Skip to content

Instantly share code, notes, and snippets.

@lyleaf
Last active August 19, 2016 05:23
Show Gist options
  • Save lyleaf/75a05af347687d3b8b56ca115d631ae0 to your computer and use it in GitHub Desktop.
Save lyleaf/75a05af347687d3b8b56ca115d631ae0 to your computer and use it in GitHub Desktop.
Topological Sort Using BFS/DFS
/*
我的naive方法如下。大体上是正确的BFS,就是每一次找出没有入的节点,放到答案的vector里面去。
如何找出没有入的节点呢?我用的是每一次都用一个新的数组prerequisites来看。每一次就把prerequisites中已经放入vector的course的约束删除。但这
样每一回都要新建一个prerequisites vector.
为什么不直接用一个degree来标志入节点的个数呢?
*/
class Solution {
public:
vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<int> result;
while (result.size() != numCourses){
vector<int> course(numCourses);
vector<pair<int, int>> pre;
for (auto i: result){
course[i] = 1;
}
bool flag = false;
for (auto i: prerequisites) course[i.first]=1;
set<int> s;
for (int i=0;i<numCourses;i++){
if (course[i]==0) {
flag = true;
s.insert(i);
result.push_back(i);
}
}
for (auto j: prerequisites){
if (s.find(j.second)==s.end())
pre.push_back(j);
}
if (!flag && result.size()!=numCourses) {
vector<int> r;
return r;
}
pre.swap(prerequisites);
}
return result;
}
};
/*
我的方法中,一个循环里面有两个循环,而且每次找一个节点的入节点的时候,总是要遍历所有的prerequisites数组。我们可以想到用一个邻节点图来
表示我们的图。然后使用一个临时的queue来存放每一轮被删除的节点。
*/
class Solution {
public:
vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<int> result;
vector<int> inDegree(numCourses);//inDegree[n] means how many courses should have learned before a course n+1
for (auto p: prerequisites){
inDegree[p.first] ++;
}
while (result.size() != numCourses){
bool flag = false;
vector<int> deleted;
for (int i=0;i<numCourses;i++){
if (inDegree[i] == 0){
flag = true;
result.push_back(i);
deleted.push_back(i);
}
}
for (auto d: deleted){
inDegree[d]--;
for (auto p: prerequisites){
if (p.second == d)
inDegree[p.first] --;
}
}
if (!flag && result.size()!=numCourses) {
vector<int> r;
return r;
}
}
return result;
}
};
@lyleaf
Copy link
Author

lyleaf commented Aug 19, 2016

未完待续。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment