Last active
March 19, 2021 17:18
-
-
Save lucidrains/e65623b707a3d97639ec32132b1668a8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
from torch.optim import Adam | |
from einops import rearrange, repeat | |
import sidechainnet as scn | |
from se3_transformer_pytorch.se3_transformer_pytorch import SE3Transformer | |
torch.set_default_dtype(torch.float64) | |
BATCH_SIZE = 1 | |
GRADIENT_ACCUMULATE_EVERY = 16 | |
def cycle(loader, len_thres = 500): | |
while True: | |
for data in loader: | |
if data.seqs.shape[1] > len_thres: | |
continue | |
yield data | |
def test_sequence(): | |
# Move this to a config | |
transformer = SE3Transformer( | |
num_tokens = 24, | |
dim = 8, | |
dim_head = 8, | |
heads = 2, | |
depth = 2, | |
num_neighbors = 12, | |
attend_self = True, | |
input_degrees = 1, | |
output_degrees = 2, | |
reduce_dim_out = True, | |
differentiable_coors = True | |
) | |
data = scn.load( | |
casp_version = 12, | |
thinning = 30, | |
with_pytorch = 'dataloaders', | |
batch_size = BATCH_SIZE, | |
dynamic_batching = False | |
) | |
# Add gaussian noise to the coords | |
# Testing the refinement algorithm | |
dl = cycle(data['train']) | |
optim = Adam(transformer.parameters(), lr=1e-4) | |
transformer = transformer.cuda() | |
for _ in range(10000): | |
for _ in range(GRADIENT_ACCUMULATE_EVERY): | |
batch = next(dl) | |
seqs, coords, masks = batch.seqs, batch.crds, batch.msks | |
seqs = seqs.cuda().argmax(dim = -1) | |
coords = coords.cuda().type(torch.float64) | |
masks = masks.cuda().bool() | |
l = seqs.shape[1] | |
coords = rearrange(coords, 'b (l s) c -> b l s c', s=14) | |
# Keeping only the backbone coordinates | |
coords = coords[:, :, 0:4, :] | |
coords = rearrange(coords, 'b l s c -> b (l s) c') | |
seq = repeat(seqs, 'b n -> b (n c)', c = 4) | |
masks = repeat(masks, 'b n -> b (n c)', c = 4) | |
noised_coords = coords + torch.randn_like(coords).cuda() | |
out = transformer( | |
seq, | |
noised_coords, | |
mask = masks, | |
return_type = 1 | |
) | |
denoised_coords = noised_coords + out | |
loss = F.mse_loss(denoised_coords[masks], coords[masks]) | |
(loss / GRADIENT_ACCUMULATE_EVERY).backward() | |
print('loss:', loss.item()) | |
optim.step() | |
optim.zero_grad() | |
if __name__ == '__main__': | |
# This starts to NaN after the first iteration | |
test_sequence() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment