-
-
Save lukovkin/8d8d9994ecc20914b884 to your computer and use it in GitHub Desktop.
Sample of FCN model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = Graph() | |
model.add_input(name='input', input_shape=(sequence_length, features)) | |
######################################################### | |
model.add_node(ZeroPadding1D(2), name='input_padding', input='input') # to avoid lookahead bias | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init), name='conv1', input='input_padding') | |
model.add_node(ParametricSoftplus(), name='relu1', input='conv1') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv2', input='relu1') | |
model.add_node(ParametricSoftplus(), name='relu2', input='conv2') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv3', input='relu2') | |
model.add_node(ParametricSoftplus(), name='relu3', input='conv3') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv4', input='relu3') | |
model.add_node(ParametricSoftplus(), name='relu4', input='conv4') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), | |
name='conv5', | |
inputs=['relu2', 'relu4'], | |
merge_mode='concat', concat_axis=-1) | |
model.add_node(ParametricSoftplus(), name='relu5', input='conv5') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), | |
name='conv6', | |
inputs=['relu1', 'relu5'], | |
merge_mode='concat', concat_axis=-1) | |
model.add_node(ParametricSoftplus(), name='relu6', input='conv6') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv7', input='relu6') | |
model.add_node(Activation('sigmoid'), name='activation', input='conv7') | |
model.add_output(name='output', input='activation') | |
model.compile(optimizer=optimizer, loss={'output': loss}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = Graph() | |
model.add_input(name='input', input_shape=(None, features)) | |
######################################################### | |
model.add_node(ZeroPadding1D(2), name='input_padding', input='input') # to avoid lookahead bias | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init, input_shape=(sequence_length, features)), name='conv1', input='input_padding') | |
model.add_node(Activation('relu'), name='relu1', input='conv1') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv2', input='relu1') | |
model.add_node(Activation('relu'), name='relu2', input='conv2') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv3', input='relu2') | |
model.add_node(Activation('relu'), name='relu3', input='conv3') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv4', input='relu3') | |
model.add_node(Activation('relu'), name='relu4', input='conv4') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), | |
name='conv5', | |
inputs=['relu2', 'relu4'], | |
merge_mode='concat', concat_axis=-1) | |
model.add_node(Activation('relu'), name='relu5', input='conv5') | |
######################################################### | |
model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), | |
name='conv6', | |
inputs=['relu1', 'relu5'], | |
merge_mode='concat', concat_axis=-1) | |
model.add_node(Activation('relu'), name='relu6', input='conv6') | |
model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv7', input='relu6') | |
model.add_node(Activation('sigmoid'), name='activation', input='conv7') | |
model.add_output(name='output', input='activation') | |
model.compile(optimizer=optimizer, loss={'output': loss}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
input : <class 'keras.layers.core.Layer'> : (None, 500, 4) : (None, 500, 4) | |
input_padding : <class 'keras.layers.convolutional.ZeroPadding1D'> : (None, 500, 4) : (None, 504, 4) | |
conv1 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 504, 4) : (None, 500, 150) | |
relu1 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv2 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 150) : (None, 500, 150) | |
relu2 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv3 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 150) : (None, 500, 150) | |
relu3 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv4 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 150) : (None, 500, 150) | |
relu4 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv5 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 300) : (None, 500, 150) | |
relu5 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv6 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 300) : (None, 500, 150) | |
relu6 : <class 'keras.layers.advanced_activations.ParametricSoftplus'> : (None, 500, 150) : (None, 500, 150) | |
conv7 : <class 'keras.layers.convolutional.Convolution1D'> : (None, 500, 150) : (None, 500, 3) | |
activation : <class 'keras.layers.core.Activation'> : (None, 500, 3) : (None, 500, 3) | |
output : <class 'keras.layers.core.Activation'> : (None, 500, 3) : (None, 500, 3) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment