Last active
December 23, 2015 01:39
-
-
Save lychees/6562208 to your computer and use it in GitHub Desktop.
HDU 4729. An Easy Problem for Elfness
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** Micro Mezz Macro Flation -- Overheated Economy ., Last Update: Aug. 20th 2013 **/ //{ | |
/** Header .. **/ //{ | |
#pragma comment(linker, "/STACK:36777216") | |
//#pragma GCC optimize ("O2") | |
#define LOCAL | |
//#include "testlib.h" | |
#include <functional> | |
#include <algorithm> | |
#include <iostream> | |
#include <fstream> | |
#include <sstream> | |
#include <iomanip> | |
#include <numeric> | |
#include <cstring> | |
#include <climits> | |
#include <cassert> | |
#include <complex> | |
#include <cstdio> | |
#include <string> | |
#include <vector> | |
#include <bitset> | |
#include <queue> | |
#include <stack> | |
#include <cmath> | |
#include <ctime> | |
#include <list> | |
#include <set> | |
#include <map> | |
//#include <tr1/unordered_set> | |
//#include <tr1/unordered_map> | |
//#include <array> | |
using namespace std; | |
#define REP(i, n) for (int i=0;i<int(n);++i) | |
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i) | |
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) | |
#define REP_1(i, n) for (int i=1;i<=int(n);++i) | |
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) | |
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) | |
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) | |
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) | |
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) | |
#define REP_N(i, n) for (i=0;i<int(n);++i) | |
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) | |
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) | |
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) | |
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) | |
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) | |
#define REP_1_N(i, n) for (i=1;i<=int(n);++i) | |
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) | |
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) | |
#define REP_C_N(i, n) for (int n____=(i=0,int(n));i<n____;++i) | |
#define FOR_C_N(i, a, b) for (int b____=(i=0,int(b);i<b____;++i) | |
#define DWN_C_N(i, b, a) for (int a____=(i=b-1,int(a));i>=a____;--i) | |
#define REP_1_C_N(i, n) for (int n____=(i=1,int(n));i<=n____;++i) | |
#define FOR_1_C_N(i, a, b) for (int b____=(i=1,int(b);i<=b____;++i) | |
#define DWN_1_C_N(i, b, a) for (int a____=(i=b,int(a));i>=a____;--i) | |
#define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it) | |
#define REP_S(i, str) for (char*i=str;*i;++i) | |
#define REP_L(i, hd, nxt) for (int i=hd;i;i=nxt[i]) | |
#define REP_G(i, u) REP_L(i,hd[u],suc) | |
#define REP_SS(x, s) for (int x=s;x;x=(x-1)&s) | |
#define DO(n) for ( int ____n = n; ____n-->0; ) | |
#define REP_2(i, j, n, m) REP(i, n) REP(j, m) | |
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) | |
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) | |
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) | |
#define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn) | |
#define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn) | |
#define ALL(A) A.begin(), A.end() | |
#define LLA(A) A.rbegin(), A.rend() | |
#define CPY(A, B) memcpy(A, B, sizeof(A)) | |
#define INS(A, P, B) A.insert(A.begin() + P, B) | |
#define ERS(A, P) A.erase(A.begin() + P) | |
#define BSC(A, x) (lower_bound(ALL(A), x) - A.begin()) | |
#define CTN(T, x) (T.find(x) != T.end()) | |
#define SZ(A) int((A).size()) | |
#define PB push_back | |
#define MP(A, B) make_pair(A, B) | |
#define PTT pair<T, T> | |
#define Ts *this | |
#define rTs return Ts | |
#define fi first | |
#define se second | |
#define re real() | |
#define im imag() | |
#define Rush for(int ____T=RD(); ____T--;) | |
#define Display(A, n, m) { \ | |
REP(i, n){ \ | |
REP(j, m-1) cout << A[i][j] << " "; \ | |
cout << A[i][m-1] << endl; \ | |
} \ | |
} | |
#define Display_1(A, n, m) { \ | |
REP_1(i, n){ \ | |
REP_1(j, m-1) cout << A[i][j] << " "; \ | |
cout << A[i][m] << endl; \ | |
} \ | |
} | |
typedef long long LL; | |
//typedef long double DB; | |
typedef double DB; | |
typedef unsigned UINT; | |
typedef unsigned long long ULL; | |
typedef vector<int> VI; | |
typedef vector<char> VC; | |
typedef vector<string> VS; | |
typedef vector<LL> VL; | |
typedef vector<DB> VF; | |
typedef set<int> SI; | |
typedef set<string> SS; | |
typedef map<int, int> MII; | |
typedef map<string, int> MSI; | |
typedef pair<int, int> PII; | |
typedef pair<LL, LL> PLL; | |
typedef vector<PII> VII; | |
typedef vector<VI> VVI; | |
typedef vector<VII> VVII; | |
template<class T> inline T& RD(T &); | |
template<class T> inline void OT(const T &); | |
//inline int RD(){int x; return RD(x);} | |
inline LL RD(){LL x; return RD(x);} | |
inline DB& RF(DB &); | |
inline DB RF(){DB x; return RF(x);} | |
inline char* RS(char *s); | |
inline char& RC(char &c); | |
inline char RC(); | |
inline char& RC(char &c){scanf(" %c", &c); return c;} | |
inline char RC(){char c; return RC(c);} | |
//inline char& RC(char &c){c = getchar(); return c;} | |
//inline char RC(){return getchar();} | |
template<class T> inline T& RDD(T &); | |
inline LL RDD(){LL x; return RDD(x);} | |
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;} | |
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;} | |
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} | |
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);} | |
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);} | |
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} | |
inline char& RC(char &a, char &b){RC(a), RC(b); return a;} | |
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} | |
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} | |
inline void RS(char *s1, char *s2){RS(s1), RS(s2);} | |
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);} | |
template<class T0,class T1>inline void RDD(T0&a, T1&b){RDD(a),RDD(b);} | |
template<class T0,class T1,class T2>inline void RDD(T0&a, T1&b, T2&c){RDD(a),RDD(b),RDD(c);} | |
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} | |
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} | |
template<class T> inline void CLR(T &A){A.clear();} | |
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} | |
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} | |
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} | |
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} | |
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);} | |
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T> inline void CLR(stack<T> &S){while (!S.empty()) S.pop();} | |
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} | |
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} | |
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} | |
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} | |
template<class T> inline bool EPT(T &a){return a.empty();} | |
template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;} | |
template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;} | |
template<class T> inline T& RVS(T &A){reverse(ALL(A)); return A;} | |
template<class T> inline T& UNQQ(T &A){A.resize(unique(ALL(A))-A.begin());return A;} | |
template<class T> inline T& UNQ(T &A){SRT(A);return UNQQ(A);} | |
//} | |
/** Constant List .. **/ //{ | |
const int MOD = int(1e9) + 7; | |
//int MOD = 99990001; | |
const int INF = 0x3f3f3f3f; | |
const LL INFF = 0x3f3f3f3f3f3f3f3fLL; | |
const DB EPS = 1e-9; | |
const DB OO = 1e20; | |
const DB PI = acos(-1.0); //M_PI; | |
const int dx[] = {-1, 0, 1, 0}; | |
const int dy[] = {0, 1, 0, -1}; | |
//} | |
/** Add On .. **/ //{ | |
// <<= '0. Nichi Joo ., //{ | |
template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} | |
template<class T> inline void checkMax(T &a,const T b){if (a<b) a=b;} | |
template<class T> inline void checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);} | |
template<class T> inline void checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);} | |
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} | |
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} | |
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} | |
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} | |
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} | |
template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));} | |
template<class T> inline T sqr(T a){return a*a;} | |
template<class T> inline T cub(T a){return a*a*a;} | |
template<class T> inline T ceil(T x, T y){return (x - 1) / y + 1;} | |
template<class T> T abs(T x){return x>0?x:-x;} | |
inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} | |
inline int sgn(DB x, DB y){return sgn(x - y);} | |
inline DB cos(DB a, DB b, DB c){return (sqr(a)+sqr(b)-sqr(c))/(2*a*b);} | |
inline DB cot(DB x){return 1./tan(x);}; | |
inline DB sec(DB x){return 1./cos(x);}; | |
inline DB csc(DB x){return 1./sin(x);}; | |
//} | |
// <<= '1. Bitwise Operation ., //{ | |
namespace BO{ | |
inline bool _1(int x, int i){return bool(x&1<<i);} | |
inline bool _1(LL x, int i){return bool(x&1LL<<i);} | |
inline LL _1(int i){return 1LL<<i;} | |
inline LL _U(int i){return _1(i) - 1;}; | |
inline int reverse_bits(int x){ | |
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); | |
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); | |
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); | |
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); | |
x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); | |
return x; | |
} | |
inline LL reverse_bits(LL x){ | |
x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); | |
x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); | |
x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); | |
x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); | |
x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); | |
x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); | |
return x; | |
} | |
template<class T> inline bool odd(T x){return x&1;} | |
template<class T> inline bool even(T x){return !odd(x);} | |
template<class T> inline T low_bit(T x) {return x & -x;} | |
template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} | |
template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} | |
template<class T> inline int cover_idx(T x){int p = 0; while (_1(p) < x ) ++p; return p;} | |
inline int clz(int x){return __builtin_clz(x);} | |
inline int clz(LL x){return __builtin_clzll(x);} | |
inline int ctz(int x){return __builtin_ctz(x);} | |
inline int ctz(LL x){return __builtin_ctzll(x);} | |
inline int lg2(int x){return !x ? -1 : 31 - clz(x);} | |
inline int lg2(LL x){return !x ? -1 : 63 - clz(x);} | |
inline int low_idx(int x){return !x ? -1 : ctz(x);} | |
inline int low_idx(LL x){return !x ? -1 : ctz(x);} | |
inline int high_idx(int x){return lg2(x);} | |
inline int high_idx(LL x){return lg2(x);} | |
inline int parity(int x){return __builtin_parity(x);} | |
inline int parity(LL x){return __builtin_parityll(x);} | |
inline int count_bits(int x){return __builtin_popcount(x);} | |
inline int count_bits(LL x){return __builtin_popcountll(x);} | |
} using namespace BO;//} | |
//} | |
/** I/O Accrecrator Interface .. **/ //{ | |
#define g (c=getchar()) | |
#define d isdigit(g) | |
#define p x=x*10+c-'0' | |
#define n x=x*10+'0'-c | |
#define pp l/=10,p | |
#define nn l/=10,n | |
template<class T> inline T& RD(T &x){ | |
char c;while(!d);x=c-'0';while(d)p; | |
return x; | |
} | |
template<class T> inline T& RDD(T &x){ | |
char c;while(g,c!='-'&&!isdigit(c)); | |
if (c=='-'){x='0'-g;while(d)n;} | |
else{x=c-'0';while(d)p;} | |
return x; | |
} | |
inline DB& RF(DB &x){ | |
//scanf("%lf", &x); | |
char c;while(g,c!='-'&&c!='.'&&!isdigit(c)); | |
if(c=='-')if(g=='.'){x=0;DB l=1;while(d)nn;x*=l;} | |
else{x='0'-c;while(d)n;if(c=='.'){DB l=1;while(d)nn;x*=l;}} | |
else if(c=='.'){x=0;DB l=1;while(d)pp;x*=l;} | |
else{x=c-'0';while(d)p;if(c=='.'){DB l=1;while(d)pp;x*=l;}} | |
return x; | |
} | |
#undef nn | |
#undef pp | |
#undef n | |
#undef p | |
#undef d | |
#undef g | |
inline char* RS(char *s){ | |
//gets(s); | |
scanf("%s", s); | |
return s; | |
} | |
LL last_ans; int Case; template<class T> inline void OT(const T &x){ | |
//printf("%lld\n", x); | |
//printf("%.4f\n", x); | |
//printf("%.2f\n", x); | |
cout << x << endl; | |
//last_ans = x; | |
} | |
//} | |
//}/* .................................................................................................................................. */ | |
const int N = 100009, M = 2 * N, LM = 18; | |
int hd[N], suc[M], to[M], wt[N]; | |
int ST[LM][M], st[N], dep[N]; // Euler index ... | |
int n, tt; int T[N], Null; | |
const int NN = 20 * N; | |
int l[NN], r[NN], c[NN], d[NN], total; | |
// Chairman tree | |
#define lx l[x] | |
#define rx r[x] | |
#define ly l[y] | |
#define ry r[y] | |
#define cx c[x] | |
#define cy c[y] | |
#define ml (ll+rr>>1) | |
#define mr (ml+1) | |
#define lc lx, ll, ml | |
#define rc rx, mr, rr | |
#define lt lx = ++total, rx = ry, x = lx, y = ly, rr = ml | |
#define rt lx = ly, rx = ++total, x = rx, y = ry, ll = mr | |
int Tn; | |
int new_node(){ | |
++total; l[total] = r[total] = c[total] = d[total] = 0; | |
return total; | |
} | |
int Insert(int y, int p){ | |
int x = new_node(), root = x, ll = 0, rr = Tn; | |
c[x] = c[y] + 1, d[x] = d[y] + p; | |
while (ll < rr){ | |
if (p < mr) lt; else rt; | |
c[x] = c[y] + 1, d[x] = d[y] + p; | |
} | |
return root; | |
} | |
inline bool elder(int a, int b){ | |
return dep[a] < dep[b]; | |
} | |
inline int lca(int a, int b){ | |
int l = st[a], r = st[b]; | |
if (l > r) swap(l, r); ++r; int lv = lg2(r-l); //log2(r - l); | |
return min(ST[lv][l], ST[lv][r-(1<<lv)], elder); | |
} | |
#define aa to[i^1] | |
#define bb to[i] | |
#define v bb | |
#define ww wt[i/2] | |
void dfs(int u = 1){ | |
ST[0][st[u] = ++tt] = u; | |
REP_G(i, u) if (!st[v]){ | |
dep[v] = dep[u] + 1, T[v] = Insert(T[u], ww); | |
dfs(v); | |
ST[0][++tt] = u; | |
} | |
} | |
int kth2(int x, int y, int k){ | |
int z = lca(x, y); | |
x = T[x], y = T[y], z = T[z]; | |
int ll = 0, rr = Tn, t, cc = 0, dd = 0; | |
int D = c[x] + c[y] - 2*c[z], tc, td; | |
while (ll < rr){ | |
if (ml * (cc + (tc = c[lx] + c[ly] - 2*c[l[z]])) - (dd + (td = d[lx] + d[ly] - 2*d[l[z]])) >= k){ | |
x = l[x], y = l[y], z = l[z]; | |
rr = ml; | |
} | |
else { | |
x = r[x], y = r[y], z = r[z]; | |
cc += tc, dd += td, ll = mr; | |
} | |
} | |
if ((k-((cc*ll)-dd))<0) --ll; | |
return ll + (k-((cc*ll)-dd))/D; | |
} | |
int kth(int x, int y, int k){ | |
int z = lca(x, y); | |
x = T[x], y = T[y], z = T[z]; | |
int ll = 0, rr = Tn, t; | |
while (ll < rr){ | |
if ((t = c[l[x]] + c[l[y]] - 2*c[l[z]]) >= k){ | |
x = l[x], y = l[y], z = l[z]; | |
rr = ml; | |
} | |
else { | |
x = r[x], y = r[y], z = r[z]; | |
k -= t, ll = mr; | |
} | |
} | |
return ll; | |
} | |
int main(){ | |
#ifndef ONLINE_JUDGE | |
freopen("in.txt", "r", stdin); | |
freopen("out2.txt", "w", stdout); | |
#endif | |
Rush{ | |
printf("Case #%d:\n", ++Case); | |
int Q; RD(n, Q); fill(hd+1, hd+n+1, 0); fill(st+1, st+n+1, 0); | |
Tn = 0; FOR_C(i, 2, n << 1){ | |
RD(to[i], to[i|1]); checkMax(Tn, RD(ww)); | |
suc[i] = hd[aa], hd[aa] = i++; | |
suc[i] = hd[aa], hd[aa] = i; | |
} | |
total = 0, T[1] = new_node(); | |
tt = 0, dfs(); | |
for ( int lv = 1 ; _1(lv) <= tt ; lv ++ ){ | |
for ( int i = 1 ; i + _1(lv) <= tt + 1 ; i ++ ) | |
ST[lv][i] = min(ST[lv-1][i], ST[lv-1][i + _1(lv-1)], elder); | |
} | |
DO(Q){ | |
int s, t, k, a, b; RD(s, t, k, a, b); | |
int flow = kth(s, t, 1), res = a <= b ? k/a + flow : max((k>=a?(k-a)/b+1:0) + flow, kth2(s, t, k/b)); | |
printf("%d\n", res); | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment