This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch.optim.sgd import SGD | |
from torch.optim.optimizer import required | |
class PGM(SGD): | |
def __init__(self, params, proxs, lr=required, momentum=0, dampening=0, | |
nesterov=False): | |
kwargs = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=0, nesterov=nesterov) | |
super().__init__(params, **kwargs) | |
if len(proxs) != len(self.param_groups): | |
raise ValueError("Invalid length of argument proxs: {} instead of {}".format(len(proxs), len(self.param_groups))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
def jacobian(y, x, create_graph=False): | |
jac = [] | |
flat_y = y.reshape(-1) | |
grad_y = torch.zeros_like(flat_y) | |
for i in range(len(flat_y)): | |
grad_y[i] = 1. | |
grad_x, = torch.autograd.grad(flat_y, x, grad_y, retain_graph=True, create_graph=create_graph) | |
jac.append(grad_x.reshape(x.shape)) |