Last active
October 11, 2020 16:05
-
-
Save mardani72/24a4ce6f940dc1c8ca60766489b32b13 to your computer and use it in GitHub Desktop.
12_baseline_model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LogisticRegression | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.svm import SVC | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.ensemble import ExtraTreesClassifier | |
# define Classifiers | |
log = LogisticRegression() | |
knn = KNeighborsClassifier() | |
dtree = DecisionTreeClassifier() | |
rtree = RandomForestClassifier() | |
svm = SVC() | |
nb = GaussianNB() | |
gbc = GradientBoostingClassifier() | |
etree = ExtraTreesClassifier() | |
# define a function that uses pipeline to impelement data transformation and fit with model then cross validate | |
def baseline_model(model_name): | |
model = model_name | |
steps = list() | |
steps.append(('ss', StandardScaler() )) | |
steps.append(('ml', model)) | |
pipeline = Pipeline(steps=steps) | |
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) | |
# balanced X,y from SMOTE can also be used | |
scores = cross_val_score(pipeline, X_sm, y_sm, scoring='accuracy', cv=cv, n_jobs=-1) | |
print(model,'Accuracy: %.3f' % (mean(scores))) | |
#Run Function | |
baseline_model(log) | |
baseline_model(knn) | |
baseline_model(dtree) | |
baseline_model(rtree) | |
baseline_model(svm) | |
baseline_model(nb) | |
baseline_model(gbc) | |
baseline_model(etree) | |
#LogisticRegression() Accuracy: 0.623 | |
#KNeighborsClassifier() Accuracy: 0.880 | |
#DecisionTreeClassifier() Accuracy: 0.845 | |
#RandomForestClassifier() Accuracy: 0.910 | |
#SVC() Accuracy: 0.777 | |
#GaussianNB() Accuracy: 0.357 | |
#GradientBoostingClassifier() Accuracy: 0.832 | |
#ExtraTreesClassifier() Accuracy: 0.934 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment