Created
February 14, 2022 23:44
-
-
Save makslevental/69107d0e566040b24bc317354b6372d9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import asyncio | |
MATRIX_DIM = 8 | |
NUM_EL_MATRIX = MATRIX_DIM * MATRIX_DIM | |
DATA_TYPE = np.float32 | |
DATA_BYTES = np.dtype(DATA_TYPE).itemsize | |
MAT_A = np.arange(0, NUM_EL_MATRIX, dtype=DATA_TYPE).reshape(MATRIX_DIM, MATRIX_DIM) | |
MAT_B = np.arange(0, NUM_EL_MATRIX, dtype=DATA_TYPE).reshape(MATRIX_DIM, MATRIX_DIM) | |
MAT_C = MAT_A @ MAT_B | |
async def to_device(): | |
xdma_axis_wr_data = os.open("/dev/xdma0_h2c_0", os.O_WRONLY) | |
print(f"{MAT_A=}") | |
print(f"{MAT_B=}") | |
buffer = np.concatenate([MAT_A, MAT_B]) | |
os.write(xdma_axis_wr_data, buffer.tobytes()) | |
async def from_device(): | |
xdma_axis_rd_data = os.open("/dev/xdma0_c2h_0", os.O_RDONLY) | |
buffer_size = MATRIX_DIM * MATRIX_DIM * DATA_BYTES | |
data = os.read(xdma_axis_rd_data, buffer_size) | |
output = np.frombuffer(data, dtype=DATA_TYPE).reshape(MATRIX_DIM, MATRIX_DIM) | |
print(f"{output=}") | |
assert np.allclose(MAT_C, output) | |
async def matmul(): | |
# don't flip the order! | |
await to_device() | |
await from_device() | |
asyncio.run(matmul()) | |
# alternative method using struct.pack | |
# mat_a = [i for i in range(NUM_EL_MATRIX)] | |
# mat_b = [i for i in range(NUM_EL_MATRIX)] | |
# input_data = struct.pack(f"<{2*NUM_EL_MATRIX}{DTYPE}", *(mat_a + mat_b)) | |
# output = np.array(struct.unpack(f"<{NUM_EL_MATRIX // DATA_BYTES}f", data)) | |
# os.pwrite(xdma_axis_wr_data, buffer.tobytes(), 0) | |
# data = os.pread(xdma_axis_rd_data, buffer_size, 0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment