Skip to content

Instantly share code, notes, and snippets.

@marcusbirkeland
Created October 4, 2021 05:27
Show Gist options
  • Save marcusbirkeland/635a90621bec75dd11cb1bb24abc4400 to your computer and use it in GitHub Desktop.
Save marcusbirkeland/635a90621bec75dd11cb1bb24abc4400 to your computer and use it in GitHub Desktop.
Unity CRT Shader
Shader "Unlit/CRT"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
[HDR] _ImageColor("Image Color", Color) = (1,1,1,1)
[HDR] _TintColor1("CRT TintColor", Color) = (1,1,1,1)
[HideInInspector][HDR] _TintColor2("TintColor2", Color) = (1,1,1,1)
_CRTAmount("CRT Amount", Range(0.0,0.5)) = 0.5
_CRTResolution("Resolution", Range(1.0,8.0)) = 1.2
_CRTgamma("Gamma", Range(0.0,4.0)) = 2.2
_CRTBrightness("Brightness", Range(1.0,3.0)) = 2.0
_CRTCurvatureRadius("CurvatureRadius", Range(0.01,2.0)) = 1.5
_CRTCornerSize("CornerSize", Range(0.01,0.10)) = 0.001
_CRTDistance("CRT Distance", Range(0.01, 4.0)) = 2.0
_CRTScanlineIntensity("Scanline Intensity", Range(2.0, 4.0)) = 2.0
_CRTAngleY("CRT Angle Y", Range(-0.20, 0.20)) = -0.15
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
UNITY_FOG_COORDS(1)
float4 vertex : SV_POSITION;
};
sampler2D _MainTex;
float4 _ImageColor;
float4 _MainTex_ST;
float3 _TintColor1;
float3 _TintColor2;
float _CRTScanlineIntensity;
float _CRTAmount;
float _CRTResolution;
float _CRTBrightness;
float _CRTgamma;
float _CRTCurvatureRadius;
float _CRTCornerSize;
float _CRTDistance;
float _CRTAngleY;
#define _CRTCurvature 1
#define CRTmonitorgamma 2.2 //[0.0 to 4.0] Gamma of display monitor (typically 2.2 is correct)0
#define CRTScanlineGaussian 1 //[0 or 1] Use the "new nongaussian scanlines bloom effect". Default is on
#define CRTAngleX 0.00 //[-0.20 to 0.20] Tilt angle in radians (X coordinates)
#define CRTOverScan 1.01 //[1.00 to 1.10] Overscan (e.g. 1.02 for 2% overscan). Default is 1.01
#define CRTOversample 0 //[0 or 1] Enable 3x oversampling of the beam profile (warning : performance hit)
/* --- Defining Constants --- */
#define _MainTex(s,p) tex2D(s,p)
#ifndef s0
sampler s0 : register(s0);
#define s1 s0
//sampler s1 : register(s1);
float4 p0 : register(c0);
float4 p1 : register(c1);
// #define width (p0[0])
// #define height (p0[1])
// #define counter (p0[2])
// #define clock (p0[3])
// #define px (p1[0]) //one_over_width
// #define py (p1[1]) //one_over_height
#define px (p1.x) //one_over_width
#define py (p1.y) //one_over_height
#define screen_size float2(p0.x,p0.y)
#define pixel float2(px,py)
//#define pxy float2(p1.xy)
//#define PI acos(-1)
#endif
/* --- Main code --- */
// CRT shader
//
// Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option)
// any later version.
#define d _CRTDistance
#define R _CRTCurvatureRadius
// Comment the next line to disable interpolation in linear gamma (and gain speed).
//#define LINEAR_PROCESSING
// aspect ratio
#define aspect float2(1.0, 0.75)
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
#define sinangle sin(float2(CRTAngleX, _CRTAngleY))
#define cosangle cos(float2(CRTAngleX, _CRTAngleY))
#define stretch maxscale()
// Macros.
#define FIX(c) max(abs(c), 1e-5);
float PI = acos(-1); //#define PI 3.141592653589
// The size of one texel, in texture-coordinates.
#define coone 1.0 / rubyTextureSize
#define mod_factor tex.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(_MainTex(s0, (c)), _CRTgamma)
#else
# define TEX2D(c) _MainTex(s0, (c))
#endif
float flashBrightness()
{
return lerp(_CRTBrightness, _CRTBrightness * 1.1, _SinTime.z);
}
float intersect(float2 xy)
{
float A = dot(xy, xy) + (d * d);
float B = 2.0 * (R * (dot(xy, sinangle) - d * cosangle.x * cosangle.y) - d * d);
float C = d * d + 2.0 * R * d * cosangle.x * cosangle.y; //all constants
return (-B - sqrt(B * B - 4.0 * A * C)) / (2.0 * A);
}
float2 bkwtrans(float2 xy)
{
float c = intersect(xy);
float2 _point = float2(c, c) * xy;
_point -= float2(-R, -R) * sinangle;
_point /= float2(R, R);
float2 tang = sinangle / cosangle;
float2 poc = _point / cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0 * dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B * B - 4.0 * A * C)) / (2.0 * A);
float2 uv = (_point - a * sinangle) / cosangle;
float r = R * acos(a);
return uv * r / sin(r / R);
}
float2 fwtrans(float2 uv)
{
float r = FIX(sqrt(dot(uv, uv)));
uv *= sin(r / R) / r;
float x = 1.0 - cos(r / R);
float D = d / R + x * cosangle.x * cosangle.y + dot(uv, sinangle);
return d * (uv * cosangle - x * sinangle) / D;
}
float3 maxscale()
{
float2 c = bkwtrans(-R * sinangle / (1.0 + R / d * cosangle.x * cosangle.y));
float2 a = float2(0.5, 0.5) * aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y)).x,
fwtrans(float2(c.x, -a.y)).y) / aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y)).x,
fwtrans(float2(c.x, +a.y)).y) / aspect;
return float3((hi + lo) * aspect * 0.5, max(hi.x - lo.x, hi.y - lo.y));
}
float2 transform(float2 coord, float2 textureSize, float2 inputSize)
{
coord *= textureSize / inputSize;
coord = (coord - 0.5) * aspect * stretch.z + stretch.xy;
return (bkwtrans(coord) / float2(CRTOverScan, CRTOverScan) / aspect + 0.5) * inputSize / textureSize;
}
float corner(float2 coord, float2 textureSize, float2 inputSize)
{
coord *= textureSize / inputSize;
coord = (coord - 0.5) * float2(CRTOverScan, CRTOverScan) + 0.5;
coord = min(coord, 1.0 - coord) * aspect;
float2 cdist = float2(_CRTCornerSize, _CRTCornerSize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist) * 1000.0, 0.0, 1.0);
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
float4 scanlineWeights(float distance, float4 color)
{
// "wid" controls the width of the scanline beam, for each RGB channel
// The "weights" lines basically specify the formula that gives
// you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#if CRTScanlineGaussian == 0
float4 wid = 0.3 + 0.1 * pow(color, 3.0);
float4 weights = float4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
#else
float4 wid = 2.0 + 2.0 * pow(color, 4.0);
float calcdistance = distance / 0.3; // Optimization ?
//float4 weights = float4(distance / 0.3, distance / 0.3, distance / 0.3, distance / 0.3);
float4 weights = float4(calcdistance, calcdistance, calcdistance, calcdistance);
return 1.4 * exp(-pow(weights * rsqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
float4 AdvancedCRTPass(float4 colorInput, float2 tex)
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
float Input_ratio = ceil(256 * _CRTResolution);
float2 Resolution = float2(Input_ratio, Input_ratio);
float2 rubyTextureSize = Resolution;
float2 rubyInputSize = Resolution;
float2 rubyOutputSize = screen_size;
#if _CRTCurvature == 1
float2 xy = transform(tex, rubyTextureSize, rubyInputSize);
#else
float2 xy = tex;
#endif
float cval = corner(xy, rubyTextureSize, rubyInputSize);
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
float2 ratio_scale = xy * rubyTextureSize - 0.5;
#if CRTOversample == 1
float filter = fwidth(ratio_scale.y);
#endif
float2 uv_ratio = frac(ratio_scale);
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale) + 0.5) / rubyTextureSize;
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
float4 coeffs = PI * float4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Normalize.
coeffs /= dot(coeffs, 1.0);
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
float4 col = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-coone.x, 0.0)),
TEX2D(xy),
TEX2D(xy + float2(coone.x, 0.0)),
TEX2D(xy + float2(2.0 * coone.x, 0.0)))),
0.0, 1.0);
float4 col2 = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-coone.x, coone.y)),
TEX2D(xy + float2(0.0, coone.y)),
TEX2D(xy + coone),
TEX2D(xy + float2(2.0 * coone.x, coone.y)))),
0.0, 1.0);
#ifndef LINEAR_PROCESSING
col = pow(col, _CRTgamma);
col2 = pow(col2, _CRTgamma);
#endif
// Calculate the influence of the current and next scanlines on
// the current pixel.
float4 weights = scanlineWeights(uv_ratio.y, col);
float4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#if CRTOversample == 1
uv_ratio.y = uv_ratio.y + 1.0 / 3.0 * filter;
weights = (weights + scanlineWeights(uv_ratio.y, col)) / 3.0;
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)) / 3.0;
uv_ratio.y = uv_ratio.y - 2.0 / 3.0 * filter;
weights = weights + scanlineWeights(abs(uv_ratio.y), col) / 3.0;
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2) / 3.0;
#endif
float3 mul_res = (col * weights + col2 * weights2).rgb * float3(cval, cval, cval);
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
float3 dotMaskWeights = lerp(_TintColor1,
_TintColor2,
floor(mod_factor % _CRTScanlineIntensity));
mul_res *= dotMaskWeights * float3(0.83, 0.83, 1.0) * flashBrightness();
//mul_res *=1.0 * float3(0.83, 0.83, 1.0) * _CRTBrightness;
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, 1.0 / CRTmonitorgamma);
//return saturate(lerp(colorInput, float4(mul_res, 1.0), _CRTAmount));
colorInput.rgb = lerp(colorInput.rgb, mul_res, _CRTAmount);
return saturate(colorInput);
}
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
UNITY_TRANSFER_FOG(o,o.vertex);
return o;
}
fixed4 frag (v2f i) : SV_Target
{
float4 c0 = tex2D(_MainTex, i.uv) * _ImageColor;
fixed4 col = AdvancedCRTPass(c0, i.uv);
return col;
}
ENDCG
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment