Skip to content

Instantly share code, notes, and snippets.

Charles Tilford maptracker

  • Work-related, non-proprietary coding
Block or report user

Report or block maptracker

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@maptracker
maptracker / WorldHeat.r
Last active Nov 14, 2017 — forked from cavedave/WorldHeat.r
Heatmap of world Temperature in r package for ggplot2
View WorldHeat.r
### FORKED FROM: https://gist.github.com/cavedave/8ff22e94c882e9f6be933f99f2ae0b50
## Charles changed:
## Absolute URLs to library/data (rather than local files)
## Raster rather than tiles (didn't like the grid lines)
## Gradient from red (hot) to blue (cold) with black at zero (no change from average)
## Removed year filter
## Defined title and breaks via automatic extraction of dates from data
## Scaled down plot to be more friendly for Gist
## Took out unused libraries
@maptracker
maptracker / RefClassHeadaches.R
Last active Oct 17, 2016
Unexpected behavior with R reference class objects
View RefClassHeadaches.R
## It's a real pain to deal with deep-linking to Gists (eg sourcing raw code), so I'm working on this
## in GitHub proper:
## https://github.com/maptracker/RandomR/blob/master/RefClassHeadaches.R
## Quickly source this code:
## source("https://gist.github.com/maptracker/00f2c18383e844c3f4a0886b7897ceb7/raw/532410cf19b4df6f9949bdc9ec1dd0e9d13ef898/RefClassHeadaches.R")
View CI-binomial-simulation.R
# Fork of Scott's coin flip simulation
# https://gist.github.com/maptracker/e34a8596a9c2a7f261d6b892e5df42c5
flipCoin <- function( n = 50, pvals = 0.5, nosim = 100, file = NULL ) {
coverage <- lapply(pvals, function(p) {
phats <- (rbinom(nosim, prob = p, size = n) + 2)/(n + 4)
ll <- phats - qnorm(0.975) * sqrt(phats * (1 - phats)/n)
ul <- phats + qnorm(0.975) * sqrt(phats * (1 - phats)/n)
cbind(lower = ll, upper = ul)
})[[1]] # De-listify
@maptracker
maptracker / StudentListToGitHubWiki.R
Last active Feb 24, 2016
First pass at getting #random reviewer/reviewee assignments
View StudentListToGitHubWiki.R
## Generate a markdown table of permuted peer assignments
## Designed for putting into output into GitHub Wiki
## Permutation code
source("https://gist.github.com/maptracker/f0ec01bed4d1c1583bf6/raw/a9cbd9983703a293584e826d903f21a8556e41a3/StudentPeerReview.R")
makeMarkdownTable <- function
(file, peers = 2, out = paste(c(file,"md"), collapse = '.'),
subtitle = NULL,
@maptracker
maptracker / ColorCuts.R
Created Jan 22, 2016
Coloring the groups made by #cutree from an #R #hclust analysis (#base graphics)
View ColorCuts.R
## Subset of arrest data for murder and assault in the 50 US states
ma <- USArrests[, c("Murder", "Assault")]
## (FWIW, I don't think this represents a meaningful clustering of states)
## Cluster
mahc <- hclust(dist(ma), "ave")
## Cut into 6 groups
ct <- cutree(mahc, k = 6)
## Get the order of the states along the x axis
xord = mahc$labels[ mahc$order ];
## Plot the dendrogram
@maptracker
maptracker / PlayingWithKmeans.R
Last active Jan 22, 2016
Exploring #kmeans stability in #R
View PlayingWithKmeans.R
## Code was initially taken From Coursera lecture:
## https://www.coursera.org/learn/exploratory-data-analysis/lecture/6hOqi/k-means-clustering-part-2
set.seed(1234)
## Generate 30 points randomly assorted around 3 centroids: (1,1), (2,2), (3,1)
numPoints <- 30
x <- rnorm(numPoints, mean = rep(1:3, each = numPoints/3), sd = 0.2)
y <- rnorm(numPoints, mean = rep(c(1, 2, 1), each = numPoints/3), sd = 0.2)
## Organize as DF
dataFrame <- data.frame(x = x, y = y, row.names = 1:numPoints)
@maptracker
maptracker / rColors.R
Last active Jan 19, 2016
#color defaults used in #R
View rColors.R
### Explore the colors used by R, as hex codes
## The default palette, a vector of strings (like "green2")
myPal <- palette()
## Find the RGB codes for the palette, a red/blue/green matrix of 0-255:
myRGB <- col2rgb( myPal )
## Convert to hex codes:
myHex <- apply( myRGB, 2, function (x) {
rgb(x[1], x[2], x[3], maxColorValue = 255)
} )
@maptracker
maptracker / PlotCharacters.R
Last active Jan 21, 2016
Visualize #R #pch (plot characters) used in #points
View PlotCharacters.R
# From @Greg Snow https://stackoverflow.com/a/3740473
# Plots a grid with default tokens on bottom two rows, characters in others
png(filename="GregSnow.png", width = 600, height = 600)
plot( 0:15, 0:15, type='n', main = "pch values by Greg Snow" )
points( (0:255)%% 16, (0:255) %/% 16, pch=0:255, font=5, cex = 2 )
dev.off()
# From the R help for ?points
png(filename="PointsHelp.png", width = 600, height = 600)
pchShow <-
@maptracker
maptracker / ggplot_smooth_and_wrap.R
Created Nov 30, 2015
#R - UAH data set using #ggplot functions #geom_smooth and #facet_wrap
View ggplot_smooth_and_wrap.R
## Using UAH satellite data to demonstrate faceting and smoothing
library(ggplot2)
## There are a bunch of comments at the end of the file, take first
## 443 rows (up to Oct 2015)
numRow <- 443
url <- "http://vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc_lt_5.6.txt"
uah <- read.delim(url, sep = "", nrows = numRow)
## Assign month names as a factor
@maptracker
maptracker / GraphicalBenchmarks.R
Created Nov 6, 2015
Graphical benchmarks with #microbenchmark in #R
View GraphicalBenchmarks.R
# Code to make random matrices:
source("https://gist.github.com/maptracker/07390983253758614ecc/raw/5995a7c1112420b64ff33dcb1e7dac679d05dbf9/randomMatrix.R")
library("microbenchmark")
library("ggplot2")
# Iterate 1000 times over solving three sizes of matrices
bench <- microbenchmark( "10x10" = solve( randomMatrix( 10 ) ),
"20x20" = solve( randomMatrix( 20 ) ),
"50x50" = solve( randomMatrix( 50 ) ),
times = 1000 )
# Plot results:
You can’t perform that action at this time.