Skip to content

Instantly share code, notes, and snippets.

@losophy
Last active May 28, 2021 02:40
Show Gist options
  • Save losophy/544464c2d90da85fc9d0546d3f3dcf53 to your computer and use it in GitHub Desktop.
Save losophy/544464c2d90da85fc9d0546d3f3dcf53 to your computer and use it in GitHub Desktop.
lua-5.1.1中的gc的实现
void luaC_link (lua_State *L, GCObject *o, lu_byte tt) {
global_State *g = G(L);
o->gch.next = g->rootgc;
g->rootgc = o;//将对象挂载到 rootgc链表上
o->gch.marked = luaC_white(g);//设置颜色为白色
o->gch.tt = tt;//设置数据的类型
}
void luaC_linkupval (lua_State *L, UpVal *uv) {
global_State *g = G(L);
GCObject *o = obj2gco(uv);
o->gch.next = g->rootgc; /* link upvalue into `rootgc' list */
g->rootgc = o;
if (isgray(o)) {
if (g->gcstate == GCSpropagate) {
gray2black(o); /* closed upvalues need barrier */
luaC_barrier(L, uv, uv->v);
}
else { /* sweep phase: sweep it (turning it into white) */
makewhite(g, o);
lua_assert(g->gcstate != GCSfinalize && g->gcstate != GCSpause);
}
}
}
Udata *luaS_newudata (lua_State *L, size_t s, Table *e) {
Udata *u;
if (s > MAX_SIZET - sizeof(Udata))
luaM_toobig(L);
u = cast(Udata *, luaM_malloc(L, s + sizeof(Udata)));
u->uv.marked = luaC_white(G(L)); /* is not finalized */
u->uv.tt = LUA_TUSERDATA;
u->uv.len = s;
u->uv.metatable = NULL;
u->uv.env = e;
/* chain it on udata list (after main thread) */
u->uv.next = G(L)->mainthread->next;//任何时候创建的 udata ,在GC链表中都会放在mainthread之后 。 除此之外,这类型的数据与其他数据并无差别 。 之所以这么做,是因为udata是用户注册的C数据。 在回收时,我们可能会调用用户注册的函数,此时就需要把这些udata统一放在一个地方来处理,这样做是为了方便编写代码
G(L)->mainthread->next = obj2gco(u);
return u;
}
static l_mem singlestep (lua_State *L) {
global_State *g = G(L);
/*lua_checkmemory(L);*/
switch (g->gcstate) {
case GCSpause: {
markroot(L); /* start a new collection */
return 0;
}
case GCSpropagate: {
if (g->gray)
return propagatemark(g);
else { /* no more `gray' objects */
atomic(L); /* finish mark phase */
return 0;
}
}
case GCSsweepstring: {
lu_mem old = g->totalbytes;
sweepwholelist(L, &g->strt.hash[g->sweepstrgc++]);
if (g->sweepstrgc >= g->strt.size) /* nothing more to sweep? */
g->gcstate = GCSsweep; /* end sweep-string phase */
lua_assert(old >= g->totalbytes);
g->estimate -= old - g->totalbytes;
return GCSWEEPCOST;
}
case GCSsweep: {
lu_mem old = g->totalbytes;
g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX);
if (*g->sweepgc == NULL) { /* nothing more to sweep? */
checkSizes(L);
g->gcstate = GCSfinalize; /* end sweep phase */
}
lua_assert(old >= g->totalbytes);
g->estimate -= old - g->totalbytes;
return GCSWEEPMAX*GCSWEEPCOST;
}
case GCSfinalize: {
if (g->tmudata) {
GCTM(L);
if (g->estimate > GCFINALIZECOST)
g->estimate -= GCFINALIZECOST;
return GCFINALIZECOST;
}
else {
g->gcstate = GCSpause; /* end collection */
g->gcdept = 0;
return 0;
}
}
default: lua_assert(0); return 0;
}
}
/* mark root set */
static void markroot (lua_State *L) {
global_State *g = G(L);
g->gray = NULL;
g->grayagain = NULL;
g->weak = NULL;
markobject(g, g->mainthread); //针对object,标记对象的颜色为灰色,最终调用reallymarkobject函数
/* make global table be traversed before main stack */
markvalue(g, gt(g->mainthread)); //针对TValue,标记对象的颜色为灰色,最终调用reallymarkobject函数
markvalue(g, registry(L));
markmt(g);
g->gcstate = GCSpropagate;
}
static void reallymarkobject (global_State *g, GCObject *o) {
lua_assert(iswhite(o) && !isdead(g, o));
white2gray(o);
switch (o->gch.tt) {
case LUA_TSTRING: {// 对于字符串类型的数据,由于这种类型没有引用其他数据,所以略过将其颜色改为灰色的流程,直接将不是黑色的字符串对象回收即可
return;
}
case LUA_TUSERDATA: {//对于 udata类型的数据,因为这种类型永远也不会引用其他数据,所以这里也是一步到位,直接将其标记为黑色。 另外,对于这种类型,还需要标记对应的metatable和env表
Table *mt = gco2u(o)->metatable;
gray2black(o); /* udata are never gray */
if (mt) markobject(g, mt);
markobject(g, gco2u(o)->env);
return;
}
case LUA_TUPVAL: {//对于UpValue类型的数据,如果当前是close状态的话,那么该UpValue 已经没有与其他数据的引用关系了,可以直接标记为黑色 。 至于open状态的 UpValue ,由于其引用状态可能会频繁发生变动,所以留待后面的remarkupvals函数进行原子性的标记
UpVal *uv = gco2uv(o);
markvalue(g, uv->v);
if (uv->v == &uv->u.value) /* closed? */
gray2black(o); /* open upvalues are never black */
return;
}
case LUA_TFUNCTION: {
gco2cl(o)->c.gclist = g->gray;
g->gray = o;
break;
}
case LUA_TTABLE: {
gco2h(o)->gclist = g->gray;
g->gray = o;
break;
}
case LUA_TTHREAD: {
gco2th(o)->gclist = g->gray;
g->gray = o;
break;
}
case LUA_TPROTO: {
gco2p(o)->gclist = g->gray;
g->gray = o;
break;
}
default: lua_assert(0);
}
}
/*
** traverse one gray object, turning it to black.
** Returns `quantity' traversed.
*/
static l_mem propagatemark (global_State *g) {
GCObject *o = g->gray;
lua_assert(isgray(o));
gray2black(o);
switch (o->gch.tt) {
case LUA_TTABLE: {
Table *h = gco2h(o);
g->gray = h->gclist;
if (traversetable(g, h)) /* table is weak? */
black2gray(o); /* keep it gray */
return sizeof(Table) + sizeof(TValue) * h->sizearray +
sizeof(Node) * sizenode(h);
}
case LUA_TFUNCTION: {
Closure *cl = gco2cl(o);
g->gray = cl->c.gclist;
traverseclosure(g, cl);
return (cl->c.isC) ? sizeCclosure(cl->c.nupvalues) :
sizeLclosure(cl->l.nupvalues);
}
case LUA_TTHREAD: {
lua_State *th = gco2th(o);
g->gray = th->gclist;
th->gclist = g->grayagain;
g->grayagain = o;
black2gray(o);
traversestack(g, th);
return sizeof(lua_State) + sizeof(TValue) * th->stacksize +
sizeof(CallInfo) * th->size_ci;
}
case LUA_TPROTO: {
Proto *p = gco2p(o);
g->gray = p->gclist;
traverseproto(g, p);
return sizeof(Proto) + sizeof(Instruction) * p->sizecode +
sizeof(Proto *) * p->sizep +
sizeof(TValue) * p->sizek +
sizeof(int) * p->sizelineinfo +
sizeof(LocVar) * p->sizelocvars +
sizeof(TString *) * p->sizeupvalues;
}
default: lua_assert(0); return 0;
}
}
static void atomic (lua_State *L) {
global_State *g = G(L);
size_t udsize; /* total size of userdata to be finalized */
/* remark occasional upvalues of (maybe) dead threads */
remarkupvals(g);//调用remarkupvals函数去标记open状态的UpValue
/* traverse objects cautch by write barrier and by 'remarkupvals' */
propagateall(g);//gray链表又会有新的对象,于是需要调用propagateall再次将gray链表中的对象标记一下
/* remark weak tables */
g->gray = g->weak;//修改gray链表指针,使其指向管理弱表的weak指针
g->weak = NULL;
lua_assert(!iswhite(obj2gco(g->mainthread)));
markobject(g, L); /* mark running thread *///标记当前的Lua_State指针以及基本的meta表
markmt(g); /* mark basic metatables (again) */
propagateall(g);
/* remark gray again */
g->gray = g->grayagain;//修改gray链表指针指向grayagain指针
g->grayagain = NULL;
propagateall(g);//调用propagateall函数进行遍历扫描操作
udsize = luaC_separateudata(L, 0); /* separate userdata to be finalized */
marktmu(g); /* mark `preserved' userdata */
udsize += propagateall(g); /* remark, to propagate `preserveness' */
cleartable(g->weak); /* remove collected objects from weak tables */
/* flip current white */
g->currentwhite = cast_byte(otherwhite(g));//将当前白色类型切换到了下一次GC操作的白色类型
g->sweepstrgc = 0;
g->sweepgc = &g->rootgc;
g->gcstate = GCSsweepstring;//修改状态到下个回收阶段
g->estimate = g->totalbytes - udsize; /* first estimate */
}
static int traversetable (global_State *g, Table *h) {
int i;
int weakkey = 0;
int weakvalue = 0;
const TValue *mode;
if (h->metatable)
markobject(g, h->metatable);
mode = gfasttm(g, h->metatable, TM_MODE);
if (mode && ttisstring(mode)) { /* is there a weak mode? */
weakkey = (strchr(svalue(mode), 'k') != NULL);
weakvalue = (strchr(svalue(mode), 'v') != NULL);
if (weakkey || weakvalue) { /* is really weak? */
h->marked &= ~(KEYWEAK | VALUEWEAK); /* clear bits */
h->marked |= cast_byte((weakkey << KEYWEAKBIT) |
(weakvalue << VALUEWEAKBIT));
h->gclist = g->weak; /* must be cleared after GC, ... */
g->weak = obj2gco(h); /* ... so put in the appropriate list */
}
}
if (weakkey && weakvalue) return 1;
if (!weakvalue) {
i = h->sizearray;
while (i--)
markvalue(g, &h->array[i]);
}
i = sizenode(h);
while (i--) {
Node *n = gnode(h, i);
lua_assert(ttype(gkey(n)) != LUA_TDEADKEY || ttisnil(gval(n)));
if (ttisnil(gval(n)))
removeentry(n); /* remove empty entries */
else {
lua_assert(!ttisnil(gkey(n)));
if (!weakkey) markvalue(g, gkey(n));
if (!weakvalue) markvalue(g, gval(n));
}
}
return weakkey || weakvalue;
}
static void traverseclosure (global_State *g, Closure *cl) {
markobject(g, cl->c.env);
if (cl->c.isC) {
int i;
for (i=0; i<cl->c.nupvalues; i++) /* mark its upvalues */
markvalue(g, &cl->c.upvalue[i]);
}
else {
int i;
lua_assert(cl->l.nupvalues == cl->l.p->nups);
markobject(g, cl->l.p);
for (i=0; i<cl->l.nupvalues; i++) /* mark its upvalues */
markobject(g, cl->l.upvals[i]);
}
}
static void traversestack (global_State *g, lua_State *l) {
StkId o, lim;
CallInfo *ci;
markvalue(g, gt(l));
lim = l->top;
for (ci = l->base_ci; ci <= l->ci; ci++) {
lua_assert(ci->top <= l->stack_last);
if (lim < ci->top) lim = ci->top;
}
for (o = l->stack; o < l->top; o++)
markvalue(g, o);
for (; o <= lim; o++)
setnilvalue(o);
checkstacksizes(l, lim);
}
/*
** All marks are conditional because a GC may happen while the
** prototype is still being created
*/
static void traverseproto (global_State *g, Proto *f) {
int i;
if (f->source) stringmark(f->source);
for (i=0; i<f->sizek; i++) /* mark literals */
markvalue(g, &f->k[i]);
for (i=0; i<f->sizeupvalues; i++) { /* mark upvalue names */
if (f->upvalues[i])
stringmark(f->upvalues[i]);
}
for (i=0; i<f->sizep; i++) { /* mark nested protos */
if (f->p[i])
markobject(g, f->p[i]);
}
for (i=0; i<f->sizelocvars; i++) { /* mark local-variable names */
if (f->locvars[i].varname)
stringmark(f->locvars[i].varname);
}
}
void luaC_barrierback (lua_State *L, Table *t) {
global_State *g = G(L);
GCObject *o = obj2gco(t);
lua_assert(isblack(o) && !isdead(g, o));
lua_assert(g->gcstate != GCSfinalize && g->gcstate != GCSpause);
black2gray(o); /* make table gray (again) */
t->gclist = g->grayagain;
g->grayagain = o;
}
void luaC_barrierf (lua_State *L, GCObject *o, GCObject *v) {
global_State *g = G(L);
lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
lua_assert(g->gcstate != GCSfinalize && g->gcstate != GCSpause);
lua_assert(ttype(&o->gch) != LUA_TTABLE);
/* must keep invariant? */
if (g->gcstate == GCSpropagate)
reallymarkobject(g, v); /* restore invariant */
else /* don't mind */
makewhite(g, o); /* mark as white just to avoid other barriers */
}
/* move `dead' udata that need finalization to list `tmudata' */
size_t luaC_separateudata (lua_State *L, int all) {
global_State *g = G(L);
size_t deadmem = 0;
GCObject **p = &g->mainthread->next;
GCObject *curr;
while ((curr = *p) != NULL) {//如果该对象不需要回收,就继续处理下一个对象
if (!(iswhite(curr) || all) || isfinalized(gco2u(curr)))//先看该对象有没有注册GC函数
p = &curr->gch.next; /* don't bother with them */
else if (fasttm(L, gco2u(curr)->metatable, TM_GC) == NULL) {
markfinalized(gco2u(curr)); /* don't need finalization *///如果没有,就直接标记该对象的状态是finalized
p = &curr->gch.next;
}
else { /* must call its gc method */
deadmem += sizeudata(gco2u(curr));
markfinalized(gco2u(curr));//标记该对象为 finalized
*p = curr->gch.next;
/* link `curr' at the end of `tmudata' list */
if (g->tmudata == NULL) /* list is empty? *///将这些对象加入tmudata链表中,这里将udata放在一个链表中也是为了统一处理,后面将会提至Ufinalized状态的处理
g->tmudata = curr->gch.next = curr; /* creates a circular list */
else {
curr->gch.next = g->tmudata->gch.next;
g->tmudata->gch.next = curr;
g->tmudata = curr;
}
}
}
return deadmem;
}
static GCObject **sweeplist (lua_State *L, GCObject **p, lu_mem count) {
GCObject *curr;
global_State *g = G(L);
int deadmask = otherwhite(g);
while ((curr = *p) != NULL && count-- > 0) {
if (curr->gch.tt == LUA_TTHREAD) /* sweep open upvalues of each thread */
sweepwholelist(L, &gco2th(curr)->openupval);
if ((curr->gch.marked ^ WHITEBITS) & deadmask) { /* not dead? */
lua_assert(!isdead(g, curr) || testbit(curr->gch.marked, FIXEDBIT));
makewhite(g, curr); /* make it white (for next cycle) */
p = &curr->gch.next;
}
else { /* must erase `curr' */
lua_assert(isdead(g, curr) || deadmask == bitmask(SFIXEDBIT));
*p = curr->gch.next;
if (curr == g->rootgc) /* is the first element of the list? */
g->rootgc = curr->gch.next; /* adjust first */
freeobj(L, curr);
}
}
return p;
}
static void GCTM (lua_State *L) {
global_State *g = G(L);
GCObject *o = g->tmudata->gch.next; /* get first element */
Udata *udata = rawgco2u(o);
const TValue *tm;
/* remove udata from `tmudata' */
if (o == g->tmudata) /* last element? */
g->tmudata = NULL;
else
g->tmudata->gch.next = udata->uv.next;
udata->uv.next = g->mainthread->next; /* return it to `root' list */
g->mainthread->next = o;
makewhite(g, o);
tm = fasttm(L, udata->uv.metatable, TM_GC);
if (tm != NULL) {
lu_byte oldah = L->allowhook;
lu_mem oldt = g->GCthreshold;
L->allowhook = 0; /* stop debug hooks during GC tag method */
g->GCthreshold = 2*g->totalbytes; /* avoid GC steps */
setobj2s(L, L->top, tm);
setuvalue(L, L->top+1, udata);
L->top += 2;
luaD_call(L, L->top - 2, 0);
L->allowhook = oldah; /* restore hooks */
g->GCthreshold = oldt; /* restore threshold */
}
}
void luaC_step (lua_State *L) {
global_State *g = G(L);
l_mem lim = (GCSTEPSIZE/100) * g->gcstepmul;//GCSTEPSIZE 是一个宏,表示每次 GC 的步长大小 。 使用这个宏以及gcstepmul参数,可以计算出这一次回收计划至少回收的内存数量
if (lim == 0)
lim = (MAX_LUMEM-1)/2; /* no limit */
g->gcdept += g->totalbytes - g->GCthreshold;//gcdept用于在每次回收之前累加当前使用内存到阔值之间的差值,用于后面计算下一次触发GC的阑值
do {//当计划待回收内存还没有回收完之前,一直循环调用 singlestep 函数来进行回收,除非这里完成了完整的GC
lim -= singlestep(L);
if (g->gcstate == GCSpause)
break;
} while (lim > 0);//完成回收之后,设置下一次触发回收操作的阈值;如果完成了一个 GC,那么调用 setthreshold来计算下一次GC的阔值。
if (g->gcstate != GCSpause) {//如果此时状态不是GCSpause ,那么表示没有完成一个GC
if (g->gcdept < GCSTEPSIZE)//如果前面保存的 gcdept太小,小于GCSTEPSIZE ,那么下一次阔值就设置得比当前使用内存大GCSTEPSIZE ,即只要再多分配 GCSTEPSIZE 的内存就会再次触发GC
g->GCthreshold = g->totalbytes + GCSTEPSIZE; /* - lim/g->gcstepmul;*/
else {//否则将 gcdept 减去 GCSTEPSIZE ,将GCthreshold设置得跟 totalbytes一样,以求尽快触发下一次GC 。
g->gcdept -= GCSTEPSIZE;
g->GCthreshold = g->totalbytes;
}
}
else {
lua_assert(g->totalbytes >= g->estimate);
setthreshold(g);//可以看到 setthreshold只会在一次GC完成之后被调用,而不会影响没有完成的GC全流程 。 因此, setthreshold影响的是两次完整GC之间的时长 。 而gcdept参数会在每次GC完毕之后重新清零,它用于保存一次完整GC的内部状态
}
}
#define iscollectable(o) (ttype(o) >= LUA TSTRING)
#define CommoHeader GCObject *next; lu_byte tt; lu_byte marked //next:GCObject链表指针,这个指针将所有GC对象都链接在一起形成链表,tt:表示数据的类型,即[lua数据类型](https://github.com/losophy/losophy.github.io/issues/109)的宏,marked : 标记字段,用于存储前面提到的几种颜色
/*
** Layout for bit use in `marked' field:
** bit 0 - object is white (type 0)
** bit 1 - object is white (type 1)
** bit 2 - object is black
** bit 3 - for userdata: has been finalized
** bit 3 - for tables: has weak keys
** bit 4 - for tables: has weak values
** bit 5 - object is fixed (should not be collected)
** bit 6 - object is "super" fixed (only the main thread)
*/
#define WHITE0BIT 0 //0型白色
#define WHITE1BIT 1 //l型白色
#define BLACKBIT 2
#define FINALIZEDBIT 3 //FINALIZEDBIT用于标记没有被引用需要回收的 udata 。 udata 的处理与其他数据类型不同,由于它是用户传入的数据,它的回收可能会调用用户注册的GC函数,所以统一来处理。
#define KEYWEAKBIT 3 //用于标记弱表中的键的weak属性
#define VALUEWEAKBIT 4 //T用于标记弱表中的值的weak属性
#define FIXEDBIT 5 //用于表示该对象不可回收,仅用于lua_State对象自身的标记
#define SFIXEDBIT 6 //用于表示该对象不可回收,标记了一系列Lua语法中的关键字对应的字符串为不可回收字符串,具体可以看看luaXinit函数的实现
#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
/*
** `global state', shared by all threads of this state
*/
typedef struct global_State {
lu_byte currentwhite;//存放当前GC的白色
lu_byte gcstate; //存放GC状态,分别有以下几种 : GCS pause (暂停阶段) 、 GCSpropagate(传播阶段,用于遍历灰色节点检查对象的引用情况)、 GCSsweepstring (字符串回收阶段) , GCSsweep (回收阶段,用于对除了字符串之外的所有其他数据类型进行回收)和GCSfinalize (终止阶段) 。
int sweepstrgc; //字符串回收阶段,每次针对字符串散列桶的一组字符串进行回收,这个值用于记录对应的散列桶索引 。
GCObject *rootgc; //存放待GC对象的链表,所有对象创建之后都会放入该链表中
GCObject **sweepgc; //待处理的回收数据都存放在rootgc链表中,由于回收阶段不是一次性全部回收这个链表的所有数据,所以使用这个变量来保存当前回收的位置,下一次从这个位置开始继续回收操作
GCObject *gray; //存放灰色节点的链表
GCObject *grayagain; //存放需要一次性扫描处理的灰色节点链表,也就是说,这个链表上所有数据的处理需要一步到位,不能被打断
GCObject *weak; //存放弱表的链表
GCObject *tmudata; //所有带有GC元方法的 udata存放在一个链表中,这个成员指向这千链表的最后一个元素
lu_mem GCthreshold;//开始进行GC的阔值,当totalbytes大于这个值时开始自动GC
lu_mem totalbytes; //当前分配的内存大小
lu_mem estimate; //一个估计值,用于保存实际在用的内存大小
lu_mem gcdept; //用于在单次GC之前保存待回收的数据大小
int gcpause; //用于控制下一轮GC开始的时机
int gcstepmul; //控制GC的回收速度
lua_CFunction panic; /* to be called in unprotected errors */
TValue l_registry;
struct lua_State *mainthread;
UpVal uvhead; /* head of double-linked list of all open upvalues */
struct Table *mt[NUM_TAGS]; /* metatables for basic types */
TString *tmname[TM_N]; /* array with tag-method names */
} global_State;
#define gray2black(x) l_setbit((x)->gch.marked, BLACKBIT)
#define luaC_barrier(L,p,v) { if (valiswhite(v) && isblack(obj2gco(p))) \
luaC_barrierf(L,obj2gco(p),gcvalue(v)); }
#define luaC_barriert(L,t,v) { if (valiswhite(v) && isblack(obj2gco(t))) \
luaC_barrierback(L,t); }
#define luaC_objbarrier(L,p,o) \
{ if (iswhite(obj2gco(o)) && isblack(obj2gco(p))) \
luaC_barrierf(L,obj2gco(p),obj2gco(o)); }
#define luaC_objbarriert(L,t,o) \
{ if (iswhite(obj2gco(o)) && isblack(obj2gco(t))) luaC_barrierback(L,t); }
#define sweepwholelist(L,p) sweeplist(L,p,MAX_LUMEM)
#define luaC_checkGC(L) { \
condhardstacktests(luaD_reallocstack(L, L->stacksize - EXTRA_STACK - 1)); \
if (G(L)->totalbytes >= G(L)->GCthreshold) \
luaC_step(L); }
#define setthreshold(g) (g->GCthreshold = (g->estimate/100) * g->gcpause)

lgc

这是从lua-5.1.1中分离出来的gc实现代码。

关于lua gc

lua gc

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment