Last active
April 16, 2017 13:50
-
-
Save lockefox/230b15eddb42aeb6b1b2a65c3b5ec5b7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
packages.list <- c( | |
"data.table", | |
"quantmod", | |
"jsonlite", | |
"prophet", | |
"dplyr", | |
"ggplot2", | |
"ggthemes", | |
"cowplot", | |
"zoo" | |
) | |
packages.new <- packages.list[!(packages.list %in% installed.packages()[,"Package"])] | |
if(length(packages.new)){ | |
install.packages(packages.new) | |
} | |
library(data.table) | |
library(quantmod) | |
library(jsonlite) | |
library(prophet) | |
library(dplyr) | |
library(ggplot2) | |
library(ggthemes) | |
library(cowplot) | |
library(zoo) | |
CREST_BASE = "https://crest-tq.eveonline.com/" | |
## GET TYPEID/REGION ID FROM http://eve-marketdata.com/developers/index.php ## | |
typeID = "34" | |
#typeID = "29668" | |
#typeID = "40520" | |
regionID = "10000002" | |
chart_path = paste0(getwd(),"/Plots/") | |
dir.create(chart_path, showWarnings=FALSE) | |
plot.width = 1600 | |
plot.height = 900 | |
plot.predict = 60 | |
plot.sma.slow = 15 | |
plot.sma.fast = 5 | |
## SEE quantmod.com for TA ARGS ## | |
TA_args = "addBBands(15,2);addVo();addMACD(5,15,5);addRSI();addLines(h=30, on=4);addLines(h=70, on=4)" | |
graph_subset = "last 400 days" | |
#graph_subset = "last 1 years" | |
## FETCH ID/NAME CONVERSIONS FROM CREST ## | |
typeID_addr <- paste0(CREST_BASE, "inventory/types/", typeID, "/") | |
typeID.json <- fromJSON(readLines(typeID_addr)) | |
typeName <- typeID.json$name | |
regionID_addr <- paste0(CREST_BASE, "regions/", regionID, "/") | |
regionID.json <- fromJSON(readLines(regionID_addr)) | |
regionName <- regionID.json$name | |
## FETCH PRICE HISTORY FROM CREST AND INSERT INTO QUANTMOD ## | |
priceHistory_addr = paste0(CREST_BASE, "market/", regionID, "/history/?type=", CREST_BASE, "inventory/types/", typeID, "/") | |
market.json <- fromJSON(readLines(priceHistory_addr)) | |
market.data.json <- data.table(market.json$items) | |
market.data <- market.data.json[,list(Date = as.Date(date)[-1], | |
Volume= volume[-1], | |
High = highPrice[-1], | |
Low = lowPrice[-1], | |
Close =avgPrice[-1], | |
Open = avgPrice)] | |
n <- nrow(market.data) | |
market.data <- market.data[1:n-1,] | |
## FILTER OUT HIGH/LOW FLIERS ## | |
low_flag = quantile(market.data$Low,.25)/5 | |
high_flag = quantile(market.data$High,.75)*5 | |
market.data$Low[market.data$Low<=low_flag] <-min(market.data$Open,market.data$Close) | |
market.data$High[market.data$High>=high_flag] <-max(market.data$Open,market.data$Close) | |
market.data$move <- market.data$Close - market.data$Open | |
market.data$move.normal <- market.data$move / market.data$Close | |
market.data$sma.fast <- rollmean( | |
market.data$Close, | |
k=plot.sma.fast, | |
align='right', | |
na.pad=TRUE | |
) | |
market.data$sma.slow <- rollmean( | |
market.data$Close, | |
k=plot.sma.slow, | |
align='right', | |
na.pad=TRUE | |
) | |
market.data$deviation.fast <- market.data$Close - market.data$sma.fast | |
market.data$deviation.slow <- market.data$Close - market.data$sma.slow | |
## Build Forecasts ## | |
prophet.move <- prophet(data.frame( | |
ds=market.data$Date, | |
y=market.data$move | |
)) | |
prophet.deviation.fast <- prophet(data.frame( | |
ds=market.data$Date, | |
y=market.data$deviation.fast | |
)) | |
prophet.deviation.slow <- prophet(data.frame( | |
ds=market.data$Date, | |
y=market.data$deviation.slow | |
)) | |
prophet.move.final <- predict( | |
prophet.move, | |
make_future_dataframe(prophet.move, periods=plot.predict) | |
) | |
plot(prophet.move, prophet.move.final) | |
prophet.deviation.fast.final <- predict( | |
prophet.deviation.fast, | |
make_future_dataframe(prophet.deviation.fast, periods=plot.predict) | |
) | |
plot(prophet.deviation.fast, prophet.deviation.fast.final) | |
prophet.deviation.slow.final <- predict( | |
prophet.deviation.slow, | |
make_future_dataframe(prophet.deviation.slow, periods=plot.predict) | |
) | |
plot(prophet.deviation.slow, prophet.deviation.slow.final) | |
market.prophet.tmp <- data.frame( | |
ds=market.data$Date, | |
y=market.data$Close | |
) | |
market.prophet <- prophet(market.prophet.tmp) | |
market.future <- make_future_dataframe(market.prophet, periods=plot.predict) | |
market.predict <- predict(market.prophet, market.future) | |
market.predict <- merge( | |
market.predict, | |
market.prophet.tmp, | |
by='ds', | |
all=TRUE | |
) | |
market.predict$monte <- NA | |
monte.date <- max(market.prophet.tmp$ds, na.rm=TRUE) | |
monte.price <- market.data$sma.slow[market.data$Date == monte.date] | |
for(val in 1:plot.predict){ | |
step_date <- monte.date + val | |
monte.price <- monte.price + prophet.move.final$yhat[prophet.move.final$ds == step_date] | |
monte.high <- monte.price + prophet.move.final$yhat_upper[prophet.move.final$ds == step_date] | |
monte.low <- monte.price + prophet.move.final$yhat_lower[prophet.move.final$ds == step_date] | |
market.predict$monte[market.predict$ds == step_date] <- monte.price | |
} | |
#plot(market.prophet, market.predict) | |
## Build Plot ## | |
market.max_scale = max(market.predict$y, na.rm=TRUE) | |
plot.future <- ggplot( | |
market.predict, | |
aes( | |
x=ds, | |
ymin=yhat_lower, | |
ymax=yhat_upper | |
) | |
) | |
plot.future <- plot.future + geom_ribbon( | |
color='light blue', | |
fill='light blue', | |
alpha=0.5 | |
) | |
plot.future <- plot.future + geom_line( | |
aes( | |
x=ds, | |
y=y | |
), | |
data=market.predict | |
) | |
plot.future <- plot.future + geom_line( | |
aes( | |
x=ds, | |
y=monte | |
), | |
data=market.predict, | |
color='red' | |
) | |
if(market.max_scale > 1e9){ | |
plot.future <- plot.future + scale_y_continuous( | |
#limits=c(min(market.max_scale),NA), | |
labels=function(x)sprintf("%.2fB",x/1e9), | |
position='right' | |
) | |
}else if(market.max_scale > 1e6){ | |
plot.future <- plot.future + scale_y_continuous( | |
#limits=c(min(market.max_scale),NA), | |
labels=function(x)sprintf("%.2fM",x/1e6), | |
position='right' | |
) | |
}else if(market.max_scale > 1e3){ | |
plot.future <- plot.future + scale_y_continuous( | |
#limits=c(min(market.max_scale),NA), | |
labels=function(x)sprintf("%.2fK",x/1e3), | |
position='right' | |
) | |
} | |
plot.future <- plot.future + labs( | |
x='Date', | |
y='Price', | |
title=paste0(typeName, ' + Prediction ', plot.predict, ' days -- ', regionName) | |
) | |
plot.future <- plot.future + theme_fivethirtyeight() | |
print(plot.future) | |
## Save to File ## | |
image_title <- paste( | |
typeName, | |
paste0("prediction-", plot.predict), | |
Sys.Date(), | |
regionID, | |
sep="_" | |
) | |
png(paste0(chart_path,image_title,".png"), width=plot.width, height=plot.height) | |
print(plot.future) | |
dev.off() | |
## SAVE DATA TO CSV FOR OTHER PLATFORMS ## | |
write.csv(market.json, paste0(chart_path,image_title,".csv"), row.names=FALSE) | |
write.csv(market.data, paste0(chart_path,image_title,"_OHLC.csv"), row.names=FALSE) |
DISCLAIMER: forecasting strictly on price isn't a sustainable practice. ClosingPrice
is the answer to a complicated non-linear set of dependencies.
Further work is required to instead forecast off something with more-normal behavior such as:
- day-to-day change
- deviation from moving average
- MER Data
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Using Prophet, generate (naive) forecasts for EVE items using the CREST market history endpoint