Skip to content

Instantly share code, notes, and snippets.

Created July 25, 2011 20:48
  • Star 4 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
Star You must be signed in to star a gist
What would you like to do?
Text classification using Twitter, MeCab, TokyoCabinet and nltk.
#!/usr/bin/env python2.6
# coding: utf-8
# Twitter
import twitter
def get_twitter_api():
api = twitter.Api(consumer_key=CONSUMER_KEY,
return api
def get_timeline(id, count=100, page=1):
# get user status
api = get_twitter_api()
statuses = api.GetUserTimeline(id=id, count=count, page=page)
if not statuses:
raise twitter.TwitterError('No Tweets')
return {
'name': statuses[0],
'tweets': [status.text for status in statuses],
# Cached Twitter (using TokyoCabinet)
class Twitter(object):
def __init__(self, datafile='tweets.tch'):
import tc
self.db = tc.HDB(datafile, tc.HDBOWRITER | tc.HDBOCREAT)
def close(self):
def get_timeline(self, id, count=100, update=False):
import json
if (id not in self.db) or update:
print 'Fetching %s\'s timeline..' % (id),
timeline = get_timeline(id)
print 'name = %s.' % (timeline['name'])
self.db[id] = json.dumps(timeline)
except twitter.TwitterError, e:
print e
self.db[id] = json.dumps({})
return json.loads(self.db[id])
def get_tweets(self, id, update=False):
return self.get_timeline(id=id, update=update).get('tweets', [])
def get_name(self, id, update=False):
return self.get_timeline(id=id, update=update).get('name', '')
def __enter__(self):
return self
def __exit__(self, *args):
# Cleanup
import re
re_mention = re.compile(r'@\w+')
re_url = re.compile(r'http://[\w./?=&#+\-]+')
def cleanup_tweet(tweet):
tweet = re_mention.sub('', tweet)
tweet = re_url.sub('', tweet)
return tweet
# MeCab
class MeCabTagger(object):
def __init__(self):
import MeCab
self._tagger = MeCab.Tagger()
def get_word(self, surface, feature):
fs = feature.split(",")
if fs[0] == '名詞' and fs[1] not in ('数', '接尾'):
return fs[6] != '*' and fs[6] or surface
def text2words(self, text, kinds=None):
node = self._tagger.parseToNode(text.encode('utf-8'))
except RuntimeError, e:
raise e
words = []
while node:
word = self.get_word(node.surface, node.feature)
if word:
node =
return words
tagger = MeCabTagger()
# Others
def get_counts(keys): # [A, A, B, B, A, ..] -> {A: 3, B: 2, ..}
counts = {}
for key in keys:
if key not in counts:
counts[key] = 0
counts[key] += 1
return counts
def tweet2features(tweet, tagger=tagger): # "tweet text" -> "{tweet: 1, text: 1}"
tweet = cleanup_tweet(tweet)
return get_counts(tagger.text2words(tweet))
def get_features_labels(id_labels, update=False): # [(twitter id, A), ..] -> [({word1: 3, word2:2}, A), ..]
with Twitter() as twitter:
arr = []
for id, label in id_labels:
for tweet in twitter.get_tweets(id, update=update):
features = tweet2features(tweet)
arr.append((features, label))
return arr
def read_id_labels(sourcefile): # file -> [(twitter_id, label), ..]
with open(sourcefile) as source:
return [line[:-1].split(' ', 1) for line in source]
def get_trained_classifier(trainfile, update=False):
train_id_labels = read_id_labels(trainfile)
print trainfile, 'から学習中..', len(train_id_labels), '件'
train_set = get_features_labels(train_id_labels, update=update)
import nltk
return nltk.NaiveBayesClassifier.train(train_set)
# Applications
def app_show(id, update=False, cleanup=False, **kwds):
with Twitter() as twitter:
for tweet in twitter.get_tweets(id, update=update):
if cleanup:
tweet = cleanup_tweet(tweet)
print tweet
def app_words(id, update=False, **kwds):
tagger = MeCabTagger()
with Twitter() as twitter:
for tweet in twitter.get_tweets(id, update=update):
tweet = cleanup_tweet(tweet)
for word in tagger.text2words(tweet):
print word,
def app_classify(trainfile, id, update=False, **kwds):
classifier = get_trained_classifier(trainfile, update=update)
with Twitter() as twitter:
tweets = twitter.get_tweets(id, update=update)
name = twitter.get_name(id).encode('utf-8')
features_list = [tweet2features(tweet) for tweet in tweets]
if not features_list:
print '判定不能でした。'
labels = [classifier.classify(features) for features in features_list]
results = get_counts(labels)
print '%s (%s) は%sっぽいです。' % (id, name, max(results.items(), key=lambda x: x[1])[0])
def app_test(trainfile, testfile, update=False, **kwds):
classifier = get_trained_classifier(trainfile, update=update)
test_id_labels = read_id_labels(testfile)
test_set = get_features_labels(test_id_labels, update=update)
import nltk
print '精度は', nltk.classify.accuracy(classifier, test_set)
%prog show id [count=100] [--update] [--cleanup] # show tweets for id
%prog words id [--update] # show words for id
%prog classify trainfile id [--update] # classify id by trainfile
%prog test trainfile testfile [--update] # test labels
if __name__ == '__main__':
import optparse
op = optparse.OptionParser(usage=USAGE)
op.add_option('--tagged', action='store_true', default=False, dest='tagged')
op.add_option('--update', action='store_true', default=False, dest='update')
op.add_option('--cleanup', action='store_true', default=False, dest='cleanup')
opts, args = op.parse_args()
if not args:
app = args[0]
globals()['app_' + app](*args[1:], **opts.__dict__)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment