>(s,rp);
}
inline expression_node_ptr operator() (const std::string& s, range_t& rp) const
{
return node_allocator_->allocate_tt<const_string_range_node_t>(s,rp);
}
inline expression_node_ptr operator() (expression_node_ptr branch, range_t& rp) const
{
if (is_generally_string_node(branch))
return node_allocator_->allocate_tt<generic_string_range_node_t>(branch,rp);
else
return error_node();
}
#endif
inline bool unary_optimisable(const details::operator_type& operation) const
{
return (details::e_abs == operation) || (details::e_acos == operation) ||
(details::e_acosh == operation) || (details::e_asin == operation) ||
(details::e_asinh == operation) || (details::e_atan == operation) ||
(details::e_atanh == operation) || (details::e_ceil == operation) ||
(details::e_cos == operation) || (details::e_cosh == operation) ||
(details::e_exp == operation) || (details::e_expm1 == operation) ||
(details::e_floor == operation) || (details::e_log == operation) ||
(details::e_log10 == operation) || (details::e_log2 == operation) ||
(details::e_log1p == operation) || (details::e_neg == operation) ||
(details::e_pos == operation) || (details::e_round == operation) ||
(details::e_sin == operation) || (details::e_sinc == operation) ||
(details::e_sinh == operation) || (details::e_sqrt == operation) ||
(details::e_tan == operation) || (details::e_tanh == operation) ||
(details::e_cot == operation) || (details::e_sec == operation) ||
(details::e_csc == operation) || (details::e_r2d == operation) ||
(details::e_d2r == operation) || (details::e_d2g == operation) ||
(details::e_g2d == operation) || (details::e_notl == operation) ||
(details::e_sgn == operation) || (details::e_erf == operation) ||
(details::e_erfc == operation) || (details::e_ncdf == operation) ||
(details::e_frac == operation) || (details::e_trunc == operation) ;
}
inline bool sf3_optimisable(const std::string& sf3id, trinary_functor_t& tfunc)
{
typename sf3_map_t::iterator itr = sf3_map_->find(sf3id);
if (sf3_map_->end() == itr)
return false;
else
tfunc = itr->second.first;
return true;
}
inline bool sf4_optimisable(const std::string& sf4id, quaternary_functor_t& qfunc)
{
typename sf4_map_t::iterator itr = sf4_map_->find(sf4id);
if (sf4_map_->end() == itr)
return false;
else
qfunc = itr->second.first;
return true;
}
inline bool sf3_optimisable(const std::string& sf3id, details::operator_type& operation)
{
typename sf3_map_t::iterator itr = sf3_map_->find(sf3id);
if (sf3_map_->end() == itr)
return false;
else
operation = itr->second.second;
return true;
}
inline bool sf4_optimisable(const std::string& sf4id, details::operator_type& operation)
{
typename sf4_map_t::iterator itr = sf4_map_->find(sf4id);
if (sf4_map_->end() == itr)
return false;
else
operation = itr->second.second;
return true;
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr (&branch)[1])
{
if (0 == branch[0])
{
return error_node();
}
else if (details::is_null_node(branch[0]))
{
return branch[0];
}
else if (details::is_break_node(branch[0]))
{
return error_node();
}
else if (details::is_continue_node(branch[0]))
{
return error_node();
}
else if (details::is_constant_node(branch[0]))
{
return synthesize_expression<unary_node_t,1>(operation,branch);
}
else if (unary_optimisable(operation) && details::is_variable_node(branch[0]))
{
return synthesize_uv_expression(operation,branch);
}
else if (unary_optimisable(operation) && details::is_ivector_node(branch[0]))
{
return synthesize_uvec_expression(operation,branch);
}
else
return synthesize_unary_expression(operation,branch);
}
inline bool is_assignment_operation(const details::operator_type& operation) const
{
return (
(details::e_addass == operation) ||
(details::e_subass == operation) ||
(details::e_mulass == operation) ||
(details::e_divass == operation) ||
(details::e_modass == operation)
) &&
parser_->settings_.assignment_enabled(operation);
}
#ifndef exprtk_disable_string_capabilities
inline bool valid_string_operation(const details::operator_type& operation) const
{
return (details::e_add == operation) ||
(details::e_lt == operation) ||
(details::e_lte == operation) ||
(details::e_gt == operation) ||
(details::e_gte == operation) ||
(details::e_eq == operation) ||
(details::e_ne == operation) ||
(details::e_in == operation) ||
(details::e_like == operation) ||
(details::e_ilike == operation) ||
(details::e_assign == operation) ||
(details::e_addass == operation) ||
(details::e_swap == operation) ;
}
#else
inline bool valid_string_operation(const details::operator_type&) const
{
return false;
}
#endif
inline std::string to_str(const details::operator_type& operation) const
{
switch (operation)
{
case details::e_add : return "+" ;
case details::e_sub : return "-" ;
case details::e_mul : return "*" ;
case details::e_div : return "/" ;
case details::e_mod : return "%" ;
case details::e_pow : return "^" ;
case details::e_lt : return "<" ;
case details::e_lte : return "<=" ;
case details::e_gt : return ">" ;
case details::e_gte : return ">=" ;
case details::e_eq : return "==" ;
case details::e_ne : return "!=" ;
case details::e_and : return "and" ;
case details::e_nand : return "nand" ;
case details::e_or : return "or" ;
case details::e_nor : return "nor" ;
case details::e_xor : return "xor" ;
case details::e_xnor : return "xnor" ;
default : return "UNKNOWN";
}
}
inline bool operation_optimisable(const details::operator_type& operation) const
{
return (details::e_add == operation) ||
(details::e_sub == operation) ||
(details::e_mul == operation) ||
(details::e_div == operation) ||
(details::e_mod == operation) ||
(details::e_pow == operation) ||
(details::e_lt == operation) ||
(details::e_lte == operation) ||
(details::e_gt == operation) ||
(details::e_gte == operation) ||
(details::e_eq == operation) ||
(details::e_ne == operation) ||
(details::e_and == operation) ||
(details::e_nand == operation) ||
(details::e_or == operation) ||
(details::e_nor == operation) ||
(details::e_xor == operation) ||
(details::e_xnor == operation) ;
}
inline std::string branch_to_id(expression_node_ptr branch)
{
static const std::string null_str ("(null)" );
static const std::string const_str ("(c)" );
static const std::string var_str ("(v)" );
static const std::string vov_str ("(vov)" );
static const std::string cov_str ("(cov)" );
static const std::string voc_str ("(voc)" );
static const std::string str_str ("(s)" );
static const std::string strrng_str ("(rngs)" );
static const std::string cs_str ("(cs)" );
static const std::string cstrrng_str("(crngs)");
if (details::is_null_node(branch))
return null_str;
else if (details::is_constant_node(branch))
return const_str;
else if (details::is_variable_node(branch))
return var_str;
else if (details::is_vov_node(branch))
return vov_str;
else if (details::is_cov_node(branch))
return cov_str;
else if (details::is_voc_node(branch))
return voc_str;
else if (details::is_string_node(branch))
return str_str;
else if (details::is_const_string_node(branch))
return cs_str;
else if (details::is_string_range_node(branch))
return strrng_str;
else if (details::is_const_string_range_node(branch))
return cstrrng_str;
else if (details::is_t0ot1ot2_node(branch))
return "(" + dynamic_cast<details::T0oT1oT2_base_node<T>*>(branch)->type_id() + ")";
else if (details::is_t0ot1ot2ot3_node(branch))
return "(" + dynamic_cast<details::T0oT1oT2oT3_base_node<T>*>(branch)->type_id() + ")";
else
return "ERROR";
}
inline std::string branch_to_id(expression_node_ptr (&branch)[2])
{
return branch_to_id(branch[0]) + std::string("o") + branch_to_id(branch[1]);
}
inline bool cov_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_constant_node(branch[0]) &&
details::is_variable_node(branch[1]) ;
}
inline bool voc_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_variable_node(branch[0]) &&
details::is_constant_node(branch[1]) ;
}
inline bool vov_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_variable_node(branch[0]) &&
details::is_variable_node(branch[1]) ;
}
inline bool cob_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_constant_node(branch[0]) &&
!details::is_constant_node(branch[1]) ;
}
inline bool boc_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return !details::is_constant_node(branch[0]) &&
details::is_constant_node(branch[1]) ;
}
inline bool cocob_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (
(details::e_add == operation) ||
(details::e_sub == operation) ||
(details::e_mul == operation) ||
(details::e_div == operation)
)
{
return (details::is_constant_node(branch[0]) && details::is_cob_node(branch[1])) ||
(details::is_constant_node(branch[1]) && details::is_cob_node(branch[0])) ;
}
else
return false;
}
inline bool coboc_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (
(details::e_add == operation) ||
(details::e_sub == operation) ||
(details::e_mul == operation) ||
(details::e_div == operation)
)
{
return (details::is_constant_node(branch[0]) && details::is_boc_node(branch[1])) ||
(details::is_constant_node(branch[1]) && details::is_boc_node(branch[0])) ;
}
else
return false;
}
inline bool uvouv_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_uv_node(branch[0]) &&
details::is_uv_node(branch[1]) ;
}
inline bool vob_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return details::is_variable_node(branch[0]) &&
!details::is_variable_node(branch[1]) ;
}
inline bool bov_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return !details::is_variable_node(branch[0]) &&
details::is_variable_node(branch[1]) ;
}
inline bool binext_optimisable(const details::operator_type& operation, expression_node_ptr (&branch)[2]) const
{
if (!operation_optimisable(operation))
return false;
else
return !details::is_constant_node(branch[0]) ||
!details::is_constant_node(branch[1]) ;
}
inline bool is_invalid_assignment_op(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
if (is_assignment_operation(operation))
{
const bool b1_is_genstring = details::is_generally_string_node(branch[1]);
if (details::is_string_node(branch[0]))
return !b1_is_genstring;
else
return (
!details::is_variable_node (branch[0]) &&
!details::is_vector_elem_node (branch[0]) &&
!details::is_rebasevector_elem_node (branch[0]) &&
!details::is_rebasevector_celem_node(branch[0]) &&
!details::is_vector_node (branch[0])
)
|| b1_is_genstring;
}
else
return false;
}
inline bool is_constpow_operation(const details::operator_type& operation, expression_node_ptr(&branch)[2])
{
if (
!is_constant_node(branch[1]) ||
is_constant_node(branch[0]) ||
is_variable_node(branch[0]) ||
is_vector_node (branch[0]) ||
is_generally_string_node(branch[0])
)
return false;
const Type c = static_cast<details::literal_node<Type>*>(branch[1])->value();
return cardinal_pow_optimisable(operation, c);
}
inline bool is_invalid_break_continue_op(expression_node_ptr (&branch)[2])
{
return (
details::is_break_node (branch[0]) ||
details::is_break_node (branch[1]) ||
details::is_continue_node(branch[0]) ||
details::is_continue_node(branch[1])
);
}
inline bool is_invalid_string_op(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
const bool b0_string = is_generally_string_node(branch[0]);
const bool b1_string = is_generally_string_node(branch[1]);
bool result = false;
if (b0_string != b1_string)
result = true;
else if (!valid_string_operation(operation) && b0_string && b1_string)
result = true;
if (result)
{
parser_->set_synthesis_error("Invalid string operation");
}
return result;
}
inline bool is_invalid_string_op(const details::operator_type& operation, expression_node_ptr (&branch)[3])
{
const bool b0_string = is_generally_string_node(branch[0]);
const bool b1_string = is_generally_string_node(branch[1]);
const bool b2_string = is_generally_string_node(branch[2]);
bool result = false;
if ((b0_string != b1_string) || (b1_string != b2_string))
result = true;
else if ((details::e_inrange != operation) && b0_string && b1_string && b2_string)
result = true;
if (result)
{
parser_->set_synthesis_error("Invalid string operation");
}
return result;
}
inline bool is_string_operation(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
const bool b0_string = is_generally_string_node(branch[0]);
const bool b1_string = is_generally_string_node(branch[1]);
return (b0_string && b1_string && valid_string_operation(operation));
}
inline bool is_string_operation(const details::operator_type& operation, expression_node_ptr (&branch)[3])
{
const bool b0_string = is_generally_string_node(branch[0]);
const bool b1_string = is_generally_string_node(branch[1]);
const bool b2_string = is_generally_string_node(branch[2]);
return (b0_string && b1_string && b2_string && (details::e_inrange == operation));
}
#ifndef exprtk_disable_sc_andor
inline bool is_shortcircuit_expression(const details::operator_type& operation)
{
return (
(details::e_scand == operation) ||
(details::e_scor == operation)
);
}
#else
inline bool is_shortcircuit_expression(const details::operator_type&)
{
return false;
}
#endif
inline bool is_null_present(expression_node_ptr (&branch)[2])
{
return (
details::is_null_node(branch[0]) ||
details::is_null_node(branch[1])
);
}
inline bool is_vector_eqineq_logic_operation(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
if (!is_ivector_node(branch[0]) && !is_ivector_node(branch[1]))
return false;
else
return (
(details::e_lt == operation) ||
(details::e_lte == operation) ||
(details::e_gt == operation) ||
(details::e_gte == operation) ||
(details::e_eq == operation) ||
(details::e_ne == operation) ||
(details::e_equal == operation) ||
(details::e_and == operation) ||
(details::e_nand == operation) ||
(details:: e_or == operation) ||
(details:: e_nor == operation) ||
(details:: e_xor == operation) ||
(details::e_xnor == operation)
);
}
inline bool is_vector_arithmetic_operation(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
if (!is_ivector_node(branch[0]) && !is_ivector_node(branch[1]))
return false;
else
return (
(details::e_add == operation) ||
(details::e_sub == operation) ||
(details::e_mul == operation) ||
(details::e_div == operation) ||
(details::e_pow == operation)
);
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
if ((0 == branch[0]) || (0 == branch[1]))
{
return error_node();
}
else if (is_invalid_string_op(operation,branch))
{
return error_node();
}
else if (is_invalid_assignment_op(operation,branch))
{
return error_node();
}
else if (is_invalid_break_continue_op(branch))
{
return error_node();
}
else if (details::e_assign == operation)
{
return synthesize_assignment_expression(operation, branch);
}
else if (details::e_swap == operation)
{
return synthesize_swap_expression(branch);
}
else if (is_assignment_operation(operation))
{
return synthesize_assignment_operation_expression(operation, branch);
}
else if (is_vector_eqineq_logic_operation(operation, branch))
{
return synthesize_veceqineqlogic_operation_expression(operation, branch);
}
else if (is_vector_arithmetic_operation(operation, branch))
{
return synthesize_vecarithmetic_operation_expression(operation, branch);
}
else if (is_shortcircuit_expression(operation))
{
return synthesize_shortcircuit_expression(operation, branch);
}
else if (is_string_operation(operation, branch))
{
return synthesize_string_expression(operation, branch);
}
else if (is_null_present(branch))
{
return synthesize_null_expression(operation, branch);
}
#ifndef exprtk_disable_cardinal_pow_optimisation
else if (is_constpow_operation(operation, branch))
{
return cardinal_pow_optimisation(branch);
}
#endif
expression_node_ptr result = error_node();
#ifndef exprtk_disable_enhanced_features
if (synthesize_expression(operation, branch, result))
{
return result;
}
else
#endif
{
/*
Possible reductions:
1. c o cob -> cob
2. cob o c -> cob
3. c o boc -> boc
4. boc o c -> boc
*/
result = error_node();
if (cocob_optimisable(operation, branch))
{
result = synthesize_cocob_expression::process((*this), operation, branch);
}
else if (coboc_optimisable(operation, branch) && (0 == result))
{
result = synthesize_coboc_expression::process((*this), operation, branch);
}
if (result)
return result;
}
if (uvouv_optimisable(operation, branch))
{
return synthesize_uvouv_expression(operation, branch);
}
else if (vob_optimisable(operation, branch))
{
return synthesize_vob_expression::process((*this), operation, branch);
}
else if (bov_optimisable(operation, branch))
{
return synthesize_bov_expression::process((*this), operation, branch);
}
else if (cob_optimisable(operation, branch))
{
return synthesize_cob_expression::process((*this), operation, branch);
}
else if (boc_optimisable(operation, branch))
{
return synthesize_boc_expression::process((*this), operation, branch);
}
#ifndef exprtk_disable_enhanced_features
else if (cov_optimisable(operation, branch))
{
return synthesize_cov_expression::process((*this), operation, branch);
}
#endif
else if (binext_optimisable(operation, branch))
{
return synthesize_binary_ext_expression::process((*this), operation, branch);
}
else
return synthesize_expression<binary_node_t,2>(operation, branch);
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr (&branch)[3])
{
if (
(0 == branch[0]) ||
(0 == branch[1]) ||
(0 == branch[2])
)
{
details::free_all_nodes(*node_allocator_,branch);
return error_node();
}
else if (is_invalid_string_op(operation, branch))
{
return error_node();
}
else if (is_string_operation(operation, branch))
{
return synthesize_string_expression(operation, branch);
}
else
return synthesize_expression<trinary_node_t,3>(operation, branch);
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr (&branch)[4])
{
return synthesize_expression<quaternary_node_t,4>(operation,branch);
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr b0)
{
expression_node_ptr branch[1] = { b0 };
return (*this)(operation,branch);
}
inline expression_node_ptr operator() (const details::operator_type& operation, expression_node_ptr b0, expression_node_ptr b1)
{
if ((0 == b0) || (0 == b1))
return error_node();
else
{
expression_node_ptr branch[2] = { b0, b1 };
return expression_generator<Type>::operator()(operation,branch);
}
}
inline expression_node_ptr conditional(expression_node_ptr condition,
expression_node_ptr consequent,
expression_node_ptr alternative) const
{
if ((0 == condition) || (0 == consequent))
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, consequent );
free_node(*node_allocator_, alternative);
return error_node();
}
// Can the condition be immediately evaluated? if so optimise.
else if (details::is_constant_node(condition))
{
// True branch
if (details::is_true(condition))
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, alternative);
return consequent;
}
// False branch
else
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, consequent);
if (alternative)
return alternative;
else
return node_allocator_->allocate<details::null_node<T> >();
}
}
else if ((0 != consequent) && (0 != alternative))
{
return node_allocator_->
allocate<conditional_node_t>(condition,consequent,alternative);
}
else
return node_allocator_->
allocate<cons_conditional_node_t>(condition,consequent);
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr conditional_string(expression_node_ptr condition,
expression_node_ptr consequent,
expression_node_ptr alternative) const
{
if ((0 == condition) || (0 == consequent))
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, consequent );
free_node(*node_allocator_, alternative);
return error_node();
}
// Can the condition be immediately evaluated? if so optimise.
else if (details::is_constant_node(condition))
{
// True branch
if (details::is_true(condition))
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, alternative);
return consequent;
}
// False branch
else
{
free_node(*node_allocator_, condition );
free_node(*node_allocator_, consequent);
if (alternative)
return alternative;
else
return node_allocator_->
allocate_c<details::string_literal_node<Type> >("");
}
}
else if ((0 != consequent) && (0 != alternative))
return node_allocator_->
allocate<conditional_string_node_t>(condition,consequent,alternative);
else
return error_node();
}
#else
inline expression_node_ptr conditional_string(expression_node_ptr,
expression_node_ptr,
expression_node_ptr) const
{
return error_node();
}
#endif
inline expression_node_ptr while_loop(expression_node_ptr& condition,
expression_node_ptr& branch,
const bool brkcont = false) const
{
if (!brkcont && details::is_constant_node(condition))
{
expression_node_ptr result = error_node();
if (details::is_true(condition))
// Infinite loops are not allowed.
result = error_node();
else
result = node_allocator_->allocate<details::null_node<Type> >();
free_node(*node_allocator_, condition);
free_node(*node_allocator_, branch );
return result;
}
else if (details::is_null_node(condition))
{
free_node(*node_allocator_,condition);
return branch;
}
else if (!brkcont)
return node_allocator_->allocate<while_loop_node_t>(condition,branch);
#ifndef exprtk_disable_break_continue
else
return node_allocator_->allocate<while_loop_bc_node_t>(condition,branch);
#else
return error_node();
#endif
}
inline expression_node_ptr repeat_until_loop(expression_node_ptr& condition,
expression_node_ptr& branch,
const bool brkcont = false) const
{
if (!brkcont && details::is_constant_node(condition))
{
if (
details::is_true(condition) &&
details::is_constant_node(branch)
)
{
free_node(*node_allocator_,condition);
return branch;
}
free_node(*node_allocator_, condition);
free_node(*node_allocator_, branch );
return error_node();
}
else if (details::is_null_node(condition))
{
free_node(*node_allocator_,condition);
return branch;
}
else if (!brkcont)
return node_allocator_->allocate<repeat_until_loop_node_t>(condition,branch);
#ifndef exprtk_disable_break_continue
else
return node_allocator_->allocate<repeat_until_loop_bc_node_t>(condition,branch);
#else
return error_node();
#endif
}
inline expression_node_ptr for_loop(expression_node_ptr& initialiser,
expression_node_ptr& condition,
expression_node_ptr& incrementor,
expression_node_ptr& loop_body,
bool brkcont = false) const
{
if (!brkcont && details::is_constant_node(condition))
{
expression_node_ptr result = error_node();
if (details::is_true(condition))
// Infinite loops are not allowed.
result = error_node();
else
result = node_allocator_->allocate<details::null_node<Type> >();
free_node(*node_allocator_, initialiser);
free_node(*node_allocator_, condition );
free_node(*node_allocator_, incrementor);
free_node(*node_allocator_, loop_body );
return result;
}
else if (details::is_null_node(condition))
{
free_node(*node_allocator_, initialiser);
free_node(*node_allocator_, condition );
free_node(*node_allocator_, incrementor);
return loop_body;
}
else if (!brkcont)
return node_allocator_->allocate<for_loop_node_t>
(
initialiser,
condition,
incrementor,
loop_body
);
#ifndef exprtk_disable_break_continue
else
return node_allocator_->allocate<for_loop_bc_node_t>
(
initialiser,
condition,
incrementor,
loop_body
);
#else
return error_node();
#endif
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr const_optimise_switch(Sequence<expression_node_ptr,Allocator>& arg_list)
{
expression_node_ptr result = error_node();
for (std::size_t i = 0; i < (arg_list.size() / 2); ++i)
{
expression_node_ptr condition = arg_list[(2 * i) ];
expression_node_ptr consequent = arg_list[(2 * i) + 1];
if ((0 == result) && details::is_true(condition))
{
result = consequent;
break;
}
}
if (0 == result)
{
result = arg_list.back();
}
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
expression_node_ptr current_expr = arg_list[i];
if (current_expr && (current_expr != result))
{
free_node(*node_allocator_,current_expr);
}
}
return result;
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr const_optimise_mswitch(Sequence<expression_node_ptr,Allocator>& arg_list)
{
expression_node_ptr result = error_node();
for (std::size_t i = 0; i < (arg_list.size() / 2); ++i)
{
expression_node_ptr condition = arg_list[(2 * i) ];
expression_node_ptr consequent = arg_list[(2 * i) + 1];
if (details::is_true(condition))
{
result = consequent;
}
}
if (0 == result)
{
T zero = T(0);
result = node_allocator_->allocate<literal_node_t>(zero);
}
for (std::size_t i = 0; i < arg_list.size(); ++i)
{
expression_node_ptr& current_expr = arg_list[i];
if (current_expr && (current_expr != result))
{
free_node(*node_allocator_,current_expr);
}
}
return result;
}
struct switch_nodes
{
typedef std::vector<expression_node_ptr> arg_list_t;
#define case_stmt(N) \
if (is_true(arg[(2 * N)])) { return arg[(2 * N) + 1]->value(); } \
struct switch_1
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0)
return arg.back()->value();
}
};
struct switch_2
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
return arg.back()->value();
}
};
struct switch_3
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
case_stmt(2)
return arg.back()->value();
}
};
struct switch_4
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
case_stmt(2) case_stmt(3)
return arg.back()->value();
}
};
struct switch_5
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
case_stmt(2) case_stmt(3)
case_stmt(4)
return arg.back()->value();
}
};
struct switch_6
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
case_stmt(2) case_stmt(3)
case_stmt(4) case_stmt(5)
return arg.back()->value();
}
};
struct switch_7
{
static inline T process(const arg_list_t& arg)
{
case_stmt(0) case_stmt(1)
case_stmt(2) case_stmt(3)
case_stmt(4) case_stmt(5)
case_stmt(6)
return arg.back()->value();
}
};
#undef case_stmt
};
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr switch_statement(Sequence<expression_node_ptr,Allocator>& arg_list)
{
if (arg_list.empty())
return error_node();
else if (
!all_nodes_valid(arg_list) ||
(arg_list.size() < 3) ||
((arg_list.size() % 2) != 1)
)
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
else if (is_constant_foldable(arg_list))
return const_optimise_switch(arg_list);
switch ((arg_list.size() - 1) / 2)
{
#define case_stmt(N) \
case N : \
return node_allocator_-> \
allocate<details::switch_n_node \
<Type,typename switch_nodes::switch_##N> >(arg_list); \
case_stmt(1)
case_stmt(2)
case_stmt(3)
case_stmt(4)
case_stmt(5)
case_stmt(6)
case_stmt(7)
#undef case_stmt
default : return node_allocator_->allocate<details::switch_node<Type> >(arg_list);
}
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr multi_switch_statement(Sequence<expression_node_ptr,Allocator>& arg_list)
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
else if (is_constant_foldable(arg_list))
return const_optimise_mswitch(arg_list);
else
return node_allocator_->allocate<details::multi_switch_node<Type> >(arg_list);
}
#define unary_opr_switch_statements \
case_stmt(details:: e_abs, details:: abs_op) \
case_stmt(details:: e_acos, details:: acos_op) \
case_stmt(details::e_acosh, details::acosh_op) \
case_stmt(details:: e_asin, details:: asin_op) \
case_stmt(details::e_asinh, details::asinh_op) \
case_stmt(details:: e_atan, details:: atan_op) \
case_stmt(details::e_atanh, details::atanh_op) \
case_stmt(details:: e_ceil, details:: ceil_op) \
case_stmt(details:: e_cos, details:: cos_op) \
case_stmt(details:: e_cosh, details:: cosh_op) \
case_stmt(details:: e_exp, details:: exp_op) \
case_stmt(details::e_expm1, details::expm1_op) \
case_stmt(details::e_floor, details::floor_op) \
case_stmt(details:: e_log, details:: log_op) \
case_stmt(details::e_log10, details::log10_op) \
case_stmt(details:: e_log2, details:: log2_op) \
case_stmt(details::e_log1p, details::log1p_op) \
case_stmt(details:: e_neg, details:: neg_op) \
case_stmt(details:: e_pos, details:: pos_op) \
case_stmt(details::e_round, details::round_op) \
case_stmt(details:: e_sin, details:: sin_op) \
case_stmt(details:: e_sinc, details:: sinc_op) \
case_stmt(details:: e_sinh, details:: sinh_op) \
case_stmt(details:: e_sqrt, details:: sqrt_op) \
case_stmt(details:: e_tan, details:: tan_op) \
case_stmt(details:: e_tanh, details:: tanh_op) \
case_stmt(details:: e_cot, details:: cot_op) \
case_stmt(details:: e_sec, details:: sec_op) \
case_stmt(details:: e_csc, details:: csc_op) \
case_stmt(details:: e_r2d, details:: r2d_op) \
case_stmt(details:: e_d2r, details:: d2r_op) \
case_stmt(details:: e_d2g, details:: d2g_op) \
case_stmt(details:: e_g2d, details:: g2d_op) \
case_stmt(details:: e_notl, details:: notl_op) \
case_stmt(details:: e_sgn, details:: sgn_op) \
case_stmt(details:: e_erf, details:: erf_op) \
case_stmt(details:: e_erfc, details:: erfc_op) \
case_stmt(details:: e_ncdf, details:: ncdf_op) \
case_stmt(details:: e_frac, details:: frac_op) \
case_stmt(details::e_trunc, details::trunc_op) \
inline expression_node_ptr synthesize_uv_expression(const details::operator_type& operation,
expression_node_ptr (&branch)[1])
{
T& v = static_cast<details::variable_node<T>*>(branch[0])->ref();
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<typename details::unary_variable_node<Type,op1<Type> > >(v); \
unary_opr_switch_statements
#undef case_stmt
default : return error_node();
}
}
inline expression_node_ptr synthesize_uvec_expression(const details::operator_type& operation,
expression_node_ptr (&branch)[1])
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<typename details::unary_vector_node<Type,op1<Type> > > \
(operation, branch[0]); \
unary_opr_switch_statements
#undef case_stmt
default : return error_node();
}
}
inline expression_node_ptr synthesize_unary_expression(const details::operator_type& operation,
expression_node_ptr (&branch)[1])
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<typename details::unary_branch_node<Type,op1<Type> > >(branch[0]); \
unary_opr_switch_statements
#undef case_stmt
default : return error_node();
}
}
inline expression_node_ptr const_optimise_sf3(const details::operator_type& operation,
expression_node_ptr (&branch)[3])
{
expression_node_ptr temp_node = error_node();
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : temp_node = node_allocator_-> \
allocate<details::sf3_node<Type,details::sf##op##_op<Type> > > \
(operation, branch); \
break; \
case_stmt(00) case_stmt(01) case_stmt(02) case_stmt(03)
case_stmt(04) case_stmt(05) case_stmt(06) case_stmt(07)
case_stmt(08) case_stmt(09) case_stmt(10) case_stmt(11)
case_stmt(12) case_stmt(13) case_stmt(14) case_stmt(15)
case_stmt(16) case_stmt(17) case_stmt(18) case_stmt(19)
case_stmt(20) case_stmt(21) case_stmt(22) case_stmt(23)
case_stmt(24) case_stmt(25) case_stmt(26) case_stmt(27)
case_stmt(28) case_stmt(29) case_stmt(30) case_stmt(31)
case_stmt(32) case_stmt(33) case_stmt(34) case_stmt(35)
case_stmt(36) case_stmt(37) case_stmt(38) case_stmt(39)
case_stmt(40) case_stmt(41) case_stmt(42) case_stmt(43)
case_stmt(44) case_stmt(45) case_stmt(46) case_stmt(47)
#undef case_stmt
default : return error_node();
}
const T v = temp_node->value();
details::free_node(*node_allocator_,temp_node);
return node_allocator_->allocate<literal_node_t>(v);
}
inline expression_node_ptr varnode_optimise_sf3(const details::operator_type& operation, expression_node_ptr (&branch)[3])
{
typedef details::variable_node<Type>* variable_ptr;
const Type& v0 = static_cast<variable_ptr>(branch[0])->ref();
const Type& v1 = static_cast<variable_ptr>(branch[1])->ref();
const Type& v2 = static_cast<variable_ptr>(branch[2])->ref();
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : return node_allocator_-> \
allocate_rrr<details::sf3_var_node<Type,details::sf##op##_op<Type> > > \
(v0, v1, v2); \
case_stmt(00) case_stmt(01) case_stmt(02) case_stmt(03)
case_stmt(04) case_stmt(05) case_stmt(06) case_stmt(07)
case_stmt(08) case_stmt(09) case_stmt(10) case_stmt(11)
case_stmt(12) case_stmt(13) case_stmt(14) case_stmt(15)
case_stmt(16) case_stmt(17) case_stmt(18) case_stmt(19)
case_stmt(20) case_stmt(21) case_stmt(22) case_stmt(23)
case_stmt(24) case_stmt(25) case_stmt(26) case_stmt(27)
case_stmt(28) case_stmt(29) case_stmt(30) case_stmt(31)
case_stmt(32) case_stmt(33) case_stmt(34) case_stmt(35)
case_stmt(36) case_stmt(37) case_stmt(38) case_stmt(39)
case_stmt(40) case_stmt(41) case_stmt(42) case_stmt(43)
case_stmt(44) case_stmt(45) case_stmt(46) case_stmt(47)
#undef case_stmt
default : return error_node();
}
}
inline expression_node_ptr special_function(const details::operator_type& operation, expression_node_ptr (&branch)[3])
{
if (!all_nodes_valid(branch))
return error_node();
else if (is_constant_foldable(branch))
return const_optimise_sf3(operation,branch);
else if (all_nodes_variables(branch))
return varnode_optimise_sf3(operation,branch);
else
{
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : return node_allocator_-> \
allocate<details::sf3_node<Type,details::sf##op##_op<Type> > > \
(operation, branch); \
case_stmt(00) case_stmt(01) case_stmt(02) case_stmt(03)
case_stmt(04) case_stmt(05) case_stmt(06) case_stmt(07)
case_stmt(08) case_stmt(09) case_stmt(10) case_stmt(11)
case_stmt(12) case_stmt(13) case_stmt(14) case_stmt(15)
case_stmt(16) case_stmt(17) case_stmt(18) case_stmt(19)
case_stmt(20) case_stmt(21) case_stmt(22) case_stmt(23)
case_stmt(24) case_stmt(25) case_stmt(26) case_stmt(27)
case_stmt(28) case_stmt(29) case_stmt(30) case_stmt(31)
case_stmt(32) case_stmt(33) case_stmt(34) case_stmt(35)
case_stmt(36) case_stmt(37) case_stmt(38) case_stmt(39)
case_stmt(40) case_stmt(41) case_stmt(42) case_stmt(43)
case_stmt(44) case_stmt(45) case_stmt(46) case_stmt(47)
#undef case_stmt
default : return error_node();
}
}
}
inline expression_node_ptr const_optimise_sf4(const details::operator_type& operation, expression_node_ptr (&branch)[4])
{
expression_node_ptr temp_node = error_node();
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : temp_node = node_allocator_-> \
allocate<details::sf4_node<Type,details::sf##op##_op<Type> > > \
(operation, branch); \
break; \
case_stmt(48) case_stmt(49) case_stmt(50) case_stmt(51)
case_stmt(52) case_stmt(53) case_stmt(54) case_stmt(55)
case_stmt(56) case_stmt(57) case_stmt(58) case_stmt(59)
case_stmt(60) case_stmt(61) case_stmt(62) case_stmt(63)
case_stmt(64) case_stmt(65) case_stmt(66) case_stmt(67)
case_stmt(68) case_stmt(69) case_stmt(70) case_stmt(71)
case_stmt(72) case_stmt(73) case_stmt(74) case_stmt(75)
case_stmt(76) case_stmt(77) case_stmt(78) case_stmt(79)
case_stmt(80) case_stmt(81) case_stmt(82) case_stmt(83)
case_stmt(84) case_stmt(85) case_stmt(86) case_stmt(87)
case_stmt(88) case_stmt(89) case_stmt(90) case_stmt(91)
case_stmt(92) case_stmt(93) case_stmt(94) case_stmt(95)
case_stmt(96) case_stmt(97) case_stmt(98) case_stmt(99)
#undef case_stmt
default : return error_node();
}
const T v = temp_node->value();
details::free_node(*node_allocator_,temp_node);
return node_allocator_->allocate<literal_node_t>(v);
}
inline expression_node_ptr varnode_optimise_sf4(const details::operator_type& operation, expression_node_ptr (&branch)[4])
{
typedef details::variable_node<Type>* variable_ptr;
const Type& v0 = static_cast<variable_ptr>(branch[0])->ref();
const Type& v1 = static_cast<variable_ptr>(branch[1])->ref();
const Type& v2 = static_cast<variable_ptr>(branch[2])->ref();
const Type& v3 = static_cast<variable_ptr>(branch[3])->ref();
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : return node_allocator_-> \
allocate_rrrr<details::sf4_var_node<Type,details::sf##op##_op<Type> > > \
(v0, v1, v2, v3); \
case_stmt(48) case_stmt(49) case_stmt(50) case_stmt(51)
case_stmt(52) case_stmt(53) case_stmt(54) case_stmt(55)
case_stmt(56) case_stmt(57) case_stmt(58) case_stmt(59)
case_stmt(60) case_stmt(61) case_stmt(62) case_stmt(63)
case_stmt(64) case_stmt(65) case_stmt(66) case_stmt(67)
case_stmt(68) case_stmt(69) case_stmt(70) case_stmt(71)
case_stmt(72) case_stmt(73) case_stmt(74) case_stmt(75)
case_stmt(76) case_stmt(77) case_stmt(78) case_stmt(79)
case_stmt(80) case_stmt(81) case_stmt(82) case_stmt(83)
case_stmt(84) case_stmt(85) case_stmt(86) case_stmt(87)
case_stmt(88) case_stmt(89) case_stmt(90) case_stmt(91)
case_stmt(92) case_stmt(93) case_stmt(94) case_stmt(95)
case_stmt(96) case_stmt(97) case_stmt(98) case_stmt(99)
#undef case_stmt
default : return error_node();
}
}
inline expression_node_ptr special_function(const details::operator_type& operation, expression_node_ptr (&branch)[4])
{
if (!all_nodes_valid(branch))
return error_node();
else if (is_constant_foldable(branch))
return const_optimise_sf4(operation,branch);
else if (all_nodes_variables(branch))
return varnode_optimise_sf4(operation,branch);
switch (operation)
{
#define case_stmt(op) \
case details::e_sf##op : return node_allocator_-> \
allocate<details::sf4_node<Type,details::sf##op##_op<Type> > > \
(operation, branch); \
case_stmt(48) case_stmt(49) case_stmt(50) case_stmt(51)
case_stmt(52) case_stmt(53) case_stmt(54) case_stmt(55)
case_stmt(56) case_stmt(57) case_stmt(58) case_stmt(59)
case_stmt(60) case_stmt(61) case_stmt(62) case_stmt(63)
case_stmt(64) case_stmt(65) case_stmt(66) case_stmt(67)
case_stmt(68) case_stmt(69) case_stmt(70) case_stmt(71)
case_stmt(72) case_stmt(73) case_stmt(74) case_stmt(75)
case_stmt(76) case_stmt(77) case_stmt(78) case_stmt(79)
case_stmt(80) case_stmt(81) case_stmt(82) case_stmt(83)
case_stmt(84) case_stmt(85) case_stmt(86) case_stmt(87)
case_stmt(88) case_stmt(89) case_stmt(90) case_stmt(91)
case_stmt(92) case_stmt(93) case_stmt(94) case_stmt(95)
case_stmt(96) case_stmt(97) case_stmt(98) case_stmt(99)
#undef case_stmt
default : return error_node();
}
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr const_optimise_varargfunc(const details::operator_type& operation, Sequence<expression_node_ptr,Allocator>& arg_list)
{
expression_node_ptr temp_node = error_node();
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : temp_node = node_allocator_-> \
allocate<details::vararg_node<Type,op1<Type> > > \
(arg_list); \
break; \
case_stmt(details::e_sum , details::vararg_add_op )
case_stmt(details::e_prod , details::vararg_mul_op )
case_stmt(details::e_avg , details::vararg_avg_op )
case_stmt(details::e_min , details::vararg_min_op )
case_stmt(details::e_max , details::vararg_max_op )
case_stmt(details::e_mand , details::vararg_mand_op )
case_stmt(details::e_mor , details::vararg_mor_op )
case_stmt(details::e_multi , details::vararg_multi_op)
#undef case_stmt
default : return error_node();
}
const T v = temp_node->value();
details::free_node(*node_allocator_,temp_node);
return node_allocator_->allocate<literal_node_t>(v);
}
inline bool special_one_parameter_vararg(const details::operator_type& operation)
{
return (
(details::e_sum == operation) ||
(details::e_prod == operation) ||
(details::e_avg == operation) ||
(details::e_min == operation) ||
(details::e_max == operation)
);
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr varnode_optimise_varargfunc(const details::operator_type& operation, Sequence<expression_node_ptr,Allocator>& arg_list)
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<details::vararg_varnode<Type,op1<Type> > >(arg_list); \
case_stmt(details::e_sum , details::vararg_add_op )
case_stmt(details::e_prod , details::vararg_mul_op )
case_stmt(details::e_avg , details::vararg_avg_op )
case_stmt(details::e_min , details::vararg_min_op )
case_stmt(details::e_max , details::vararg_max_op )
case_stmt(details::e_mand , details::vararg_mand_op )
case_stmt(details::e_mor , details::vararg_mor_op )
case_stmt(details::e_multi , details::vararg_multi_op)
#undef case_stmt
default : return error_node();
}
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr vectorize_func(const details::operator_type& operation, Sequence<expression_node_ptr,Allocator>& arg_list)
{
if (1 == arg_list.size())
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<details::vectorize_node<Type,op1<Type> > >(arg_list[0]); \
case_stmt(details::e_sum , details::vec_add_op)
case_stmt(details::e_prod , details::vec_mul_op)
case_stmt(details::e_avg , details::vec_avg_op)
case_stmt(details::e_min , details::vec_min_op)
case_stmt(details::e_max , details::vec_max_op)
#undef case_stmt
default : return error_node();
}
}
else
return error_node();
}
template <typename Allocator,
template <typename,typename> class Sequence>
inline expression_node_ptr vararg_function(const details::operator_type& operation, Sequence<expression_node_ptr,Allocator>& arg_list)
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
else if (is_constant_foldable(arg_list))
return const_optimise_varargfunc(operation,arg_list);
else if ((arg_list.size() == 1) && details::is_ivector_node(arg_list[0]))
return vectorize_func(operation,arg_list);
else if ((arg_list.size() == 1) && special_one_parameter_vararg(operation))
return arg_list[0];
else if (all_nodes_variables(arg_list))
return varnode_optimise_varargfunc(operation,arg_list);
#ifndef exprtk_disable_string_capabilities
if (details::e_smulti == operation)
{
return node_allocator_->
allocate<details::str_vararg_node<Type,details::vararg_multi_op<Type> > >(arg_list);
}
else
#endif
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
allocate<details::vararg_node<Type,op1<Type> > >(arg_list); \
case_stmt(details::e_sum , details::vararg_add_op )
case_stmt(details::e_prod , details::vararg_mul_op )
case_stmt(details::e_avg , details::vararg_avg_op )
case_stmt(details::e_min , details::vararg_min_op )
case_stmt(details::e_max , details::vararg_max_op )
case_stmt(details::e_mand , details::vararg_mand_op )
case_stmt(details::e_mor , details::vararg_mor_op )
case_stmt(details::e_multi , details::vararg_multi_op)
#undef case_stmt
default : return error_node();
}
}
}
template <std::size_t N>
inline expression_node_ptr function(ifunction_t* f, expression_node_ptr (&b)[N])
{
typedef typename details::function_N_node<T,ifunction_t,N> function_N_node_t;
expression_node_ptr result = synthesize_expression<function_N_node_t,N>(f,b);
if (0 == result)
return error_node();
else
{
// Can the function call be completely optimised?
if (details::is_constant_node(result))
return result;
else if (!all_nodes_valid(b))
return error_node();
else if (N != f->param_count)
{
details::free_all_nodes(*node_allocator_,b);
return error_node();
}
function_N_node_t* func_node_ptr = static_cast<function_N_node_t*>(result);
if (func_node_ptr->init_branches(b))
return result;
else
{
details::free_all_nodes(*node_allocator_,b);
return error_node();
}
}
}
inline expression_node_ptr function(ifunction_t* f)
{
typedef typename details::function_N_node<Type,ifunction_t,0> function_N_node_t;
return node_allocator_->allocate<function_N_node_t>(f);
}
inline expression_node_ptr vararg_function_call(ivararg_function_t* vaf,
std::vector<expression_node_ptr>& arg_list)
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
typedef details::vararg_function_node<Type,ivararg_function_t> alloc_type;
expression_node_ptr result = node_allocator_->allocate<alloc_type>(vaf,arg_list);
if (
!arg_list.empty() &&
!vaf->has_side_effects() &&
is_constant_foldable(arg_list)
)
{
const Type v = result->value();
details::free_node(*node_allocator_,result);
result = node_allocator_->allocate<literal_node_t>(v);
}
parser_->state_.activate_side_effect("vararg_function_call()");
return result;
}
inline expression_node_ptr generic_function_call(igeneric_function_t* gf,
std::vector<expression_node_ptr>& arg_list,
const std::size_t& param_seq_index = std::numeric_limits<std::size_t>::max())
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
typedef details::generic_function_node <Type,igeneric_function_t> alloc_type1;
typedef details::multimode_genfunction_node<Type,igeneric_function_t> alloc_type2;
const std::size_t no_psi = std::numeric_limits<std::size_t>::max();
expression_node_ptr result = error_node();
if (no_psi == param_seq_index)
result = node_allocator_->allocate<alloc_type1>(arg_list,gf);
else
result = node_allocator_->allocate<alloc_type2>(gf, param_seq_index, arg_list);
alloc_type1* genfunc_node_ptr = static_cast<alloc_type1*>(result);
if (
!arg_list.empty() &&
!gf->has_side_effects() &&
parser_->state_.type_check_enabled &&
is_constant_foldable(arg_list)
)
{
genfunc_node_ptr->init_branches();
const Type v = result->value();
details::free_node(*node_allocator_,result);
return node_allocator_->allocate<literal_node_t>(v);
}
else if (genfunc_node_ptr->init_branches())
{
parser_->state_.activate_side_effect("generic_function_call()");
return result;
}
else
{
details::free_node(*node_allocator_, result);
details::free_all_nodes(*node_allocator_, arg_list);
return error_node();
}
}
#ifndef exprtk_disable_string_capabilities
inline expression_node_ptr string_function_call(igeneric_function_t* gf,
std::vector<expression_node_ptr>& arg_list,
const std::size_t& param_seq_index = std::numeric_limits<std::size_t>::max())
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
typedef details::string_function_node <Type,igeneric_function_t> alloc_type1;
typedef details::multimode_strfunction_node<Type,igeneric_function_t> alloc_type2;
const std::size_t no_psi = std::numeric_limits<std::size_t>::max();
expression_node_ptr result = error_node();
if (no_psi == param_seq_index)
result = node_allocator_->allocate<alloc_type1>(gf,arg_list);
else
result = node_allocator_->allocate<alloc_type2>(gf, param_seq_index, arg_list);
alloc_type1* strfunc_node_ptr = static_cast<alloc_type1*>(result);
if (
!arg_list.empty() &&
!gf->has_side_effects() &&
is_constant_foldable(arg_list)
)
{
strfunc_node_ptr->init_branches();
const Type v = result->value();
details::free_node(*node_allocator_,result);
return node_allocator_->allocate<literal_node_t>(v);
}
else if (strfunc_node_ptr->init_branches())
{
parser_->state_.activate_side_effect("string_function_call()");
return result;
}
else
{
details::free_node (*node_allocator_,result );
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
}
#endif
#ifndef exprtk_disable_return_statement
inline expression_node_ptr return_call(std::vector<expression_node_ptr>& arg_list)
{
if (!all_nodes_valid(arg_list))
{
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
typedef details::return_node<Type> alloc_type;
expression_node_ptr result = node_allocator_->
allocate_rr<alloc_type>(arg_list,parser_->results_ctx());
alloc_type* return_node_ptr = static_cast<alloc_type*>(result);
if (return_node_ptr->init_branches())
{
parser_->state_.activate_side_effect("return_call()");
return result;
}
else
{
details::free_node (*node_allocator_,result );
details::free_all_nodes(*node_allocator_,arg_list);
return error_node();
}
}
inline expression_node_ptr return_envelope(expression_node_ptr body,
results_context_t* rc,
bool*& return_invoked)
{
typedef details::return_envelope_node<Type> alloc_type;
expression_node_ptr result = node_allocator_->
allocate_cr<alloc_type>(body,(*rc));
return_invoked = static_cast<alloc_type*>(result)->retinvk_ptr();
return result;
}
#else
inline expression_node_ptr return_call(std::vector<expression_node_ptr>&)
{
return error_node();
}
inline expression_node_ptr return_envelope(expression_node_ptr,
results_context_t*,
bool*&)
{
return error_node();
}
#endif
inline expression_node_ptr vector_element(const std::string& symbol,
vector_holder_ptr vector_base,
expression_node_ptr index)
{
expression_node_ptr result = error_node();
if (details::is_constant_node(index))
{
std::size_t i = static_cast<std::size_t>(details::numeric::to_int64(index->value()));
details::free_node(*node_allocator_,index);
if (vector_base->rebaseable())
{
return node_allocator_->allocate<rebasevector_celem_node_t>(i,vector_base);
}
scope_element& se = parser_->sem_.get_element(symbol,i);
if (se.index == i)
{
result = se.var_node;
}
else
{
scope_element nse;
nse.name = symbol;
nse.active = true;
nse.ref_count = 1;
nse.type = scope_element::e_vecelem;
nse.index = i;
nse.depth = parser_->state_.scope_depth;
nse.data = 0;
nse.var_node = node_allocator_->allocate<variable_node_t>((*(*vector_base)[i]));
if (!parser_->sem_.add_element(nse))
{
parser_->set_synthesis_error("Failed to add new local vector element to SEM [1]");
parser_->sem_.free_element(nse);
result = error_node();
}
exprtk_debug(("vector_element() - INFO - Added new local vector element: %s\n",nse.name.c_str()));
parser_->state_.activate_side_effect("vector_element()");
result = nse.var_node;
}
}
else if (vector_base->rebaseable())
result = node_allocator_->allocate<rebasevector_elem_node_t>(index,vector_base);
else
result = node_allocator_->allocate<vector_elem_node_t>(index,vector_base);
return result;
}
private:
template <std::size_t N, typename NodePtr>
inline bool is_constant_foldable(NodePtr (&b)[N]) const
{
for (std::size_t i = 0; i < N; ++i)
{
if (0 == b[i])
return false;
else if (!details::is_constant_node(b[i]))
return false;
}
return true;
}
template <typename NodePtr,
typename Allocator,
template <typename,typename> class Sequence>
inline bool is_constant_foldable(const Sequence<NodePtr,Allocator>& b) const
{
for (std::size_t i = 0; i < b.size(); ++i)
{
if (0 == b[i])
return false;
else if (!details::is_constant_node(b[i]))
return false;
}
return true;
}
void lodge_assignment(symbol_type cst, expression_node_ptr node)
{
parser_->state_.activate_side_effect("lodge_assignment()");
if (!parser_->dec_.collect_assignments())
return;
std::string symbol_name;
switch (cst)
{
case e_st_variable : symbol_name = parser_->symtab_store_
.get_variable_name(node);
break;
#ifndef exprtk_disable_string_capabilities
case e_st_string : symbol_name = parser_->symtab_store_
.get_stringvar_name(node);
break;
#endif
case e_st_vector : {
typedef details::vector_holder<T> vector_holder_t;
vector_holder_t& vh = static_cast<vector_node_t*>(node)->vec_holder();
symbol_name = parser_->symtab_store_.get_vector_name(&vh);
}
break;
case e_st_vecelem : {
typedef details::vector_holder<T> vector_holder_t;
vector_holder_t& vh = static_cast<vector_elem_node_t*>(node)->vec_holder();
symbol_name = parser_->symtab_store_.get_vector_name(&vh);
cst = e_st_vector;
}
break;
default : return;
}
if (!symbol_name.empty())
{
parser_->dec_.add_assignment(symbol_name,cst);
}
}
inline expression_node_ptr synthesize_assignment_expression(const details::operator_type& operation, expression_node_ptr (&branch)[2])
{
if (details::is_variable_node(branch[0]))
{
lodge_assignment(e_st_variable,branch[0]);
return synthesize_expression<assignment_node_t,2>(operation,branch);
}
else if (details::is_vector_elem_node(branch[0]))
{
lodge_assignment(e_st_vecelem,branch[0]);
return synthesize_expression<assignment_vec_elem_node_t, 2>(operation, branch);
}
else if (details::is_rebasevector_elem_node(branch[0]))
{
lodge_assignment(e_st_vecelem,branch[0]);
return synthesize_expression<assignment_rebasevec_elem_node_t, 2>(operation, branch);
}
else if (details::is_rebasevector_celem_node(branch[0]))
{
lodge_assignment(e_st_vecelem,branch[0]);
return synthesize_expression<assignment_rebasevec_celem_node_t, 2>(operation, branch);
}
#ifndef exprtk_disable_string_capabilities
else if (details::is_string_node(branch[0]))
{
lodge_assignment(e_st_string,branch[0]);
return synthesize_expression<assignment_string_node_t,2>(operation, branch);
}
else if (details::is_string_range_node(branch[0]))
{
lodge_assignment(e_st_string,branch[0]);
return synthesize_expression<assignment_string_range_node_t,2>(operation, branch);
}
#endif
else if (details::is_vector_node(branch[0]))
{
lodge_assignment(e_st_vector,branch[0]);
if (details::is_ivector_node(branch[1]))
return synthesize_expression<assignment_vecvec_node_t,2>(operation, branch);
else
return synthesize_expression<assignment_vec_node_t,2>(operation, branch);
}
else
{
parser_->set_synthesis_error("Invalid assignment operation.[1]");
return error_node();
}
}
inline expression_node_ptr synthesize_assignment_operation_expression(const details::operator_type& operation,
expression_node_ptr (&branch)[2])
{
if (details::is_variable_node(branch[0]))
{
lodge_assignment(e_st_variable,branch[0]);
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
template allocate_rrr<typename details::assignment_op_node<Type,op1<Type> > > \
(operation, branch[0], branch[1]); \
case_stmt(details::e_addass,details::add_op)
case_stmt(details::e_subass,details::sub_op)
case_stmt(details::e_mulass,details::mul_op)
case_stmt(details::e_divass,details::div_op)
case_stmt(details::e_modass,details::mod_op)
#undef case_stmt
default : return error_node();
}
}
else if (details::is_vector_elem_node(branch[0]))
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
template allocate_rrr<typename details::assignment_vec_elem_op_node<Type,op1<Type> > > \
(operation, branch[0], branch[1]); \
case_stmt(details::e_addass,details::add_op)
case_stmt(details::e_subass,details::sub_op)
case_stmt(details::e_mulass,details::mul_op)
case_stmt(details::e_divass,details::div_op)
case_stmt(details::e_modass,details::mod_op)
#undef case_stmt
default : return error_node();
}
}
else if (details::is_rebasevector_elem_node(branch[0]))
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
template allocate_rrr<typename details::assignment_rebasevec_elem_op_node<Type,op1<Type> > > \
(operation, branch[0], branch[1]); \
case_stmt(details::e_addass,details::add_op)
case_stmt(details::e_subass,details::sub_op)
case_stmt(details::e_mulass,details::mul_op)
case_stmt(details::e_divass,details::div_op)
case_stmt(details::e_modass,details::mod_op)
#undef case_stmt
default : return error_node();
}
}
else if (details::is_rebasevector_celem_node(branch[0]))
{
switch (operation)
{
#define case_stmt(op0,op1) \
case op0 : return node_allocator_-> \
template allocate_rrr<typename details::assignment_rebasevec_celem_op_node<Type,op1<Type> > > \
(operation, branch[0], branch[1]); \
case_stmt(details::e_addass,details::add_op)
case_stmt(details::e_subass,details::sub_op)
case_stmt(details::e_mulass,details::mul_op)
case_stmt(details::e_divass,details::div_op)
case_stmt(details::e_modass,details::mod_op)
#undef case_stmt
default : return error_node();
}
}
else if (details::is_vector_node(branch[0]))
{
lodge_assignment(e_st_vector,branch[0]);
if (details::is_ivector_node(branch[1]))
{
switch (operation)
{
#define case_stmt(op0,op1)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment