This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def find_factors_v1(value:int) -> list: | |
factors = [] | |
count = 0 | |
div = 2 | |
while value > 1: | |
if value % div: | |
div += 1 | |
else: | |
factors.append(div) | |
value /= div |
We can make this file beautiful and searchable if this error is corrected: It looks like row 2 should actually have 1 column, instead of 13 in line 1.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Paper|Ecoregion|BIOME|Type_of_Species|Species|WU|MUWM|CARN|DOM|HARE|SM|BIRD|REPT|FISH|ARTHR|PLANTS|OTHER|WASTE|Percentage | |
1971_Bothma|548|10|3|SF|0,62||0,00|0,00|3,11|24,84|7,45|0,62||14,91|19,88|13,04|15,53|100,00 | |
1971_Bothma|548|10|1|SSJ|6,67|||3,33||3,33|10,00|13,33||13,33|26,67|23,33||100,00 | |
1971_Bothma|548|10|4|Viverra_civeta|2,17|||||6,52|8,70|4,35||21,74|28,26|21,74|6,52|100,00 | |
1977_Stuart|1110|9|2|WC||||||46,41|5,64|0,09||41,19|6,68|||100,00 | |
1978_Delibes|86|2|4|Mart|||||2,84|26,48|11,08|2,27|1,42|21,31|32,48|2,27||100,15 | |
1978_Fritts|201|8|2|BC|12,57|1,05|7,85|1,05|30,37|34,03|6,28|1,05||||5,76||100,00 | |
1978_Lamprecht|512|3|1|AGW|2,28|15,98||||10,05|1,37|0,00||45,66|23,29||1,37|100,00 | |
1981_Stuart|1008|4|3|BEF||||||2,18|0,87|0,87||82,97|11,79|1,31||100,00 | |
1981_Stuart|1008|4|3|CF||||10,26||16,67|5,13|5,13||46,15|10,26|6,41||100,00 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import csv | |
import pandas as pd | |
SAM_FILES_PATH = 'sam/' | |
RESULT = {} | |
def process_sam(filename, header_values): | |
df = pd.read_table(SAM_FILES_PATH + filename, sep='\t', skiprows=[0, 1], names=list('abcdefghijkl')) |