Skip to content

Instantly share code, notes, and snippets.

@maple3142
Created May 30, 2022 03:15
Show Gist options
  • Save maple3142/19234bde2f96a333180e3adae5ac92b9 to your computer and use it in GitHub Desktop.
Save maple3142/19234bde2f96a333180e3adae5ac92b9 to your computer and use it in GitHub Desktop.
DEF CON Quals 2022- sameold
from zlib import crc32
def v2b(v):
v = v[::-1]
return bytes([int("".join(map(str, v[i : i + 8])), 2) for i in range(0, len(v), 8)])
def b2v(b):
v = []
for x in b:
v.extend(list(map(int, f"{x:08b}")))
return v[::-1]
def i2v(i, n):
return list(map(int, f"{i:0{n}b}"))[::-1]
def v2i(v):
return int("".join(map(str, v[::-1])), 2)
def crcmat(crc, n, m):
"""
Recover matrix of crc by black box
crc: crc function, bytes->int
n: crc output bits
m: crc input bits
crc(x) = Ax+C
x is n bits
crc(x) is m bits
A is m by n matrix
Assuming bits reversed crc
"""
C = vector(GF(2), i2v(crc(v2b([0] * m)), n))
right = []
# left = []
for i in range(m):
v = [0] * m
v[i] = 1
# left.append(v)
right.append(vector(i2v(crc(v2b(v)), n)) - C)
# L = matrix(GF(2), left).T
R = matrix(GF(2), right).T
# A = R * L.inverse()
# Note: L is identity matrix
A = R
return A, C
tint = crc32(b"the")
target = vector(GF(2), i2v(tint, 32))
n_digits = 16
data = b"Balsn.217@TSJ.tw" + b"\0" * n_digits
m = len(data) * 8
A, C = crcmat(crc32, 32, m)
# A*(base+delta)+C=t
# A*delta=t-C-A*base
delta = A.solve_right(target - C - A * vector(b2v(data)))
dd = v2b(vector(GF(2), b2v(data)) + delta)
print(dd, crc32(dd), tint)
# basis: some vectors that could becomes the ascii digits 0~7
# k: another constant ensures
# delta + right_kernel = k + basis
# right_kernel - basis = k - delta
def gen_at(i):
v = [0] * m
v[i] = 1
return vector(GF(2), v)
basis = []
k = [0] * m
for i in range(0, m, 8):
if i >= m - n_digits * 8:
# do not modify the prefix
continue
# f'{ord("7"):08b}' == '00110111'
# the lowest three bits belongs to basis
# and the higher two bits are for k
# the bits are reversed
k[i + 4] = 1
k[i + 5] = 1
basis.append(gen_at(i))
basis.append(gen_at(i + 1))
basis.append(gen_at(i + 2))
rhs = vector(k) - delta
nk = len(A.right_kernel().basis())
lhs = list(A.right_kernel().basis()) + basis
sol = matrix(lhs).solve_left(rhs)
delta2 = sol[:nk] * A.right_kernel_matrix() + delta
print(delta2)
dd = v2b(vector(GF(2), b2v(data)) + delta2)
print(dd, crc32(dd), tint)
assert crc32(dd) == crc32(b'the')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment