Sparklines table generation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import os | |
import numpy as np | |
def sparkline(data, endpoints=False, ci=True): | |
d = data.Mean_TemperatureC.values | |
r = [-12, 31] | |
hist, bins = np.histogram(d, bins=r[1] - r[0], range=r) | |
bin_centers = (bins[1:] + bins[:-1]) * 0.5 | |
# Normalize to [0, 1] | |
hist = (hist - hist.min()) / (hist.max() - hist.min()) | |
bin_centers = (bin_centers - bin_centers.min()) / \ | |
(bin_centers.max() - bin_centers.min()) | |
low = d.mean() - 1.96 * d.std() | |
high = d.mean() + 1.96 * d.std() | |
umin = (low - r[0]) / (r[1] - r[0]) | |
umax = (high - r[0]) / (r[1] - r[0]) | |
valmaxind = hist.argmax() | |
valmaxdate = np.round(bin_centers[valmaxind], 4) | |
s = r"\begin{sparkline}{15}" | |
# s += fr"\sparkdot {valmindate} 0 blue " | |
if ci: | |
s += r"\sparkrectangleh {} {} ".format(umin, umax) | |
if endpoints: | |
a = np.round(hist[0], 4) | |
b = np.round(hist[-1], 4) | |
s += fr"\sparkdot 0 {a} black " | |
s += fr"\sparkdot 1 {b} black " | |
a = (d.max() - r[0]) / (r[1] - r[0]) | |
s += fr"\sparkdot {a} {0} red " | |
a = (d.min() - r[0]) / (r[1] - r[0]) | |
s += fr"\sparkdot {a} {0} blue " | |
s += "\spark " | |
for d, v in zip(bin_centers, hist): | |
x = np.round(d, 4) | |
y = np.round(v, 4) | |
s += f"{x} {y} " | |
s += r"/" | |
s += fr"\sparkdot {valmaxdate} 1 black " | |
s += r"\end{sparkline}" | |
return s.strip() | |
def f(x): | |
d = {} | |
d['max'] = x['Mean_TemperatureC'].max() | |
d['mean'] = x['Mean_TemperatureC'].mean() | |
d['std'] = x['Mean_TemperatureC'].std() | |
d['min'] = x['Mean_TemperatureC'].min() | |
d['sparkline'] = sparkline(x) | |
return pd.Series(d, index=['mean', 'std', 'min', 'max', 'sparkline']) | |
# First download the data from plotly's GitHub repository | |
df = pd.read_csv( | |
'https://raw.githubusercontent.com/plotly/datasets/master/2016-weather-data-seattle.csv') | |
df['month'] = pd.to_datetime(df['Date']).dt.month | |
# we define a dictionary with months that we'll use later | |
month_dict = {1: 'January', 2: 'February', | |
3: 'March', 4: 'April', | |
5: 'May', 6: 'June', | |
7: 'July', 8: 'August', | |
9: 'September', 10: 'October', | |
11: 'November', 12: 'December'} | |
df = df.sort_values("month") | |
df["datetime"] = pd.to_datetime(df.Date) | |
df = df.drop(["Date"], axis=1) | |
df = df.dropna() | |
print(df.head()) | |
df4 = (df | |
.groupby("month") | |
.apply(f).reset_index() | |
) | |
df4['month'] = df4['month'].map(month_dict) | |
print(df4.head()) | |
df4['max'].replace(df4["max"].max(), "\\color{{red}}\\textbf{{{}}}".format( | |
df4["max"].max()), inplace=True) | |
df4['min'].replace(df4["min"].min(), "\\color{{blue}}\\textbf{{{}}}".format( | |
df4["min"].min()), inplace=True) | |
df4_max = df4["mean"].max() | |
df4_min = df4["mean"].min() | |
df4['mean'].replace(df4_max, "\\color{{red}}\\textbf{{{}}}".format( | |
np.round(df4_max,1)), inplace=True) | |
df4['mean'].replace(df4_min, "\\color{{blue}}\\textbf{{{}}}".format( | |
np.round(df4_min,1)), inplace=True) | |
colnames = [r"\textbf{Month}", r"$\mu{}$", | |
r"$\sigma{}$", r"{Min}", r"{Max}", r"{Histogram}"] | |
cols = pd.MultiIndex( | |
levels=[[r"{}", r"\textbf{Temperature}"], colnames], | |
codes=[[0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5]]) | |
df4.columns = cols | |
with pd.option_context("max_colwidth", 100): | |
print(df4) | |
col_format = "l" + "S[table-format = 2.1, round-precision = 1]" * 4 + "c" | |
with open(os.path.splitext( | |
os.path.basename(__file__))[0] + ".tbl", "w") as f: | |
with pd.option_context("max_colwidth", 100000): | |
contents = (df4.to_latex( | |
index=False, | |
escape=False, | |
column_format=col_format, | |
multirow=True, | |
multicolumn_format="c")).split('\n') | |
contents.insert(3, r"\cmidrule(lr){2-6}") | |
f.write("\n".join(contents)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment