|
import itertools |
|
import numpy |
|
from scipy.spatial import ConvexHull |
|
|
|
from matplotlib.collections import LineCollection |
|
from matplotlib import pyplot as plot |
|
|
|
|
|
|
|
# --- Misc. geometry code ----------------------------------------------------- |
|
|
|
''' |
|
Pick N points uniformly from the unit disc |
|
This sampling algorithm does not use rejection sampling. |
|
''' |
|
def disc_uniform_pick(N): |
|
angle = (2 * numpy.pi) * numpy.random.random(N) |
|
out = numpy.stack([numpy.cos(angle), numpy.sin(angle)], axis = 1) |
|
out *= numpy.sqrt(numpy.random.random(N))[:,None] |
|
return out |
|
|
|
|
|
|
|
def norm2(X): |
|
return numpy.sqrt(numpy.sum(X ** 2)) |
|
|
|
|
|
|
|
def normalized(X): |
|
return X / norm2(X) |
|
|
|
|
|
|
|
# --- Delaunay triangulation -------------------------------------------------- |
|
|
|
def get_triangle_normal(A, B, C): |
|
return normalized(numpy.cross(A, B) + numpy.cross(B, C) + numpy.cross(C, A)) |
|
|
|
|
|
|
|
def get_power_circumcenter(A, B, C): |
|
N = get_triangle_normal(A, B, C) |
|
return (-.5 / N[2]) * N[:2] |
|
|
|
|
|
|
|
def is_ccw_triangle(A, B, C): |
|
M = numpy.concatenate([numpy.stack([A, B, C]), numpy.ones((3, 1))], axis = 1) |
|
return numpy.linalg.det(M) > 0 |
|
|
|
|
|
|
|
def get_power_triangulation(S, R): |
|
# Compute the lifted weighted points |
|
S_norm = numpy.sum(S ** 2, axis = 1) - R ** 2 |
|
S_lifted = numpy.concatenate([S, S_norm[:,None]], axis = 1) |
|
|
|
# Special case for 3 points |
|
if S.shape[0] == 3: |
|
if is_ccw_triangle(S[0], S[1], S[2]): |
|
return [[0, 1, 2]], numpy.array([get_power_circumcenter(*S_lifted)]) |
|
else: |
|
return [[0, 2, 1]], numpy.array([get_power_circumcenter(*S_lifted)]) |
|
|
|
# Compute the convex hull of the lifted weighted points |
|
hull = ConvexHull(S_lifted) |
|
|
|
# Extract the Delaunay triangulation from the lower hull |
|
tri_list = tuple([a, b, c] if is_ccw_triangle(S[a], S[b], S[c]) else [a, c, b] for (a, b, c), eq in zip(hull.simplices, hull.equations) if eq[2] <= 0) |
|
|
|
# Compute the Voronoi points |
|
V = numpy.array([get_power_circumcenter(*S_lifted[tri]) for tri in tri_list]) |
|
|
|
# Job done |
|
return tri_list, V |
|
|
|
|
|
|
|
# --- Compute Voronoi cells --------------------------------------------------- |
|
|
|
''' |
|
Compute the segments and half-lines that delimits each Voronoi cell |
|
* The segments are oriented so that they are in CCW order |
|
* Each cell is a list of (i, j), (A, U, tmin, tmax) where |
|
* i, j are the indices of two ends of the segment. Segments end points are |
|
the circumcenters. If i or j is set to None, then it's an infinite end |
|
* A is the origin of the segment |
|
* U is the direction of the segment, as a unit vector |
|
* tmin is the parameter for the left end of the segment. Can be -1, for minus infinity |
|
* tmax is the parameter for the right end of the segment. Can be -1, for infinity |
|
* Therefore, the endpoints are [A + tmin * U, A + tmax * U] |
|
''' |
|
def get_voronoi_cells(S, V, tri_list): |
|
# Keep track of which circles are included in the triangulation |
|
vertices_set = frozenset(itertools.chain(*tri_list)) |
|
|
|
# Keep track of which edge separate which triangles |
|
edge_map = { } |
|
for i, tri in enumerate(tri_list): |
|
for edge in itertools.combinations(tri, 2): |
|
edge = tuple(sorted(edge)) |
|
if edge in edge_map: |
|
edge_map[edge].append(i) |
|
else: |
|
edge_map[edge] = [i] |
|
|
|
# For each triangle |
|
voronoi_cell_map = { i : [] for i in vertices_set } |
|
|
|
for i, (a, b, c) in enumerate(tri_list): |
|
# For each edge of the triangle |
|
for u, v, w in ((a, b, c), (b, c, a), (c, a, b)): |
|
# Finite Voronoi edge |
|
edge = tuple(sorted((u, v))) |
|
if len(edge_map[edge]) == 2: |
|
j, k = edge_map[edge] |
|
if k == i: |
|
j, k = k, j |
|
|
|
# Compute the segment parameters |
|
U = V[k] - V[j] |
|
U_norm = norm2(U) |
|
|
|
# Add the segment |
|
voronoi_cell_map[u].append(((j, k), (V[j], U / U_norm, 0, U_norm))) |
|
else: |
|
# Infinite Voronoi edge |
|
# Compute the segment parameters |
|
A, B, C, D = S[u], S[v], S[w], V[i] |
|
U = normalized(B - A) |
|
I = A + numpy.dot(D - A, U) * U |
|
W = normalized(I - D) |
|
if numpy.dot(W, I - C) < 0: |
|
W = -W |
|
|
|
# Add the segment |
|
voronoi_cell_map[u].append(((edge_map[edge][0], -1), (D, W, 0, None))) |
|
voronoi_cell_map[v].append(((-1, edge_map[edge][0]), (D, -W, None, 0))) |
|
|
|
# Order the segments |
|
def order_segment_list(segment_list): |
|
# Pick the first element |
|
first = min((seg[0][0], i) for i, seg in enumerate(segment_list))[1] |
|
|
|
# In-place ordering |
|
segment_list[0], segment_list[first] = segment_list[first], segment_list[0] |
|
for i in range(len(segment_list) - 1): |
|
for j in range(i + 1, len(segment_list)): |
|
if segment_list[i][0][1] == segment_list[j][0][0]: |
|
segment_list[i+1], segment_list[j] = segment_list[j], segment_list[i+1] |
|
break |
|
|
|
# Job done |
|
return segment_list |
|
|
|
# Job done |
|
return { i : order_segment_list(segment_list) for i, segment_list in voronoi_cell_map.items() } |
|
|
|
|
|
|
|
# --- Plot all the things ----------------------------------------------------- |
|
|
|
def display(S, R, tri_list, voronoi_cell_map): |
|
# Setup |
|
fig, ax = plot.subplots() |
|
plot.axis('equal') |
|
plot.axis('off') |
|
|
|
# Set min/max display size, as Matplotlib does it wrong |
|
min_corner = numpy.amin(S, axis = 0) - numpy.max(R) |
|
max_corner = numpy.amax(S, axis = 0) + numpy.max(R) |
|
plot.xlim((min_corner[0], max_corner[0])) |
|
plot.ylim((min_corner[1], max_corner[1])) |
|
|
|
# Plot the samples |
|
for Si, Ri in zip(S, R): |
|
ax.add_artist(plot.Circle(Si, Ri, fill = True, alpha = .4, lw = 0., color = '#8080f0', zorder = 1)) |
|
|
|
# Plot the power triangulation |
|
edge_set = frozenset(tuple(sorted(edge)) for tri in tri_list for edge in itertools.combinations(tri, 2)) |
|
line_list = LineCollection([(S[i], S[j]) for i, j in edge_set], lw = 1., colors = '.9') |
|
line_list.set_zorder(0) |
|
ax.add_collection(line_list) |
|
|
|
# Plot the Voronoi cells |
|
edge_map = { } |
|
for segment_list in voronoi_cell_map.values(): |
|
for edge, (A, U, tmin, tmax) in segment_list: |
|
edge = tuple(sorted(edge)) |
|
if edge not in edge_map: |
|
if tmax is None: |
|
tmax = 10 |
|
if tmin is None: |
|
tmin = -10 |
|
|
|
edge_map[edge] = (A + tmin * U, A + tmax * U) |
|
|
|
line_list = LineCollection(edge_map.values(), lw = 1., colors = 'k') |
|
line_list.set_zorder(0) |
|
ax.add_collection(line_list) |
|
|
|
# Job done |
|
plot.show() |
|
|
|
|
|
|
|
# --- Main entry point -------------------------------------------------------- |
|
|
|
def main(): |
|
# Generate samples, S contains circles center, R contains circles radius |
|
sample_count = 32 |
|
S = 5 * disc_uniform_pick(sample_count) |
|
R = .8 * numpy.random.random(sample_count) + .2 |
|
|
|
# Compute the power triangulation of the circles |
|
tri_list, V = get_power_triangulation(S, R) |
|
|
|
# Compute the Voronoi cells |
|
voronoi_cell_map = get_voronoi_cells(S, V, tri_list) |
|
|
|
# Display the result |
|
display(S, R, tri_list, voronoi_cell_map) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
Hi, I am interesting in this code.
I have a question is the convex hall calculated as:
R,
Yaniv