Created
January 15, 2019 09:23
-
-
Save masahi/8dd3a3fd929bc94693b569f558850185 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fn (%data: Tensor[(1, 3, 512, 512), float32]) | |
-> Tuple[Tensor[(1, 100, 1), float32], Tensor[(1, 100, 1), float32], Tensor[(1, 100, 4), float32]] { | |
%0 = meta.relay.Constant(id=0) # ty=Tensor[(64, 3, 7, 7), float32] | |
%1 = meta.relay.Constant(id=1) # ty=Tensor[(64, 1, 1), float32] | |
%2 = fn(%p0: Tensor[(1, 3, 512, 512), float32], | |
%p1: Tensor[(64, 3, 7, 7), float32], | |
%p2: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 256, 256), float32] { | |
%3 = nn.conv2d(%p0, %p1, strides=[2, 2], padding=[3, 3], channels=64, kernel_size=[7, 7]) # ty=Tensor[(1, 64, 256, 256), float32] | |
%4 = add(%3, %p2) # ty=Tensor[(1, 64, 256, 256), float32] | |
%5 = nn.relu(%4) # ty=Tensor[(1, 64, 256, 256), float32] | |
%5 | |
} | |
%6 = %2(%data, %0, %1) # ty=Tensor[(1, 64, 256, 256), float32] | |
%7 = fn(%p01: Tensor[(1, 64, 256, 256), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%8 = nn.max_pool2d(%p01, pool_size=[3, 3], strides=[2, 2], padding=[1, 1]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%8 | |
} | |
%9 = %7(%6) # ty=Tensor[(1, 64, 128, 128), float32] | |
%10 = meta.relay.Constant(id=2) # ty=Tensor[(320, 64, 1, 1), float32] | |
%11 = fn(%p02: Tensor[(1, 64, 128, 128), float32], | |
%p11: Tensor[(320, 64, 1, 1), float32]) | |
-> Tensor[(1, 320, 128, 128), float32] { | |
%12 = nn.conv2d(%p02, %p11, channels=320, kernel_size=[1, 1]) # ty=Tensor[(1, 320, 128, 128), float32] | |
%12 | |
} | |
%13 = %11(%9, %10) # ty=Tensor[(1, 320, 128, 128), float32] | |
%14 = meta.relay.Constant(id=3) # ty=Tensor[(64, 1, 1), float32] | |
%15 = meta.relay.Constant(id=4) # ty=Tensor[(64, 1, 1), float32] | |
%16 = fn(%p03: Tensor[(1, 320, 128, 128), float32], | |
%p12: Tensor[(64, 1, 1), float32], | |
%p21: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%17 = strided_slice(%p03, begin=[0, 0], end=[None, 64]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%18 = add(%17, %p12) # ty=Tensor[(1, 64, 128, 128), float32] | |
%19 = add(%18, %p21) # ty=Tensor[(1, 64, 128, 128), float32] | |
%20 = nn.relu(%19) # ty=Tensor[(1, 64, 128, 128), float32] | |
%20 | |
} | |
%21 = %16(%13, %14, %15) # ty=Tensor[(1, 64, 128, 128), float32] | |
%22 = meta.relay.Constant(id=5) # ty=Tensor[(64, 64, 3, 3), float32] | |
%23 = meta.relay.Constant(id=6) # ty=Tensor[(64, 1, 1), float32] | |
%24 = fn(%p04: Tensor[(1, 64, 128, 128), float32], | |
%p13: Tensor[(64, 64, 3, 3), float32], | |
%p22: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%25 = nn.conv2d(%p04, %p13, padding=[1, 1], channels=64, kernel_size=[3, 3]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%26 = add(%25, %p22) # ty=Tensor[(1, 64, 128, 128), float32] | |
%27 = nn.relu(%26) # ty=Tensor[(1, 64, 128, 128), float32] | |
%27 | |
} | |
%28 = %24(%21, %22, %23) # ty=Tensor[(1, 64, 128, 128), float32] | |
%29 = meta.relay.Constant(id=7) # ty=Tensor[(256, 64, 1, 1), float32] | |
%30 = meta.relay.Constant(id=8) # ty=Tensor[(256, 1, 1), float32] | |
%31 = meta.relay.Constant(id=9) # ty=Tensor[(256, 1, 1), float32] | |
%32 = meta.relay.Constant(id=10) # ty=Tensor[(256, 1, 1), float32] | |
%33 = fn(%p05: Tensor[(1, 320, 128, 128), float32]) | |
-> Tensor[(1, 256, 128, 128), float32] { | |
%34 = strided_slice(%p05, begin=[0, 64], end=[None, 320]) # ty=Tensor[(1, 256, 128, 128), float32] | |
%34 | |
} | |
%35 = %33(%13) # ty=Tensor[(1, 256, 128, 128), float32] | |
%36 = meta.relay.Constant(id=11) # ty=Tensor[(256, 1, 1), float32] | |
%37 = meta.relay.Constant(id=12) # ty=Tensor[(256, 1, 1), float32] | |
%38 = fn(%p06: Tensor[(1, 64, 128, 128), float32], | |
%p14: Tensor[(256, 64, 1, 1), float32], | |
%p23: Tensor[(256, 1, 1), float32], | |
%p3: Tensor[(256, 1, 1), float32], | |
%p4: Tensor[(256, 1, 1), float32], | |
%p5: Tensor[(1, 256, 128, 128), float32], | |
%p6: Tensor[(256, 1, 1), float32], | |
%p7: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 128, 128), float32] { | |
%39 = nn.conv2d(%p06, %p14, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 128, 128), float32] | |
%40 = add(%39, %p23) # ty=Tensor[(1, 256, 128, 128), float32] | |
%41 = multiply(%40, %p3) # ty=Tensor[(1, 256, 128, 128), float32] | |
%42 = add(%41, %p4) # ty=Tensor[(1, 256, 128, 128), float32] | |
%43 = multiply(%p5, %p6) # ty=Tensor[(1, 256, 128, 128), float32] | |
%44 = add(%43, %p7) # ty=Tensor[(1, 256, 128, 128), float32] | |
%45 = add(%42, %44) # ty=Tensor[(1, 256, 128, 128), float32] | |
%46 = nn.relu(%45) # ty=Tensor[(1, 256, 128, 128), float32] | |
%46 | |
} | |
%47 = %38(%28, %29, %30, %31, %32, %35, %36, %37) # ty=Tensor[(1, 256, 128, 128), float32] | |
%48 = meta.relay.Constant(id=13) # ty=Tensor[(64, 256, 1, 1), float32] | |
%49 = meta.relay.Constant(id=14) # ty=Tensor[(64, 1, 1), float32] | |
%50 = meta.relay.Constant(id=15) # ty=Tensor[(64, 1, 1), float32] | |
%51 = fn(%p07: Tensor[(1, 256, 128, 128), float32], | |
%p15: Tensor[(64, 256, 1, 1), float32], | |
%p24: Tensor[(64, 1, 1), float32], | |
%p31: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%52 = nn.conv2d(%p07, %p15, channels=64, kernel_size=[1, 1]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%53 = add(%52, %p24) # ty=Tensor[(1, 64, 128, 128), float32] | |
%54 = add(%53, %p31) # ty=Tensor[(1, 64, 128, 128), float32] | |
%55 = nn.relu(%54) # ty=Tensor[(1, 64, 128, 128), float32] | |
%55 | |
} | |
%56 = %51(%47, %48, %49, %50) # ty=Tensor[(1, 64, 128, 128), float32] | |
%57 = meta.relay.Constant(id=16) # ty=Tensor[(64, 64, 3, 3), float32] | |
%58 = meta.relay.Constant(id=17) # ty=Tensor[(64, 1, 1), float32] | |
%59 = fn(%p08: Tensor[(1, 64, 128, 128), float32], | |
%p16: Tensor[(64, 64, 3, 3), float32], | |
%p25: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%60 = nn.conv2d(%p08, %p16, padding=[1, 1], channels=64, kernel_size=[3, 3]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%61 = add(%60, %p25) # ty=Tensor[(1, 64, 128, 128), float32] | |
%62 = nn.relu(%61) # ty=Tensor[(1, 64, 128, 128), float32] | |
%62 | |
} | |
%63 = %59(%56, %57, %58) # ty=Tensor[(1, 64, 128, 128), float32] | |
%64 = meta.relay.Constant(id=18) # ty=Tensor[(256, 64, 1, 1), float32] | |
%65 = meta.relay.Constant(id=19) # ty=Tensor[(256, 1, 1), float32] | |
%66 = meta.relay.Constant(id=20) # ty=Tensor[(256, 1, 1), float32] | |
%67 = meta.relay.Constant(id=21) # ty=Tensor[(256, 1, 1), float32] | |
%68 = fn(%p09: Tensor[(1, 64, 128, 128), float32], | |
%p17: Tensor[(256, 64, 1, 1), float32], | |
%p26: Tensor[(256, 1, 1), float32], | |
%p32: Tensor[(256, 1, 1), float32], | |
%p41: Tensor[(256, 1, 1), float32], | |
%p51: Tensor[(1, 256, 128, 128), float32]) | |
-> Tensor[(1, 256, 128, 128), float32] { | |
%69 = nn.conv2d(%p09, %p17, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 128, 128), float32] | |
%70 = add(%69, %p26) # ty=Tensor[(1, 256, 128, 128), float32] | |
%71 = multiply(%70, %p32) # ty=Tensor[(1, 256, 128, 128), float32] | |
%72 = add(%71, %p41) # ty=Tensor[(1, 256, 128, 128), float32] | |
%73 = add(%72, %p51) # ty=Tensor[(1, 256, 128, 128), float32] | |
%74 = nn.relu(%73) # ty=Tensor[(1, 256, 128, 128), float32] | |
%74 | |
} | |
%75 = %68(%63, %64, %65, %66, %67, %47) # ty=Tensor[(1, 256, 128, 128), float32] | |
%76 = meta.relay.Constant(id=22) # ty=Tensor[(64, 256, 1, 1), float32] | |
%77 = meta.relay.Constant(id=23) # ty=Tensor[(64, 1, 1), float32] | |
%78 = meta.relay.Constant(id=24) # ty=Tensor[(64, 1, 1), float32] | |
%79 = meta.relay.Constant(id=25) # ty=Tensor[(64, 1, 1), float32] | |
%80 = fn(%p010: Tensor[(1, 256, 128, 128), float32], | |
%p18: Tensor[(64, 256, 1, 1), float32], | |
%p27: Tensor[(64, 1, 1), float32], | |
%p33: Tensor[(64, 1, 1), float32], | |
%p42: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%81 = nn.conv2d(%p010, %p18, channels=64, kernel_size=[1, 1]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%82 = add(%81, %p27) # ty=Tensor[(1, 64, 128, 128), float32] | |
%83 = multiply(%82, %p33) # ty=Tensor[(1, 64, 128, 128), float32] | |
%84 = add(%83, %p42) # ty=Tensor[(1, 64, 128, 128), float32] | |
%85 = nn.relu(%84) # ty=Tensor[(1, 64, 128, 128), float32] | |
%85 | |
} | |
%86 = %80(%75, %76, %77, %78, %79) # ty=Tensor[(1, 64, 128, 128), float32] | |
%87 = meta.relay.Constant(id=26) # ty=Tensor[(64, 64, 3, 3), float32] | |
%88 = meta.relay.Constant(id=27) # ty=Tensor[(64, 1, 1), float32] | |
%89 = fn(%p011: Tensor[(1, 64, 128, 128), float32], | |
%p19: Tensor[(64, 64, 3, 3), float32], | |
%p28: Tensor[(64, 1, 1), float32]) | |
-> Tensor[(1, 64, 128, 128), float32] { | |
%90 = nn.conv2d(%p011, %p19, padding=[1, 1], channels=64, kernel_size=[3, 3]) # ty=Tensor[(1, 64, 128, 128), float32] | |
%91 = add(%90, %p28) # ty=Tensor[(1, 64, 128, 128), float32] | |
%92 = nn.relu(%91) # ty=Tensor[(1, 64, 128, 128), float32] | |
%92 | |
} | |
%93 = %89(%86, %87, %88) # ty=Tensor[(1, 64, 128, 128), float32] | |
%94 = meta.relay.Constant(id=28) # ty=Tensor[(256, 64, 1, 1), float32] | |
%95 = meta.relay.Constant(id=29) # ty=Tensor[(256, 1, 1), float32] | |
%96 = meta.relay.Constant(id=30) # ty=Tensor[(256, 1, 1), float32] | |
%97 = meta.relay.Constant(id=31) # ty=Tensor[(256, 1, 1), float32] | |
%98 = fn(%p012: Tensor[(1, 64, 128, 128), float32], | |
%p110: Tensor[(256, 64, 1, 1), float32], | |
%p29: Tensor[(256, 1, 1), float32], | |
%p34: Tensor[(256, 1, 1), float32], | |
%p43: Tensor[(256, 1, 1), float32], | |
%p52: Tensor[(1, 256, 128, 128), float32]) | |
-> Tensor[(1, 256, 128, 128), float32] { | |
%99 = nn.conv2d(%p012, %p110, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 128, 128), float32] | |
%100 = add(%99, %p29) # ty=Tensor[(1, 256, 128, 128), float32] | |
%101 = multiply(%100, %p34) # ty=Tensor[(1, 256, 128, 128), float32] | |
%102 = add(%101, %p43) # ty=Tensor[(1, 256, 128, 128), float32] | |
%103 = add(%102, %p52) # ty=Tensor[(1, 256, 128, 128), float32] | |
%104 = nn.relu(%103) # ty=Tensor[(1, 256, 128, 128), float32] | |
%104 | |
} | |
%105 = %98(%93, %94, %95, %96, %97, %75) # ty=Tensor[(1, 256, 128, 128), float32] | |
%106 = meta.relay.Constant(id=32) # ty=Tensor[(640, 256, 1, 1), float32] | |
%107 = fn(%p013: Tensor[(1, 256, 128, 128), float32], | |
%p111: Tensor[(640, 256, 1, 1), float32]) | |
-> Tensor[(1, 640, 64, 64), float32] { | |
%108 = nn.conv2d(%p013, %p111, strides=[2, 2], channels=640, kernel_size=[1, 1]) # ty=Tensor[(1, 640, 64, 64), float32] | |
%108 | |
} | |
%109 = %107(%105, %106) # ty=Tensor[(1, 640, 64, 64), float32] | |
%110 = meta.relay.Constant(id=33) # ty=Tensor[(128, 1, 1), float32] | |
%111 = meta.relay.Constant(id=34) # ty=Tensor[(128, 1, 1), float32] | |
%112 = fn(%p014: Tensor[(1, 640, 64, 64), float32], | |
%p112: Tensor[(128, 1, 1), float32], | |
%p210: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%113 = strided_slice(%p014, begin=[0, 0], end=[None, 128]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%114 = add(%113, %p112) # ty=Tensor[(1, 128, 64, 64), float32] | |
%115 = add(%114, %p210) # ty=Tensor[(1, 128, 64, 64), float32] | |
%116 = nn.relu(%115) # ty=Tensor[(1, 128, 64, 64), float32] | |
%116 | |
} | |
%117 = %112(%109, %110, %111) # ty=Tensor[(1, 128, 64, 64), float32] | |
%118 = meta.relay.Constant(id=35) # ty=Tensor[(128, 128, 3, 3), float32] | |
%119 = meta.relay.Constant(id=36) # ty=Tensor[(128, 1, 1), float32] | |
%120 = fn(%p015: Tensor[(1, 128, 64, 64), float32], | |
%p113: Tensor[(128, 128, 3, 3), float32], | |
%p211: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%121 = nn.conv2d(%p015, %p113, padding=[1, 1], channels=128, kernel_size=[3, 3]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%122 = add(%121, %p211) # ty=Tensor[(1, 128, 64, 64), float32] | |
%123 = nn.relu(%122) # ty=Tensor[(1, 128, 64, 64), float32] | |
%123 | |
} | |
%124 = %120(%117, %118, %119) # ty=Tensor[(1, 128, 64, 64), float32] | |
%125 = meta.relay.Constant(id=37) # ty=Tensor[(512, 128, 1, 1), float32] | |
%126 = meta.relay.Constant(id=38) # ty=Tensor[(512, 1, 1), float32] | |
%127 = meta.relay.Constant(id=39) # ty=Tensor[(512, 1, 1), float32] | |
%128 = meta.relay.Constant(id=40) # ty=Tensor[(512, 1, 1), float32] | |
%129 = fn(%p016: Tensor[(1, 640, 64, 64), float32]) | |
-> Tensor[(1, 512, 64, 64), float32] { | |
%130 = strided_slice(%p016, begin=[0, 128], end=[None, 640]) # ty=Tensor[(1, 512, 64, 64), float32] | |
%130 | |
} | |
%131 = %129(%109) # ty=Tensor[(1, 512, 64, 64), float32] | |
%132 = meta.relay.Constant(id=41) # ty=Tensor[(512, 1, 1), float32] | |
%133 = meta.relay.Constant(id=42) # ty=Tensor[(512, 1, 1), float32] | |
%134 = fn(%p017: Tensor[(1, 128, 64, 64), float32], | |
%p114: Tensor[(512, 128, 1, 1), float32], | |
%p212: Tensor[(512, 1, 1), float32], | |
%p35: Tensor[(512, 1, 1), float32], | |
%p44: Tensor[(512, 1, 1), float32], | |
%p53: Tensor[(1, 512, 64, 64), float32], | |
%p61: Tensor[(512, 1, 1), float32], | |
%p71: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 64, 64), float32] { | |
%135 = nn.conv2d(%p017, %p114, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 64, 64), float32] | |
%136 = add(%135, %p212) # ty=Tensor[(1, 512, 64, 64), float32] | |
%137 = multiply(%136, %p35) # ty=Tensor[(1, 512, 64, 64), float32] | |
%138 = add(%137, %p44) # ty=Tensor[(1, 512, 64, 64), float32] | |
%139 = multiply(%p53, %p61) # ty=Tensor[(1, 512, 64, 64), float32] | |
%140 = add(%139, %p71) # ty=Tensor[(1, 512, 64, 64), float32] | |
%141 = add(%138, %140) # ty=Tensor[(1, 512, 64, 64), float32] | |
%142 = nn.relu(%141) # ty=Tensor[(1, 512, 64, 64), float32] | |
%142 | |
} | |
%143 = %134(%124, %125, %126, %127, %128, %131, %132, %133) # ty=Tensor[(1, 512, 64, 64), float32] | |
%144 = meta.relay.Constant(id=43) # ty=Tensor[(128, 512, 1, 1), float32] | |
%145 = meta.relay.Constant(id=44) # ty=Tensor[(128, 1, 1), float32] | |
%146 = meta.relay.Constant(id=45) # ty=Tensor[(128, 1, 1), float32] | |
%147 = fn(%p018: Tensor[(1, 512, 64, 64), float32], | |
%p115: Tensor[(128, 512, 1, 1), float32], | |
%p213: Tensor[(128, 1, 1), float32], | |
%p36: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%148 = nn.conv2d(%p018, %p115, channels=128, kernel_size=[1, 1]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%149 = add(%148, %p213) # ty=Tensor[(1, 128, 64, 64), float32] | |
%150 = add(%149, %p36) # ty=Tensor[(1, 128, 64, 64), float32] | |
%151 = nn.relu(%150) # ty=Tensor[(1, 128, 64, 64), float32] | |
%151 | |
} | |
%152 = %147(%143, %144, %145, %146) # ty=Tensor[(1, 128, 64, 64), float32] | |
%153 = meta.relay.Constant(id=46) # ty=Tensor[(128, 128, 3, 3), float32] | |
%154 = meta.relay.Constant(id=47) # ty=Tensor[(128, 1, 1), float32] | |
%155 = fn(%p019: Tensor[(1, 128, 64, 64), float32], | |
%p116: Tensor[(128, 128, 3, 3), float32], | |
%p214: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%156 = nn.conv2d(%p019, %p116, padding=[1, 1], channels=128, kernel_size=[3, 3]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%157 = add(%156, %p214) # ty=Tensor[(1, 128, 64, 64), float32] | |
%158 = nn.relu(%157) # ty=Tensor[(1, 128, 64, 64), float32] | |
%158 | |
} | |
%159 = %155(%152, %153, %154) # ty=Tensor[(1, 128, 64, 64), float32] | |
%160 = meta.relay.Constant(id=48) # ty=Tensor[(512, 128, 1, 1), float32] | |
%161 = meta.relay.Constant(id=49) # ty=Tensor[(512, 1, 1), float32] | |
%162 = meta.relay.Constant(id=50) # ty=Tensor[(512, 1, 1), float32] | |
%163 = meta.relay.Constant(id=51) # ty=Tensor[(512, 1, 1), float32] | |
%164 = fn(%p020: Tensor[(1, 128, 64, 64), float32], | |
%p117: Tensor[(512, 128, 1, 1), float32], | |
%p215: Tensor[(512, 1, 1), float32], | |
%p37: Tensor[(512, 1, 1), float32], | |
%p45: Tensor[(512, 1, 1), float32], | |
%p54: Tensor[(1, 512, 64, 64), float32]) | |
-> Tensor[(1, 512, 64, 64), float32] { | |
%165 = nn.conv2d(%p020, %p117, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 64, 64), float32] | |
%166 = add(%165, %p215) # ty=Tensor[(1, 512, 64, 64), float32] | |
%167 = multiply(%166, %p37) # ty=Tensor[(1, 512, 64, 64), float32] | |
%168 = add(%167, %p45) # ty=Tensor[(1, 512, 64, 64), float32] | |
%169 = add(%168, %p54) # ty=Tensor[(1, 512, 64, 64), float32] | |
%170 = nn.relu(%169) # ty=Tensor[(1, 512, 64, 64), float32] | |
%170 | |
} | |
%171 = %164(%159, %160, %161, %162, %163, %143) # ty=Tensor[(1, 512, 64, 64), float32] | |
%172 = meta.relay.Constant(id=52) # ty=Tensor[(128, 512, 1, 1), float32] | |
%173 = meta.relay.Constant(id=53) # ty=Tensor[(128, 1, 1), float32] | |
%174 = meta.relay.Constant(id=54) # ty=Tensor[(128, 1, 1), float32] | |
%175 = fn(%p021: Tensor[(1, 512, 64, 64), float32], | |
%p118: Tensor[(128, 512, 1, 1), float32], | |
%p216: Tensor[(128, 1, 1), float32], | |
%p38: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%176 = nn.conv2d(%p021, %p118, channels=128, kernel_size=[1, 1]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%177 = add(%176, %p216) # ty=Tensor[(1, 128, 64, 64), float32] | |
%178 = add(%177, %p38) # ty=Tensor[(1, 128, 64, 64), float32] | |
%179 = nn.relu(%178) # ty=Tensor[(1, 128, 64, 64), float32] | |
%179 | |
} | |
%180 = %175(%171, %172, %173, %174) # ty=Tensor[(1, 128, 64, 64), float32] | |
%181 = meta.relay.Constant(id=55) # ty=Tensor[(128, 128, 3, 3), float32] | |
%182 = meta.relay.Constant(id=56) # ty=Tensor[(128, 1, 1), float32] | |
%183 = fn(%p022: Tensor[(1, 128, 64, 64), float32], | |
%p119: Tensor[(128, 128, 3, 3), float32], | |
%p217: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%184 = nn.conv2d(%p022, %p119, padding=[1, 1], channels=128, kernel_size=[3, 3]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%185 = add(%184, %p217) # ty=Tensor[(1, 128, 64, 64), float32] | |
%186 = nn.relu(%185) # ty=Tensor[(1, 128, 64, 64), float32] | |
%186 | |
} | |
%187 = %183(%180, %181, %182) # ty=Tensor[(1, 128, 64, 64), float32] | |
%188 = meta.relay.Constant(id=57) # ty=Tensor[(512, 128, 1, 1), float32] | |
%189 = meta.relay.Constant(id=58) # ty=Tensor[(512, 1, 1), float32] | |
%190 = meta.relay.Constant(id=59) # ty=Tensor[(512, 1, 1), float32] | |
%191 = meta.relay.Constant(id=60) # ty=Tensor[(512, 1, 1), float32] | |
%192 = fn(%p023: Tensor[(1, 128, 64, 64), float32], | |
%p120: Tensor[(512, 128, 1, 1), float32], | |
%p218: Tensor[(512, 1, 1), float32], | |
%p39: Tensor[(512, 1, 1), float32], | |
%p46: Tensor[(512, 1, 1), float32], | |
%p55: Tensor[(1, 512, 64, 64), float32]) | |
-> Tensor[(1, 512, 64, 64), float32] { | |
%193 = nn.conv2d(%p023, %p120, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 64, 64), float32] | |
%194 = add(%193, %p218) # ty=Tensor[(1, 512, 64, 64), float32] | |
%195 = multiply(%194, %p39) # ty=Tensor[(1, 512, 64, 64), float32] | |
%196 = add(%195, %p46) # ty=Tensor[(1, 512, 64, 64), float32] | |
%197 = add(%196, %p55) # ty=Tensor[(1, 512, 64, 64), float32] | |
%198 = nn.relu(%197) # ty=Tensor[(1, 512, 64, 64), float32] | |
%198 | |
} | |
%199 = %192(%187, %188, %189, %190, %191, %171) # ty=Tensor[(1, 512, 64, 64), float32] | |
%200 = meta.relay.Constant(id=61) # ty=Tensor[(128, 512, 1, 1), float32] | |
%201 = meta.relay.Constant(id=62) # ty=Tensor[(128, 1, 1), float32] | |
%202 = meta.relay.Constant(id=63) # ty=Tensor[(128, 1, 1), float32] | |
%203 = fn(%p024: Tensor[(1, 512, 64, 64), float32], | |
%p121: Tensor[(128, 512, 1, 1), float32], | |
%p219: Tensor[(128, 1, 1), float32], | |
%p310: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%204 = nn.conv2d(%p024, %p121, channels=128, kernel_size=[1, 1]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%205 = add(%204, %p219) # ty=Tensor[(1, 128, 64, 64), float32] | |
%206 = add(%205, %p310) # ty=Tensor[(1, 128, 64, 64), float32] | |
%207 = nn.relu(%206) # ty=Tensor[(1, 128, 64, 64), float32] | |
%207 | |
} | |
%208 = %203(%199, %200, %201, %202) # ty=Tensor[(1, 128, 64, 64), float32] | |
%209 = meta.relay.Constant(id=64) # ty=Tensor[(128, 128, 3, 3), float32] | |
%210 = meta.relay.Constant(id=65) # ty=Tensor[(128, 1, 1), float32] | |
%211 = fn(%p025: Tensor[(1, 128, 64, 64), float32], | |
%p122: Tensor[(128, 128, 3, 3), float32], | |
%p220: Tensor[(128, 1, 1), float32]) | |
-> Tensor[(1, 128, 64, 64), float32] { | |
%212 = nn.conv2d(%p025, %p122, padding=[1, 1], channels=128, kernel_size=[3, 3]) # ty=Tensor[(1, 128, 64, 64), float32] | |
%213 = add(%212, %p220) # ty=Tensor[(1, 128, 64, 64), float32] | |
%214 = nn.relu(%213) # ty=Tensor[(1, 128, 64, 64), float32] | |
%214 | |
} | |
%215 = %211(%208, %209, %210) # ty=Tensor[(1, 128, 64, 64), float32] | |
%216 = meta.relay.Constant(id=66) # ty=Tensor[(512, 128, 1, 1), float32] | |
%217 = meta.relay.Constant(id=67) # ty=Tensor[(512, 1, 1), float32] | |
%218 = meta.relay.Constant(id=68) # ty=Tensor[(512, 1, 1), float32] | |
%219 = meta.relay.Constant(id=69) # ty=Tensor[(512, 1, 1), float32] | |
%220 = fn(%p026: Tensor[(1, 128, 64, 64), float32], | |
%p123: Tensor[(512, 128, 1, 1), float32], | |
%p221: Tensor[(512, 1, 1), float32], | |
%p311: Tensor[(512, 1, 1), float32], | |
%p47: Tensor[(512, 1, 1), float32], | |
%p56: Tensor[(1, 512, 64, 64), float32]) | |
-> Tensor[(1, 512, 64, 64), float32] { | |
%221 = nn.conv2d(%p026, %p123, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 64, 64), float32] | |
%222 = add(%221, %p221) # ty=Tensor[(1, 512, 64, 64), float32] | |
%223 = multiply(%222, %p311) # ty=Tensor[(1, 512, 64, 64), float32] | |
%224 = add(%223, %p47) # ty=Tensor[(1, 512, 64, 64), float32] | |
%225 = add(%224, %p56) # ty=Tensor[(1, 512, 64, 64), float32] | |
%226 = nn.relu(%225) # ty=Tensor[(1, 512, 64, 64), float32] | |
%226 | |
} | |
%227 = %220(%215, %216, %217, %218, %219, %199) # ty=Tensor[(1, 512, 64, 64), float32] | |
%228 = meta.relay.Constant(id=70) # ty=Tensor[(1280, 512, 1, 1), float32] | |
%229 = fn(%p027: Tensor[(1, 512, 64, 64), float32], | |
%p124: Tensor[(1280, 512, 1, 1), float32]) | |
-> Tensor[(1, 1280, 32, 32), float32] { | |
%230 = nn.conv2d(%p027, %p124, strides=[2, 2], channels=1280, kernel_size=[1, 1]) # ty=Tensor[(1, 1280, 32, 32), float32] | |
%230 | |
} | |
%231 = %229(%227, %228) # ty=Tensor[(1, 1280, 32, 32), float32] | |
%232 = meta.relay.Constant(id=71) # ty=Tensor[(256, 1, 1), float32] | |
%233 = meta.relay.Constant(id=72) # ty=Tensor[(256, 1, 1), float32] | |
%234 = fn(%p028: Tensor[(1, 1280, 32, 32), float32], | |
%p125: Tensor[(256, 1, 1), float32], | |
%p222: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%235 = strided_slice(%p028, begin=[0, 0], end=[None, 256]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%236 = add(%235, %p125) # ty=Tensor[(1, 256, 32, 32), float32] | |
%237 = add(%236, %p222) # ty=Tensor[(1, 256, 32, 32), float32] | |
%238 = nn.relu(%237) # ty=Tensor[(1, 256, 32, 32), float32] | |
%238 | |
} | |
%239 = %234(%231, %232, %233) # ty=Tensor[(1, 256, 32, 32), float32] | |
%240 = meta.relay.Constant(id=73) # ty=Tensor[(256, 256, 3, 3), float32] | |
%241 = meta.relay.Constant(id=74) # ty=Tensor[(256, 1, 1), float32] | |
%242 = fn(%p029: Tensor[(1, 256, 32, 32), float32], | |
%p126: Tensor[(256, 256, 3, 3), float32], | |
%p223: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%243 = nn.conv2d(%p029, %p126, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%244 = add(%243, %p223) # ty=Tensor[(1, 256, 32, 32), float32] | |
%245 = nn.relu(%244) # ty=Tensor[(1, 256, 32, 32), float32] | |
%245 | |
} | |
%246 = %242(%239, %240, %241) # ty=Tensor[(1, 256, 32, 32), float32] | |
%247 = meta.relay.Constant(id=75) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%248 = meta.relay.Constant(id=76) # ty=Tensor[(1024, 1, 1), float32] | |
%249 = meta.relay.Constant(id=77) # ty=Tensor[(1024, 1, 1), float32] | |
%250 = meta.relay.Constant(id=78) # ty=Tensor[(1024, 1, 1), float32] | |
%251 = fn(%p030: Tensor[(1, 1280, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%252 = strided_slice(%p030, begin=[0, 256], end=[None, 1280]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%252 | |
} | |
%253 = %251(%231) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%254 = meta.relay.Constant(id=79) # ty=Tensor[(1024, 1, 1), float32] | |
%255 = meta.relay.Constant(id=80) # ty=Tensor[(1024, 1, 1), float32] | |
%256 = fn(%p031: Tensor[(1, 256, 32, 32), float32], | |
%p127: Tensor[(1024, 256, 1, 1), float32], | |
%p224: Tensor[(1024, 1, 1), float32], | |
%p312: Tensor[(1024, 1, 1), float32], | |
%p48: Tensor[(1024, 1, 1), float32], | |
%p57: Tensor[(1, 1024, 32, 32), float32], | |
%p62: Tensor[(1024, 1, 1), float32], | |
%p72: Tensor[(1024, 1, 1), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%257 = nn.conv2d(%p031, %p127, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%258 = add(%257, %p224) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%259 = multiply(%258, %p312) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%260 = add(%259, %p48) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%261 = multiply(%p57, %p62) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%262 = add(%261, %p72) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%263 = add(%260, %262) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%264 = nn.relu(%263) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%264 | |
} | |
%265 = %256(%246, %247, %248, %249, %250, %253, %254, %255) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%266 = meta.relay.Constant(id=81) # ty=Tensor[(256, 1024, 1, 1), float32] | |
%267 = meta.relay.Constant(id=82) # ty=Tensor[(256, 1, 1), float32] | |
%268 = meta.relay.Constant(id=83) # ty=Tensor[(256, 1, 1), float32] | |
%269 = fn(%p032: Tensor[(1, 1024, 32, 32), float32], | |
%p128: Tensor[(256, 1024, 1, 1), float32], | |
%p225: Tensor[(256, 1, 1), float32], | |
%p313: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%270 = nn.conv2d(%p032, %p128, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%271 = add(%270, %p225) # ty=Tensor[(1, 256, 32, 32), float32] | |
%272 = add(%271, %p313) # ty=Tensor[(1, 256, 32, 32), float32] | |
%273 = nn.relu(%272) # ty=Tensor[(1, 256, 32, 32), float32] | |
%273 | |
} | |
%274 = %269(%265, %266, %267, %268) # ty=Tensor[(1, 256, 32, 32), float32] | |
%275 = meta.relay.Constant(id=84) # ty=Tensor[(256, 256, 3, 3), float32] | |
%276 = meta.relay.Constant(id=85) # ty=Tensor[(256, 1, 1), float32] | |
%277 = fn(%p033: Tensor[(1, 256, 32, 32), float32], | |
%p129: Tensor[(256, 256, 3, 3), float32], | |
%p226: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%278 = nn.conv2d(%p033, %p129, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%279 = add(%278, %p226) # ty=Tensor[(1, 256, 32, 32), float32] | |
%280 = nn.relu(%279) # ty=Tensor[(1, 256, 32, 32), float32] | |
%280 | |
} | |
%281 = %277(%274, %275, %276) # ty=Tensor[(1, 256, 32, 32), float32] | |
%282 = meta.relay.Constant(id=86) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%283 = meta.relay.Constant(id=87) # ty=Tensor[(1024, 1, 1), float32] | |
%284 = meta.relay.Constant(id=88) # ty=Tensor[(1024, 1, 1), float32] | |
%285 = meta.relay.Constant(id=89) # ty=Tensor[(1024, 1, 1), float32] | |
%286 = fn(%p034: Tensor[(1, 256, 32, 32), float32], | |
%p130: Tensor[(1024, 256, 1, 1), float32], | |
%p227: Tensor[(1024, 1, 1), float32], | |
%p314: Tensor[(1024, 1, 1), float32], | |
%p49: Tensor[(1024, 1, 1), float32], | |
%p58: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%287 = nn.conv2d(%p034, %p130, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%288 = add(%287, %p227) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%289 = multiply(%288, %p314) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%290 = add(%289, %p49) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%291 = add(%290, %p58) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%292 = nn.relu(%291) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%292 | |
} | |
%293 = %286(%281, %282, %283, %284, %285, %265) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%294 = meta.relay.Constant(id=90) # ty=Tensor[(256, 1024, 1, 1), float32] | |
%295 = meta.relay.Constant(id=91) # ty=Tensor[(256, 1, 1), float32] | |
%296 = meta.relay.Constant(id=92) # ty=Tensor[(256, 1, 1), float32] | |
%297 = fn(%p035: Tensor[(1, 1024, 32, 32), float32], | |
%p131: Tensor[(256, 1024, 1, 1), float32], | |
%p228: Tensor[(256, 1, 1), float32], | |
%p315: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%298 = nn.conv2d(%p035, %p131, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%299 = add(%298, %p228) # ty=Tensor[(1, 256, 32, 32), float32] | |
%300 = add(%299, %p315) # ty=Tensor[(1, 256, 32, 32), float32] | |
%301 = nn.relu(%300) # ty=Tensor[(1, 256, 32, 32), float32] | |
%301 | |
} | |
%302 = %297(%293, %294, %295, %296) # ty=Tensor[(1, 256, 32, 32), float32] | |
%303 = meta.relay.Constant(id=93) # ty=Tensor[(256, 256, 3, 3), float32] | |
%304 = meta.relay.Constant(id=94) # ty=Tensor[(256, 1, 1), float32] | |
%305 = fn(%p036: Tensor[(1, 256, 32, 32), float32], | |
%p132: Tensor[(256, 256, 3, 3), float32], | |
%p229: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%306 = nn.conv2d(%p036, %p132, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%307 = add(%306, %p229) # ty=Tensor[(1, 256, 32, 32), float32] | |
%308 = nn.relu(%307) # ty=Tensor[(1, 256, 32, 32), float32] | |
%308 | |
} | |
%309 = %305(%302, %303, %304) # ty=Tensor[(1, 256, 32, 32), float32] | |
%310 = meta.relay.Constant(id=95) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%311 = meta.relay.Constant(id=96) # ty=Tensor[(1024, 1, 1), float32] | |
%312 = meta.relay.Constant(id=97) # ty=Tensor[(1024, 1, 1), float32] | |
%313 = meta.relay.Constant(id=98) # ty=Tensor[(1024, 1, 1), float32] | |
%314 = fn(%p037: Tensor[(1, 256, 32, 32), float32], | |
%p133: Tensor[(1024, 256, 1, 1), float32], | |
%p230: Tensor[(1024, 1, 1), float32], | |
%p316: Tensor[(1024, 1, 1), float32], | |
%p410: Tensor[(1024, 1, 1), float32], | |
%p59: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%315 = nn.conv2d(%p037, %p133, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%316 = add(%315, %p230) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%317 = multiply(%316, %p316) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%318 = add(%317, %p410) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%319 = add(%318, %p59) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%320 = nn.relu(%319) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%320 | |
} | |
%321 = %314(%309, %310, %311, %312, %313, %293) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%322 = meta.relay.Constant(id=99) # ty=Tensor[(256, 1024, 1, 1), float32] | |
%323 = meta.relay.Constant(id=100) # ty=Tensor[(256, 1, 1), float32] | |
%324 = meta.relay.Constant(id=101) # ty=Tensor[(256, 1, 1), float32] | |
%325 = fn(%p038: Tensor[(1, 1024, 32, 32), float32], | |
%p134: Tensor[(256, 1024, 1, 1), float32], | |
%p231: Tensor[(256, 1, 1), float32], | |
%p317: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%326 = nn.conv2d(%p038, %p134, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%327 = add(%326, %p231) # ty=Tensor[(1, 256, 32, 32), float32] | |
%328 = add(%327, %p317) # ty=Tensor[(1, 256, 32, 32), float32] | |
%329 = nn.relu(%328) # ty=Tensor[(1, 256, 32, 32), float32] | |
%329 | |
} | |
%330 = %325(%321, %322, %323, %324) # ty=Tensor[(1, 256, 32, 32), float32] | |
%331 = meta.relay.Constant(id=102) # ty=Tensor[(256, 256, 3, 3), float32] | |
%332 = meta.relay.Constant(id=103) # ty=Tensor[(256, 1, 1), float32] | |
%333 = fn(%p039: Tensor[(1, 256, 32, 32), float32], | |
%p135: Tensor[(256, 256, 3, 3), float32], | |
%p232: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%334 = nn.conv2d(%p039, %p135, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%335 = add(%334, %p232) # ty=Tensor[(1, 256, 32, 32), float32] | |
%336 = nn.relu(%335) # ty=Tensor[(1, 256, 32, 32), float32] | |
%336 | |
} | |
%337 = %333(%330, %331, %332) # ty=Tensor[(1, 256, 32, 32), float32] | |
%338 = meta.relay.Constant(id=104) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%339 = meta.relay.Constant(id=105) # ty=Tensor[(1024, 1, 1), float32] | |
%340 = meta.relay.Constant(id=106) # ty=Tensor[(1024, 1, 1), float32] | |
%341 = meta.relay.Constant(id=107) # ty=Tensor[(1024, 1, 1), float32] | |
%342 = fn(%p040: Tensor[(1, 256, 32, 32), float32], | |
%p136: Tensor[(1024, 256, 1, 1), float32], | |
%p233: Tensor[(1024, 1, 1), float32], | |
%p318: Tensor[(1024, 1, 1), float32], | |
%p411: Tensor[(1024, 1, 1), float32], | |
%p510: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%343 = nn.conv2d(%p040, %p136, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%344 = add(%343, %p233) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%345 = multiply(%344, %p318) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%346 = add(%345, %p411) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%347 = add(%346, %p510) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%348 = nn.relu(%347) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%348 | |
} | |
%349 = %342(%337, %338, %339, %340, %341, %321) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%350 = meta.relay.Constant(id=108) # ty=Tensor[(256, 1024, 1, 1), float32] | |
%351 = meta.relay.Constant(id=109) # ty=Tensor[(256, 1, 1), float32] | |
%352 = meta.relay.Constant(id=110) # ty=Tensor[(256, 1, 1), float32] | |
%353 = fn(%p041: Tensor[(1, 1024, 32, 32), float32], | |
%p137: Tensor[(256, 1024, 1, 1), float32], | |
%p234: Tensor[(256, 1, 1), float32], | |
%p319: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%354 = nn.conv2d(%p041, %p137, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%355 = add(%354, %p234) # ty=Tensor[(1, 256, 32, 32), float32] | |
%356 = add(%355, %p319) # ty=Tensor[(1, 256, 32, 32), float32] | |
%357 = nn.relu(%356) # ty=Tensor[(1, 256, 32, 32), float32] | |
%357 | |
} | |
%358 = %353(%349, %350, %351, %352) # ty=Tensor[(1, 256, 32, 32), float32] | |
%359 = meta.relay.Constant(id=111) # ty=Tensor[(256, 256, 3, 3), float32] | |
%360 = meta.relay.Constant(id=112) # ty=Tensor[(256, 1, 1), float32] | |
%361 = fn(%p042: Tensor[(1, 256, 32, 32), float32], | |
%p138: Tensor[(256, 256, 3, 3), float32], | |
%p235: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%362 = nn.conv2d(%p042, %p138, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%363 = add(%362, %p235) # ty=Tensor[(1, 256, 32, 32), float32] | |
%364 = nn.relu(%363) # ty=Tensor[(1, 256, 32, 32), float32] | |
%364 | |
} | |
%365 = %361(%358, %359, %360) # ty=Tensor[(1, 256, 32, 32), float32] | |
%366 = meta.relay.Constant(id=113) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%367 = meta.relay.Constant(id=114) # ty=Tensor[(1024, 1, 1), float32] | |
%368 = meta.relay.Constant(id=115) # ty=Tensor[(1024, 1, 1), float32] | |
%369 = meta.relay.Constant(id=116) # ty=Tensor[(1024, 1, 1), float32] | |
%370 = fn(%p043: Tensor[(1, 256, 32, 32), float32], | |
%p139: Tensor[(1024, 256, 1, 1), float32], | |
%p236: Tensor[(1024, 1, 1), float32], | |
%p320: Tensor[(1024, 1, 1), float32], | |
%p412: Tensor[(1024, 1, 1), float32], | |
%p511: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%371 = nn.conv2d(%p043, %p139, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%372 = add(%371, %p236) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%373 = multiply(%372, %p320) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%374 = add(%373, %p412) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%375 = add(%374, %p511) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%376 = nn.relu(%375) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%376 | |
} | |
%377 = %370(%365, %366, %367, %368, %369, %349) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%378 = meta.relay.Constant(id=117) # ty=Tensor[(256, 1024, 1, 1), float32] | |
%379 = meta.relay.Constant(id=118) # ty=Tensor[(256, 1, 1), float32] | |
%380 = meta.relay.Constant(id=119) # ty=Tensor[(256, 1, 1), float32] | |
%381 = fn(%p044: Tensor[(1, 1024, 32, 32), float32], | |
%p140: Tensor[(256, 1024, 1, 1), float32], | |
%p237: Tensor[(256, 1, 1), float32], | |
%p321: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%382 = nn.conv2d(%p044, %p140, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%383 = add(%382, %p237) # ty=Tensor[(1, 256, 32, 32), float32] | |
%384 = add(%383, %p321) # ty=Tensor[(1, 256, 32, 32), float32] | |
%385 = nn.relu(%384) # ty=Tensor[(1, 256, 32, 32), float32] | |
%385 | |
} | |
%386 = %381(%377, %378, %379, %380) # ty=Tensor[(1, 256, 32, 32), float32] | |
%387 = meta.relay.Constant(id=120) # ty=Tensor[(256, 256, 3, 3), float32] | |
%388 = meta.relay.Constant(id=121) # ty=Tensor[(256, 1, 1), float32] | |
%389 = fn(%p045: Tensor[(1, 256, 32, 32), float32], | |
%p141: Tensor[(256, 256, 3, 3), float32], | |
%p238: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 32, 32), float32] { | |
%390 = nn.conv2d(%p045, %p141, padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 32, 32), float32] | |
%391 = add(%390, %p238) # ty=Tensor[(1, 256, 32, 32), float32] | |
%392 = nn.relu(%391) # ty=Tensor[(1, 256, 32, 32), float32] | |
%392 | |
} | |
%393 = %389(%386, %387, %388) # ty=Tensor[(1, 256, 32, 32), float32] | |
%394 = meta.relay.Constant(id=122) # ty=Tensor[(1024, 256, 1, 1), float32] | |
%395 = meta.relay.Constant(id=123) # ty=Tensor[(1024, 1, 1), float32] | |
%396 = meta.relay.Constant(id=124) # ty=Tensor[(1024, 1, 1), float32] | |
%397 = meta.relay.Constant(id=125) # ty=Tensor[(1024, 1, 1), float32] | |
%398 = fn(%p046: Tensor[(1, 256, 32, 32), float32], | |
%p142: Tensor[(1024, 256, 1, 1), float32], | |
%p239: Tensor[(1024, 1, 1), float32], | |
%p322: Tensor[(1024, 1, 1), float32], | |
%p413: Tensor[(1024, 1, 1), float32], | |
%p512: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%399 = nn.conv2d(%p046, %p142, channels=1024, kernel_size=[1, 1]) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%400 = add(%399, %p239) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%401 = multiply(%400, %p322) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%402 = add(%401, %p413) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%403 = add(%402, %p512) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%404 = nn.relu(%403) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%404 | |
} | |
%405 = %398(%393, %394, %395, %396, %397, %377) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%406 = meta.relay.Constant(id=126) # ty=Tensor[(100, 1024, 3, 3), float32] | |
%407 = fn(%p047: Tensor[(1, 1024, 32, 32), float32], | |
%p143: Tensor[(100, 1024, 3, 3), float32]) | |
-> Tensor[(1, 100, 32, 32), float32] { | |
%408 = nn.conv2d(%p047, %p143, padding=[1, 1], channels=100, kernel_size=[3, 3]) # ty=Tensor[(1, 100, 32, 32), float32] | |
%408 | |
} | |
%409 = %407(%405, %406) # ty=Tensor[(1, 100, 32, 32), float32] | |
%410 = meta.relay.Constant(id=127) # ty=Tensor[(84, 1, 1), float32] | |
%411 = fn(%p048: Tensor[(1, 100, 32, 32), float32], | |
%p144: Tensor[(84, 1, 1), float32]) | |
-> Tensor[(1, 84, 32, 32), float32] { | |
%412 = strided_slice(%p048, begin=[0, 0], end=[None, 84]) # ty=Tensor[(1, 84, 32, 32), float32] | |
%413 = add(%412, %p144) # ty=Tensor[(1, 84, 32, 32), float32] | |
%413 | |
} | |
%414 = %411(%409, %410) # ty=Tensor[(1, 84, 32, 32), float32] | |
%415 = meta.relay.Constant(id=128) # ty=Tensor[(2560, 1024, 1, 1), float32] | |
%416 = fn(%p049: Tensor[(1, 1024, 32, 32), float32], | |
%p145: Tensor[(2560, 1024, 1, 1), float32]) | |
-> Tensor[(1, 2560, 16, 16), float32] { | |
%417 = nn.conv2d(%p049, %p145, strides=[2, 2], channels=2560, kernel_size=[1, 1]) # ty=Tensor[(1, 2560, 16, 16), float32] | |
%417 | |
} | |
%418 = %416(%405, %415) # ty=Tensor[(1, 2560, 16, 16), float32] | |
%419 = meta.relay.Constant(id=129) # ty=Tensor[(512, 1, 1), float32] | |
%420 = meta.relay.Constant(id=130) # ty=Tensor[(512, 1, 1), float32] | |
%421 = fn(%p050: Tensor[(1, 2560, 16, 16), float32], | |
%p146: Tensor[(512, 1, 1), float32], | |
%p240: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%422 = strided_slice(%p050, begin=[0, 0], end=[None, 512]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%423 = add(%422, %p146) # ty=Tensor[(1, 512, 16, 16), float32] | |
%424 = add(%423, %p240) # ty=Tensor[(1, 512, 16, 16), float32] | |
%425 = nn.relu(%424) # ty=Tensor[(1, 512, 16, 16), float32] | |
%425 | |
} | |
%426 = %421(%418, %419, %420) # ty=Tensor[(1, 512, 16, 16), float32] | |
%427 = meta.relay.Constant(id=131) # ty=Tensor[(512, 512, 3, 3), float32] | |
%428 = meta.relay.Constant(id=132) # ty=Tensor[(512, 1, 1), float32] | |
%429 = fn(%p051: Tensor[(1, 512, 16, 16), float32], | |
%p147: Tensor[(512, 512, 3, 3), float32], | |
%p241: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%430 = nn.conv2d(%p051, %p147, padding=[1, 1], channels=512, kernel_size=[3, 3]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%431 = add(%430, %p241) # ty=Tensor[(1, 512, 16, 16), float32] | |
%432 = nn.relu(%431) # ty=Tensor[(1, 512, 16, 16), float32] | |
%432 | |
} | |
%433 = %429(%426, %427, %428) # ty=Tensor[(1, 512, 16, 16), float32] | |
%434 = meta.relay.Constant(id=133) # ty=Tensor[(2048, 512, 1, 1), float32] | |
%435 = meta.relay.Constant(id=134) # ty=Tensor[(2048, 1, 1), float32] | |
%436 = meta.relay.Constant(id=135) # ty=Tensor[(2048, 1, 1), float32] | |
%437 = meta.relay.Constant(id=136) # ty=Tensor[(2048, 1, 1), float32] | |
%438 = fn(%p052: Tensor[(1, 2560, 16, 16), float32]) | |
-> Tensor[(1, 2048, 16, 16), float32] { | |
%439 = strided_slice(%p052, begin=[0, 512], end=[None, 2560]) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%439 | |
} | |
%440 = %438(%418) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%441 = meta.relay.Constant(id=137) # ty=Tensor[(2048, 1, 1), float32] | |
%442 = meta.relay.Constant(id=138) # ty=Tensor[(2048, 1, 1), float32] | |
%443 = fn(%p053: Tensor[(1, 512, 16, 16), float32], | |
%p148: Tensor[(2048, 512, 1, 1), float32], | |
%p242: Tensor[(2048, 1, 1), float32], | |
%p323: Tensor[(2048, 1, 1), float32], | |
%p414: Tensor[(2048, 1, 1), float32], | |
%p513: Tensor[(1, 2048, 16, 16), float32], | |
%p63: Tensor[(2048, 1, 1), float32], | |
%p73: Tensor[(2048, 1, 1), float32]) | |
-> Tensor[(1, 2048, 16, 16), float32] { | |
%444 = nn.conv2d(%p053, %p148, channels=2048, kernel_size=[1, 1]) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%445 = add(%444, %p242) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%446 = multiply(%445, %p323) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%447 = add(%446, %p414) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%448 = multiply(%p513, %p63) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%449 = add(%448, %p73) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%450 = add(%447, %449) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%451 = nn.relu(%450) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%451 | |
} | |
%452 = %443(%433, %434, %435, %436, %437, %440, %441, %442) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%453 = meta.relay.Constant(id=139) # ty=Tensor[(512, 2048, 1, 1), float32] | |
%454 = meta.relay.Constant(id=140) # ty=Tensor[(512, 1, 1), float32] | |
%455 = meta.relay.Constant(id=141) # ty=Tensor[(512, 1, 1), float32] | |
%456 = fn(%p054: Tensor[(1, 2048, 16, 16), float32], | |
%p149: Tensor[(512, 2048, 1, 1), float32], | |
%p243: Tensor[(512, 1, 1), float32], | |
%p324: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%457 = nn.conv2d(%p054, %p149, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%458 = add(%457, %p243) # ty=Tensor[(1, 512, 16, 16), float32] | |
%459 = add(%458, %p324) # ty=Tensor[(1, 512, 16, 16), float32] | |
%460 = nn.relu(%459) # ty=Tensor[(1, 512, 16, 16), float32] | |
%460 | |
} | |
%461 = %456(%452, %453, %454, %455) # ty=Tensor[(1, 512, 16, 16), float32] | |
%462 = meta.relay.Constant(id=142) # ty=Tensor[(512, 512, 3, 3), float32] | |
%463 = meta.relay.Constant(id=143) # ty=Tensor[(512, 1, 1), float32] | |
%464 = fn(%p055: Tensor[(1, 512, 16, 16), float32], | |
%p150: Tensor[(512, 512, 3, 3), float32], | |
%p244: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%465 = nn.conv2d(%p055, %p150, padding=[1, 1], channels=512, kernel_size=[3, 3]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%466 = add(%465, %p244) # ty=Tensor[(1, 512, 16, 16), float32] | |
%467 = nn.relu(%466) # ty=Tensor[(1, 512, 16, 16), float32] | |
%467 | |
} | |
%468 = %464(%461, %462, %463) # ty=Tensor[(1, 512, 16, 16), float32] | |
%469 = meta.relay.Constant(id=144) # ty=Tensor[(2048, 512, 1, 1), float32] | |
%470 = meta.relay.Constant(id=145) # ty=Tensor[(2048, 1, 1), float32] | |
%471 = meta.relay.Constant(id=146) # ty=Tensor[(2048, 1, 1), float32] | |
%472 = meta.relay.Constant(id=147) # ty=Tensor[(2048, 1, 1), float32] | |
%473 = fn(%p056: Tensor[(1, 512, 16, 16), float32], | |
%p151: Tensor[(2048, 512, 1, 1), float32], | |
%p245: Tensor[(2048, 1, 1), float32], | |
%p325: Tensor[(2048, 1, 1), float32], | |
%p415: Tensor[(2048, 1, 1), float32], | |
%p514: Tensor[(1, 2048, 16, 16), float32]) | |
-> Tensor[(1, 2048, 16, 16), float32] { | |
%474 = nn.conv2d(%p056, %p151, channels=2048, kernel_size=[1, 1]) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%475 = add(%474, %p245) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%476 = multiply(%475, %p325) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%477 = add(%476, %p415) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%478 = add(%477, %p514) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%479 = nn.relu(%478) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%479 | |
} | |
%480 = %473(%468, %469, %470, %471, %472, %452) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%481 = meta.relay.Constant(id=148) # ty=Tensor[(512, 2048, 1, 1), float32] | |
%482 = meta.relay.Constant(id=149) # ty=Tensor[(512, 1, 1), float32] | |
%483 = meta.relay.Constant(id=150) # ty=Tensor[(512, 1, 1), float32] | |
%484 = fn(%p057: Tensor[(1, 2048, 16, 16), float32], | |
%p152: Tensor[(512, 2048, 1, 1), float32], | |
%p246: Tensor[(512, 1, 1), float32], | |
%p326: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%485 = nn.conv2d(%p057, %p152, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%486 = add(%485, %p246) # ty=Tensor[(1, 512, 16, 16), float32] | |
%487 = add(%486, %p326) # ty=Tensor[(1, 512, 16, 16), float32] | |
%488 = nn.relu(%487) # ty=Tensor[(1, 512, 16, 16), float32] | |
%488 | |
} | |
%489 = %484(%480, %481, %482, %483) # ty=Tensor[(1, 512, 16, 16), float32] | |
%490 = meta.relay.Constant(id=151) # ty=Tensor[(512, 512, 3, 3), float32] | |
%491 = meta.relay.Constant(id=152) # ty=Tensor[(512, 1, 1), float32] | |
%492 = fn(%p058: Tensor[(1, 512, 16, 16), float32], | |
%p153: Tensor[(512, 512, 3, 3), float32], | |
%p247: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%493 = nn.conv2d(%p058, %p153, padding=[1, 1], channels=512, kernel_size=[3, 3]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%494 = add(%493, %p247) # ty=Tensor[(1, 512, 16, 16), float32] | |
%495 = nn.relu(%494) # ty=Tensor[(1, 512, 16, 16), float32] | |
%495 | |
} | |
%496 = %492(%489, %490, %491) # ty=Tensor[(1, 512, 16, 16), float32] | |
%497 = meta.relay.Constant(id=153) # ty=Tensor[(2048, 512, 1, 1), float32] | |
%498 = meta.relay.Constant(id=154) # ty=Tensor[(2048, 1, 1), float32] | |
%499 = meta.relay.Constant(id=155) # ty=Tensor[(2048, 1, 1), float32] | |
%500 = meta.relay.Constant(id=156) # ty=Tensor[(2048, 1, 1), float32] | |
%501 = fn(%p059: Tensor[(1, 512, 16, 16), float32], | |
%p154: Tensor[(2048, 512, 1, 1), float32], | |
%p248: Tensor[(2048, 1, 1), float32], | |
%p327: Tensor[(2048, 1, 1), float32], | |
%p416: Tensor[(2048, 1, 1), float32], | |
%p515: Tensor[(1, 2048, 16, 16), float32]) | |
-> Tensor[(1, 2048, 16, 16), float32] { | |
%502 = nn.conv2d(%p059, %p154, channels=2048, kernel_size=[1, 1]) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%503 = add(%502, %p248) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%504 = multiply(%503, %p327) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%505 = add(%504, %p416) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%506 = add(%505, %p515) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%507 = nn.relu(%506) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%507 | |
} | |
%508 = %501(%496, %497, %498, %499, %500, %480) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%509 = meta.relay.Constant(id=157) # ty=Tensor[(150, 2048, 3, 3), float32] | |
%510 = fn(%p060: Tensor[(1, 2048, 16, 16), float32], | |
%p155: Tensor[(150, 2048, 3, 3), float32]) | |
-> Tensor[(1, 150, 16, 16), float32] { | |
%511 = nn.conv2d(%p060, %p155, padding=[1, 1], channels=150, kernel_size=[3, 3]) # ty=Tensor[(1, 150, 16, 16), float32] | |
%511 | |
} | |
%512 = %510(%508, %509) # ty=Tensor[(1, 150, 16, 16), float32] | |
%513 = meta.relay.Constant(id=158) # ty=Tensor[(126, 1, 1), float32] | |
%514 = fn(%p061: Tensor[(1, 150, 16, 16), float32], | |
%p156: Tensor[(126, 1, 1), float32]) | |
-> Tensor[(1, 126, 16, 16), float32] { | |
%515 = strided_slice(%p061, begin=[0, 0], end=[None, 126]) # ty=Tensor[(1, 126, 16, 16), float32] | |
%516 = add(%515, %p156) # ty=Tensor[(1, 126, 16, 16), float32] | |
%516 | |
} | |
%517 = %514(%512, %513) # ty=Tensor[(1, 126, 16, 16), float32] | |
%518 = meta.relay.Constant(id=159) # ty=Tensor[(512, 2048, 1, 1), float32] | |
%519 = meta.relay.Constant(id=160) # ty=Tensor[(512, 1, 1), float32] | |
%520 = fn(%p062: Tensor[(1, 2048, 16, 16), float32], | |
%p157: Tensor[(512, 2048, 1, 1), float32], | |
%p249: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 16, 16), float32] { | |
%521 = nn.conv2d(%p062, %p157, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 16, 16), float32] | |
%522 = add(%521, %p249) # ty=Tensor[(1, 512, 16, 16), float32] | |
%523 = nn.relu(%522) # ty=Tensor[(1, 512, 16, 16), float32] | |
%523 | |
} | |
%524 = %520(%508, %518, %519) # ty=Tensor[(1, 512, 16, 16), float32] | |
%525 = meta.relay.Constant(id=161) # ty=Tensor[(512, 512, 3, 3), float32] | |
%526 = meta.relay.Constant(id=162) # ty=Tensor[(512, 1, 1), float32] | |
%527 = fn(%p063: Tensor[(1, 512, 16, 16), float32], | |
%p158: Tensor[(512, 512, 3, 3), float32], | |
%p250: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 8, 8), float32] { | |
%528 = nn.conv2d(%p063, %p158, strides=[2, 2], padding=[1, 1], channels=512, kernel_size=[3, 3]) # ty=Tensor[(1, 512, 8, 8), float32] | |
%529 = add(%528, %p250) # ty=Tensor[(1, 512, 8, 8), float32] | |
%530 = nn.relu(%529) # ty=Tensor[(1, 512, 8, 8), float32] | |
%530 | |
} | |
%531 = %527(%524, %525, %526) # ty=Tensor[(1, 512, 8, 8), float32] | |
%532 = meta.relay.Constant(id=163) # ty=Tensor[(150, 512, 3, 3), float32] | |
%533 = fn(%p064: Tensor[(1, 512, 8, 8), float32], | |
%p159: Tensor[(150, 512, 3, 3), float32]) | |
-> Tensor[(1, 150, 8, 8), float32] { | |
%534 = nn.conv2d(%p064, %p159, padding=[1, 1], channels=150, kernel_size=[3, 3]) # ty=Tensor[(1, 150, 8, 8), float32] | |
%534 | |
} | |
%535 = %533(%531, %532) # ty=Tensor[(1, 150, 8, 8), float32] | |
%536 = meta.relay.Constant(id=164) # ty=Tensor[(126, 1, 1), float32] | |
%537 = fn(%p065: Tensor[(1, 150, 8, 8), float32], | |
%p160: Tensor[(126, 1, 1), float32]) | |
-> Tensor[(1, 126, 8, 8), float32] { | |
%538 = strided_slice(%p065, begin=[0, 0], end=[None, 126]) # ty=Tensor[(1, 126, 8, 8), float32] | |
%539 = add(%538, %p160) # ty=Tensor[(1, 126, 8, 8), float32] | |
%539 | |
} | |
%540 = %537(%535, %536) # ty=Tensor[(1, 126, 8, 8), float32] | |
%541 = meta.relay.Constant(id=165) # ty=Tensor[(512, 512, 1, 1), float32] | |
%542 = meta.relay.Constant(id=166) # ty=Tensor[(512, 1, 1), float32] | |
%543 = fn(%p066: Tensor[(1, 512, 8, 8), float32], | |
%p161: Tensor[(512, 512, 1, 1), float32], | |
%p251: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 8, 8), float32] { | |
%544 = nn.conv2d(%p066, %p161, channels=512, kernel_size=[1, 1]) # ty=Tensor[(1, 512, 8, 8), float32] | |
%545 = add(%544, %p251) # ty=Tensor[(1, 512, 8, 8), float32] | |
%546 = nn.relu(%545) # ty=Tensor[(1, 512, 8, 8), float32] | |
%546 | |
} | |
%547 = %543(%531, %541, %542) # ty=Tensor[(1, 512, 8, 8), float32] | |
%548 = meta.relay.Constant(id=167) # ty=Tensor[(512, 512, 3, 3), float32] | |
%549 = meta.relay.Constant(id=168) # ty=Tensor[(512, 1, 1), float32] | |
%550 = fn(%p067: Tensor[(1, 512, 8, 8), float32], | |
%p162: Tensor[(512, 512, 3, 3), float32], | |
%p252: Tensor[(512, 1, 1), float32]) | |
-> Tensor[(1, 512, 4, 4), float32] { | |
%551 = nn.conv2d(%p067, %p162, strides=[2, 2], padding=[1, 1], channels=512, kernel_size=[3, 3]) # ty=Tensor[(1, 512, 4, 4), float32] | |
%552 = add(%551, %p252) # ty=Tensor[(1, 512, 4, 4), float32] | |
%553 = nn.relu(%552) # ty=Tensor[(1, 512, 4, 4), float32] | |
%553 | |
} | |
%554 = %550(%547, %548, %549) # ty=Tensor[(1, 512, 4, 4), float32] | |
%555 = meta.relay.Constant(id=169) # ty=Tensor[(150, 512, 3, 3), float32] | |
%556 = fn(%p068: Tensor[(1, 512, 4, 4), float32], | |
%p163: Tensor[(150, 512, 3, 3), float32]) | |
-> Tensor[(1, 150, 4, 4), float32] { | |
%557 = nn.conv2d(%p068, %p163, padding=[1, 1], channels=150, kernel_size=[3, 3]) # ty=Tensor[(1, 150, 4, 4), float32] | |
%557 | |
} | |
%558 = %556(%554, %555) # ty=Tensor[(1, 150, 4, 4), float32] | |
%559 = meta.relay.Constant(id=170) # ty=Tensor[(126, 1, 1), float32] | |
%560 = fn(%p069: Tensor[(1, 150, 4, 4), float32], | |
%p164: Tensor[(126, 1, 1), float32]) | |
-> Tensor[(1, 126, 4, 4), float32] { | |
%561 = strided_slice(%p069, begin=[0, 0], end=[None, 126]) # ty=Tensor[(1, 126, 4, 4), float32] | |
%562 = add(%561, %p164) # ty=Tensor[(1, 126, 4, 4), float32] | |
%562 | |
} | |
%563 = %560(%558, %559) # ty=Tensor[(1, 126, 4, 4), float32] | |
%564 = meta.relay.Constant(id=171) # ty=Tensor[(256, 512, 1, 1), float32] | |
%565 = meta.relay.Constant(id=172) # ty=Tensor[(256, 1, 1), float32] | |
%566 = fn(%p070: Tensor[(1, 512, 4, 4), float32], | |
%p165: Tensor[(256, 512, 1, 1), float32], | |
%p253: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 4, 4), float32] { | |
%567 = nn.conv2d(%p070, %p165, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 4, 4), float32] | |
%568 = add(%567, %p253) # ty=Tensor[(1, 256, 4, 4), float32] | |
%569 = nn.relu(%568) # ty=Tensor[(1, 256, 4, 4), float32] | |
%569 | |
} | |
%570 = %566(%554, %564, %565) # ty=Tensor[(1, 256, 4, 4), float32] | |
%571 = meta.relay.Constant(id=173) # ty=Tensor[(256, 256, 3, 3), float32] | |
%572 = meta.relay.Constant(id=174) # ty=Tensor[(256, 1, 1), float32] | |
%573 = fn(%p071: Tensor[(1, 256, 4, 4), float32], | |
%p166: Tensor[(256, 256, 3, 3), float32], | |
%p254: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 2, 2), float32] { | |
%574 = nn.conv2d(%p071, %p166, strides=[2, 2], padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 2, 2), float32] | |
%575 = add(%574, %p254) # ty=Tensor[(1, 256, 2, 2), float32] | |
%576 = nn.relu(%575) # ty=Tensor[(1, 256, 2, 2), float32] | |
%576 | |
} | |
%577 = %573(%570, %571, %572) # ty=Tensor[(1, 256, 2, 2), float32] | |
%578 = meta.relay.Constant(id=175) # ty=Tensor[(100, 256, 3, 3), float32] | |
%579 = fn(%p072: Tensor[(1, 256, 2, 2), float32], | |
%p167: Tensor[(100, 256, 3, 3), float32]) | |
-> Tensor[(1, 100, 2, 2), float32] { | |
%580 = nn.conv2d(%p072, %p167, padding=[1, 1], channels=100, kernel_size=[3, 3]) # ty=Tensor[(1, 100, 2, 2), float32] | |
%580 | |
} | |
%581 = %579(%577, %578) # ty=Tensor[(1, 100, 2, 2), float32] | |
%582 = meta.relay.Constant(id=176) # ty=Tensor[(84, 1, 1), float32] | |
%583 = fn(%p073: Tensor[(1, 100, 2, 2), float32], | |
%p168: Tensor[(84, 1, 1), float32]) | |
-> Tensor[(1, 84, 2, 2), float32] { | |
%584 = strided_slice(%p073, begin=[0, 0], end=[None, 84]) # ty=Tensor[(1, 84, 2, 2), float32] | |
%585 = add(%584, %p168) # ty=Tensor[(1, 84, 2, 2), float32] | |
%585 | |
} | |
%586 = %583(%581, %582) # ty=Tensor[(1, 84, 2, 2), float32] | |
%587 = meta.relay.Constant(id=177) # ty=Tensor[(256, 256, 1, 1), float32] | |
%588 = meta.relay.Constant(id=178) # ty=Tensor[(256, 1, 1), float32] | |
%589 = fn(%p074: Tensor[(1, 256, 2, 2), float32], | |
%p169: Tensor[(256, 256, 1, 1), float32], | |
%p255: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 2, 2), float32] { | |
%590 = nn.conv2d(%p074, %p169, channels=256, kernel_size=[1, 1]) # ty=Tensor[(1, 256, 2, 2), float32] | |
%591 = add(%590, %p255) # ty=Tensor[(1, 256, 2, 2), float32] | |
%592 = nn.relu(%591) # ty=Tensor[(1, 256, 2, 2), float32] | |
%592 | |
} | |
%593 = %589(%577, %587, %588) # ty=Tensor[(1, 256, 2, 2), float32] | |
%594 = meta.relay.Constant(id=179) # ty=Tensor[(256, 256, 3, 3), float32] | |
%595 = meta.relay.Constant(id=180) # ty=Tensor[(256, 1, 1), float32] | |
%596 = fn(%p075: Tensor[(1, 256, 2, 2), float32], | |
%p170: Tensor[(256, 256, 3, 3), float32], | |
%p256: Tensor[(256, 1, 1), float32]) | |
-> Tensor[(1, 256, 1, 1), float32] { | |
%597 = nn.conv2d(%p075, %p170, strides=[2, 2], padding=[1, 1], channels=256, kernel_size=[3, 3]) # ty=Tensor[(1, 256, 1, 1), float32] | |
%598 = add(%597, %p256) # ty=Tensor[(1, 256, 1, 1), float32] | |
%599 = nn.relu(%598) # ty=Tensor[(1, 256, 1, 1), float32] | |
%599 | |
} | |
%600 = %596(%593, %594, %595) # ty=Tensor[(1, 256, 1, 1), float32] | |
%601 = meta.relay.Constant(id=181) # ty=Tensor[(100, 256, 3, 3), float32] | |
%602 = fn(%p076: Tensor[(1, 256, 1, 1), float32], | |
%p171: Tensor[(100, 256, 3, 3), float32]) | |
-> Tensor[(1, 100, 1, 1), float32] { | |
%603 = nn.conv2d(%p076, %p171, padding=[1, 1], channels=100, kernel_size=[3, 3]) # ty=Tensor[(1, 100, 1, 1), float32] | |
%603 | |
} | |
%604 = %602(%600, %601) # ty=Tensor[(1, 100, 1, 1), float32] | |
%605 = meta.relay.Constant(id=182) # ty=Tensor[(84, 1, 1), float32] | |
%606 = fn(%p077: Tensor[(1, 100, 1, 1), float32], | |
%p172: Tensor[(84, 1, 1), float32]) | |
-> Tensor[(1, 84, 1, 1), float32] { | |
%607 = strided_slice(%p077, begin=[0, 0], end=[None, 84]) # ty=Tensor[(1, 84, 1, 1), float32] | |
%608 = add(%607, %p172) # ty=Tensor[(1, 84, 1, 1), float32] | |
%608 | |
} | |
%609 = %606(%604, %605) # ty=Tensor[(1, 84, 1, 1), float32] | |
%610 = fn(%p078: Tensor[(1, 84, 32, 32), float32], | |
%p173: Tensor[(1, 126, 16, 16), float32], | |
%p257: Tensor[(1, 126, 8, 8), float32], | |
%p328: Tensor[(1, 126, 4, 4), float32], | |
%p417: Tensor[(1, 84, 2, 2), float32], | |
%p516: Tensor[(1, 84, 1, 1), float32]) | |
-> Tensor[(1, 6132, 21), float32] { | |
%611 = transpose(%p078, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 32, 32, 84), float32] | |
%612 = nn.batch_flatten(%611) # ty=Tensor[(1, 86016), float32] | |
%613 = transpose(%p173, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 16, 16, 126), float32] | |
%614 = nn.batch_flatten(%613) # ty=Tensor[(1, 32256), float32] | |
%615 = transpose(%p257, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 8, 8, 126), float32] | |
%616 = nn.batch_flatten(%615) # ty=Tensor[(1, 8064), float32] | |
%617 = transpose(%p328, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 4, 4, 126), float32] | |
%618 = nn.batch_flatten(%617) # ty=Tensor[(1, 2016), float32] | |
%619 = transpose(%p417, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 2, 2, 84), float32] | |
%620 = nn.batch_flatten(%619) # ty=Tensor[(1, 336), float32] | |
%621 = transpose(%p516, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 1, 1, 84), float32] | |
%622 = nn.batch_flatten(%621) # ty=Tensor[(1, 84), float32] | |
%623 = (%612, %614, %616, %618, %620, %622) | |
%624 = concatenate(%623, axis=1) # ty=Tensor[(1, 128772), float32] | |
%625 = reshape(%624, newshape=[0, -1, 21]) # ty=Tensor[(1, 6132, 21), float32] | |
%625 | |
} | |
%626 = %610(%414, %517, %540, %563, %586, %609) # ty=Tensor[(1, 6132, 21), float32] | |
%627 = fn(%p079: Tensor[(1, 6132, 21), float32]) | |
-> Tensor[(1, 6132, 21), float32] { | |
%628 = nn.softmax(%p079) # ty=Tensor[(1, 6132, 21), float32] | |
%628 | |
} | |
%629 = %627(%626) # ty=Tensor[(1, 6132, 21), float32] | |
%630 = fn(%p080: Tensor[(1, 6132, 21), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%631 = slice_axis(%p080, meta.relay.attrs.SliceAxisAttrs(id=183)) # ty=Tensor[(1, 6132, 1), float32] | |
%632 = zeros_like(%631) # ty=Tensor[(1, 6132, 1), float32] | |
%632 | |
} | |
%633 = %630(%629) # ty=Tensor[(1, 6132, 1), float32] | |
%634 = fn(%p081: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%635 = add(%p081, 0f) # ty=Tensor[(1, 6132, 1), float32] | |
%635 | |
} | |
%636 = %634(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%637 = fn(%p082: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%638 = add(%p082, 1f) # ty=Tensor[(1, 6132, 1), float32] | |
%638 | |
} | |
%639 = %637(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%640 = fn(%p083: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%641 = add(%p083, 2f) # ty=Tensor[(1, 6132, 1), float32] | |
%641 | |
} | |
%642 = %640(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%643 = fn(%p084: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%644 = add(%p084, 3f) # ty=Tensor[(1, 6132, 1), float32] | |
%644 | |
} | |
%645 = %643(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%646 = fn(%p085: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%647 = add(%p085, 4f) # ty=Tensor[(1, 6132, 1), float32] | |
%647 | |
} | |
%648 = %646(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%649 = fn(%p086: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%650 = add(%p086, 5f) # ty=Tensor[(1, 6132, 1), float32] | |
%650 | |
} | |
%651 = %649(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%652 = fn(%p087: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%653 = add(%p087, 6f) # ty=Tensor[(1, 6132, 1), float32] | |
%653 | |
} | |
%654 = %652(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%655 = fn(%p088: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%656 = add(%p088, 7f) # ty=Tensor[(1, 6132, 1), float32] | |
%656 | |
} | |
%657 = %655(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%658 = fn(%p089: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%659 = add(%p089, 8f) # ty=Tensor[(1, 6132, 1), float32] | |
%659 | |
} | |
%660 = %658(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%661 = fn(%p090: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%662 = add(%p090, 9f) # ty=Tensor[(1, 6132, 1), float32] | |
%662 | |
} | |
%663 = %661(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%664 = fn(%p091: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%665 = add(%p091, 10f) # ty=Tensor[(1, 6132, 1), float32] | |
%665 | |
} | |
%666 = %664(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%667 = fn(%p092: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%668 = add(%p092, 11f) # ty=Tensor[(1, 6132, 1), float32] | |
%668 | |
} | |
%669 = %667(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%670 = fn(%p093: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%671 = add(%p093, 12f) # ty=Tensor[(1, 6132, 1), float32] | |
%671 | |
} | |
%672 = %670(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%673 = fn(%p094: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%674 = add(%p094, 13f) # ty=Tensor[(1, 6132, 1), float32] | |
%674 | |
} | |
%675 = %673(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%676 = fn(%p095: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%677 = add(%p095, 14f) # ty=Tensor[(1, 6132, 1), float32] | |
%677 | |
} | |
%678 = %676(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%679 = fn(%p096: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%680 = add(%p096, 15f) # ty=Tensor[(1, 6132, 1), float32] | |
%680 | |
} | |
%681 = %679(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%682 = fn(%p097: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%683 = add(%p097, 16f) # ty=Tensor[(1, 6132, 1), float32] | |
%683 | |
} | |
%684 = %682(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%685 = fn(%p098: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%686 = add(%p098, 17f) # ty=Tensor[(1, 6132, 1), float32] | |
%686 | |
} | |
%687 = %685(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%688 = fn(%p099: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%689 = add(%p099, 18f) # ty=Tensor[(1, 6132, 1), float32] | |
%689 | |
} | |
%690 = %688(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%691 = fn(%p0100: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%692 = add(%p0100, 19f) # ty=Tensor[(1, 6132, 1), float32] | |
%692 | |
} | |
%693 = %691(%633) # ty=Tensor[(1, 6132, 1), float32] | |
%694 = meta.relay.Constant(id=184) # ty=Tensor[(16, 1, 1), float32] | |
%695 = fn(%p0101: Tensor[(1, 100, 32, 32), float32], | |
%p174: Tensor[(16, 1, 1), float32]) | |
-> Tensor[(1, 16, 32, 32), float32] { | |
%696 = strided_slice(%p0101, begin=[0, 84], end=[None, 100]) # ty=Tensor[(1, 16, 32, 32), float32] | |
%697 = add(%696, %p174) # ty=Tensor[(1, 16, 32, 32), float32] | |
%697 | |
} | |
%698 = %695(%409, %694) # ty=Tensor[(1, 16, 32, 32), float32] | |
%699 = meta.relay.Constant(id=185) # ty=Tensor[(24, 1, 1), float32] | |
%700 = fn(%p0102: Tensor[(1, 150, 16, 16), float32], | |
%p175: Tensor[(24, 1, 1), float32]) | |
-> Tensor[(1, 24, 16, 16), float32] { | |
%701 = strided_slice(%p0102, begin=[0, 126], end=[None, 150]) # ty=Tensor[(1, 24, 16, 16), float32] | |
%702 = add(%701, %p175) # ty=Tensor[(1, 24, 16, 16), float32] | |
%702 | |
} | |
%703 = %700(%512, %699) # ty=Tensor[(1, 24, 16, 16), float32] | |
%704 = meta.relay.Constant(id=186) # ty=Tensor[(24, 1, 1), float32] | |
%705 = fn(%p0103: Tensor[(1, 150, 8, 8), float32], | |
%p176: Tensor[(24, 1, 1), float32]) | |
-> Tensor[(1, 24, 8, 8), float32] { | |
%706 = strided_slice(%p0103, begin=[0, 126], end=[None, 150]) # ty=Tensor[(1, 24, 8, 8), float32] | |
%707 = add(%706, %p176) # ty=Tensor[(1, 24, 8, 8), float32] | |
%707 | |
} | |
%708 = %705(%535, %704) # ty=Tensor[(1, 24, 8, 8), float32] | |
%709 = meta.relay.Constant(id=187) # ty=Tensor[(24, 1, 1), float32] | |
%710 = fn(%p0104: Tensor[(1, 150, 4, 4), float32], | |
%p177: Tensor[(24, 1, 1), float32]) | |
-> Tensor[(1, 24, 4, 4), float32] { | |
%711 = strided_slice(%p0104, begin=[0, 126], end=[None, 150]) # ty=Tensor[(1, 24, 4, 4), float32] | |
%712 = add(%711, %p177) # ty=Tensor[(1, 24, 4, 4), float32] | |
%712 | |
} | |
%713 = %710(%558, %709) # ty=Tensor[(1, 24, 4, 4), float32] | |
%714 = meta.relay.Constant(id=188) # ty=Tensor[(16, 1, 1), float32] | |
%715 = fn(%p0105: Tensor[(1, 100, 2, 2), float32], | |
%p178: Tensor[(16, 1, 1), float32]) | |
-> Tensor[(1, 16, 2, 2), float32] { | |
%716 = strided_slice(%p0105, begin=[0, 84], end=[None, 100]) # ty=Tensor[(1, 16, 2, 2), float32] | |
%717 = add(%716, %p178) # ty=Tensor[(1, 16, 2, 2), float32] | |
%717 | |
} | |
%718 = %715(%581, %714) # ty=Tensor[(1, 16, 2, 2), float32] | |
%719 = meta.relay.Constant(id=189) # ty=Tensor[(16, 1, 1), float32] | |
%720 = fn(%p0106: Tensor[(1, 100, 1, 1), float32], | |
%p179: Tensor[(16, 1, 1), float32]) | |
-> Tensor[(1, 16, 1, 1), float32] { | |
%721 = strided_slice(%p0106, begin=[0, 84], end=[None, 100]) # ty=Tensor[(1, 16, 1, 1), float32] | |
%722 = add(%721, %p179) # ty=Tensor[(1, 16, 1, 1), float32] | |
%722 | |
} | |
%723 = %720(%604, %719) # ty=Tensor[(1, 16, 1, 1), float32] | |
%724 = fn(%p0107: Tensor[(1, 16, 32, 32), float32], | |
%p180: Tensor[(1, 24, 16, 16), float32], | |
%p258: Tensor[(1, 24, 8, 8), float32], | |
%p329: Tensor[(1, 24, 4, 4), float32], | |
%p418: Tensor[(1, 16, 2, 2), float32], | |
%p517: Tensor[(1, 16, 1, 1), float32]) | |
-> Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] { | |
%725 = transpose(%p0107, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 32, 32, 16), float32] | |
%726 = nn.batch_flatten(%725) # ty=Tensor[(1, 16384), float32] | |
%727 = transpose(%p180, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 16, 16, 24), float32] | |
%728 = nn.batch_flatten(%727) # ty=Tensor[(1, 6144), float32] | |
%729 = transpose(%p258, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 8, 8, 24), float32] | |
%730 = nn.batch_flatten(%729) # ty=Tensor[(1, 1536), float32] | |
%731 = transpose(%p329, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 4, 4, 24), float32] | |
%732 = nn.batch_flatten(%731) # ty=Tensor[(1, 384), float32] | |
%733 = transpose(%p418, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 2, 2, 16), float32] | |
%734 = nn.batch_flatten(%733) # ty=Tensor[(1, 64), float32] | |
%735 = transpose(%p517, axes=[0, 2, 3, 1]) # ty=Tensor[(1, 1, 1, 16), float32] | |
%736 = nn.batch_flatten(%735) # ty=Tensor[(1, 16), float32] | |
%737 = (%726, %728, %730, %732, %734, %736) | |
%738 = concatenate(%737, axis=1) # ty=Tensor[(1, 24528), float32] | |
%739 = reshape(%738, newshape=[0, -1, 4]) # ty=Tensor[(1, 6132, 4), float32] | |
%740 = split(%739, indices_or_sections=int64(4), axis=-1) # ty=Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] | |
%740 | |
} | |
%741 = %724(%698, %703, %708, %713, %718, %723) # ty=Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] | |
%742 = %741.0 | |
%743 = meta.relay.Constant(id=190) # ty=Tensor[(1, 1, 128, 128, 16), float32] | |
%744 = fn(%p0108: Tensor[(1, 1024, 32, 32), float32]) | |
-> Tensor[(1, 1024, 32, 32), float32] { | |
%745 = multiply(%p0108, 0f) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%745 | |
} | |
%746 = %744(%405) # ty=Tensor[(1, 1024, 32, 32), float32] | |
%747 = meta.relay.Constant(id=191) # ty=Tensor[(1, 1, 64, 64, 24), float32] | |
%748 = fn(%p0109: Tensor[(1, 2048, 16, 16), float32]) | |
-> Tensor[(1, 2048, 16, 16), float32] { | |
%749 = multiply(%p0109, 0f) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%749 | |
} | |
%750 = %748(%508) # ty=Tensor[(1, 2048, 16, 16), float32] | |
%751 = meta.relay.Constant(id=192) # ty=Tensor[(1, 1, 32, 32, 24), float32] | |
%752 = fn(%p0110: Tensor[(1, 512, 8, 8), float32]) | |
-> Tensor[(1, 512, 8, 8), float32] { | |
%753 = multiply(%p0110, 0f) # ty=Tensor[(1, 512, 8, 8), float32] | |
%753 | |
} | |
%754 = %752(%531) # ty=Tensor[(1, 512, 8, 8), float32] | |
%755 = meta.relay.Constant(id=193) # ty=Tensor[(1, 1, 16, 16, 24), float32] | |
%756 = fn(%p0111: Tensor[(1, 512, 4, 4), float32]) | |
-> Tensor[(1, 512, 4, 4), float32] { | |
%757 = multiply(%p0111, 0f) # ty=Tensor[(1, 512, 4, 4), float32] | |
%757 | |
} | |
%758 = %756(%554) # ty=Tensor[(1, 512, 4, 4), float32] | |
%759 = meta.relay.Constant(id=194) # ty=Tensor[(1, 1, 16, 16, 16), float32] | |
%760 = fn(%p0112: Tensor[(1, 256, 2, 2), float32]) | |
-> Tensor[(1, 256, 2, 2), float32] { | |
%761 = multiply(%p0112, 0f) # ty=Tensor[(1, 256, 2, 2), float32] | |
%761 | |
} | |
%762 = %760(%577) # ty=Tensor[(1, 256, 2, 2), float32] | |
%763 = meta.relay.Constant(id=195) # ty=Tensor[(1, 1, 16, 16, 16), float32] | |
%764 = fn(%p0113: Tensor[(1, 256, 1, 1), float32]) | |
-> Tensor[(1, 256, 1, 1), float32] { | |
%765 = multiply(%p0113, 0f) # ty=Tensor[(1, 256, 1, 1), float32] | |
%765 | |
} | |
%766 = %764(%600) # ty=Tensor[(1, 256, 1, 1), float32] | |
%767 = fn(%p0114: Tensor[(1, 1, 128, 128, 16), float32], | |
%p181: Tensor[(1, 1024, 32, 32), float32], | |
%p259: Tensor[(1, 1, 64, 64, 24), float32], | |
%p330: Tensor[(1, 2048, 16, 16), float32], | |
%p419: Tensor[(1, 1, 32, 32, 24), float32], | |
%p518: Tensor[(1, 512, 8, 8), float32], | |
%p64: Tensor[(1, 1, 16, 16, 24), float32], | |
%p74: Tensor[(1, 512, 4, 4), float32], | |
%p8: Tensor[(1, 1, 16, 16, 16), float32], | |
%p9: Tensor[(1, 256, 2, 2), float32], | |
%p10: Tensor[(1, 1, 16, 16, 16), float32], | |
%p1110: Tensor[(1, 256, 1, 1), float32]) | |
-> Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] { | |
%768 = slice_like(%p0114, %p181, meta.relay.attrs.SliceLikeAttrs(id=196)) # ty=Tensor[(1, 1, 32, 32, 16), float32] | |
%769 = reshape(%768, newshape=[1, -1, 4]) # ty=Tensor[(1, 4096, 4), float32] | |
%770 = reshape(%769, newshape=[1, -1, 4]) # ty=Tensor[(1, 4096, 4), float32] | |
%771 = reshape(%770, newshape=[1, -1]) # ty=Tensor[(1, 16384), float32] | |
%772 = slice_like(%p259, %p330, meta.relay.attrs.SliceLikeAttrs(id=197)) # ty=Tensor[(1, 1, 16, 16, 24), float32] | |
%773 = reshape(%772, newshape=[1, -1, 4]) # ty=Tensor[(1, 1536, 4), float32] | |
%774 = reshape(%773, newshape=[1, -1, 4]) # ty=Tensor[(1, 1536, 4), float32] | |
%775 = reshape(%774, newshape=[1, -1]) # ty=Tensor[(1, 6144), float32] | |
%776 = slice_like(%p419, %p518, meta.relay.attrs.SliceLikeAttrs(id=198)) # ty=Tensor[(1, 1, 8, 8, 24), float32] | |
%777 = reshape(%776, newshape=[1, -1, 4]) # ty=Tensor[(1, 384, 4), float32] | |
%778 = reshape(%777, newshape=[1, -1, 4]) # ty=Tensor[(1, 384, 4), float32] | |
%779 = reshape(%778, newshape=[1, -1]) # ty=Tensor[(1, 1536), float32] | |
%780 = slice_like(%p64, %p74, meta.relay.attrs.SliceLikeAttrs(id=199)) # ty=Tensor[(1, 1, 4, 4, 24), float32] | |
%781 = reshape(%780, newshape=[1, -1, 4]) # ty=Tensor[(1, 96, 4), float32] | |
%782 = reshape(%781, newshape=[1, -1, 4]) # ty=Tensor[(1, 96, 4), float32] | |
%783 = reshape(%782, newshape=[1, -1]) # ty=Tensor[(1, 384), float32] | |
%784 = slice_like(%p8, %p9, meta.relay.attrs.SliceLikeAttrs(id=200)) # ty=Tensor[(1, 1, 2, 2, 16), float32] | |
%785 = reshape(%784, newshape=[1, -1, 4]) # ty=Tensor[(1, 16, 4), float32] | |
%786 = reshape(%785, newshape=[1, -1, 4]) # ty=Tensor[(1, 16, 4), float32] | |
%787 = reshape(%786, newshape=[1, -1]) # ty=Tensor[(1, 64), float32] | |
%788 = slice_like(%p10, %p1110, meta.relay.attrs.SliceLikeAttrs(id=201)) # ty=Tensor[(1, 1, 1, 1, 16), float32] | |
%789 = reshape(%788, newshape=[1, -1, 4]) # ty=Tensor[(1, 4, 4), float32] | |
%790 = reshape(%789, newshape=[1, -1, 4]) # ty=Tensor[(1, 4, 4), float32] | |
%791 = reshape(%790, newshape=[1, -1]) # ty=Tensor[(1, 16), float32] | |
%792 = (%771, %775, %779, %783, %787, %791) | |
%793 = concatenate(%792, axis=1) # ty=Tensor[(1, 24528), float32] | |
%794 = reshape(%793, newshape=[1, -1, 4]) # ty=Tensor[(1, 6132, 4), float32] | |
%795 = split(%794, indices_or_sections=int64(4), axis=-1) # ty=Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] | |
%795 | |
} | |
%796 = %767(%743, %746, %747, %750, %751, %754, %755, %758, %759, %762, %763, %766) # ty=Tuple[Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32], Tensor[(1, 6132, 1), float32]] | |
%797 = %796.2 | |
%798 = %796.0 | |
%799 = fn(%p0115: Tensor[(1, 6132, 1), float32], | |
%p182: Tensor[(1, 6132, 1), float32], | |
%p260: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%800 = multiply(%p0115, 0.1f) # ty=Tensor[(1, 6132, 1), float32] | |
%801 = add(%800, 0f) # ty=Tensor[(1, 6132, 1), float32] | |
%802 = multiply(%801, %p182) # ty=Tensor[(1, 6132, 1), float32] | |
%803 = add(%802, %p260) # ty=Tensor[(1, 6132, 1), float32] | |
%803 | |
} | |
%804 = %799(%742, %797, %798) # ty=Tensor[(1, 6132, 1), float32] | |
%805 = %741.2 | |
%806 = %796.2 | |
%807 = fn(%p0116: Tensor[(1, 6132, 1), float32], | |
%p183: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%808 = multiply(%p0116, 0.2f) # ty=Tensor[(1, 6132, 1), float32] | |
%809 = add(%808, 0f) # ty=Tensor[(1, 6132, 1), float32] | |
%810 = exp(%809) # ty=Tensor[(1, 6132, 1), float32] | |
%811 = multiply(%810, %p183) # ty=Tensor[(1, 6132, 1), float32] | |
%812 = divide(%811, 2f) # ty=Tensor[(1, 6132, 1), float32] | |
%812 | |
} | |
%813 = %807(%805, %806) # ty=Tensor[(1, 6132, 1), float32] | |
%814 = fn(%p0117: Tensor[(1, 6132, 1), float32], | |
%p184: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%815 = subtract(%p0117, %p184) # ty=Tensor[(1, 6132, 1), float32] | |
%815 | |
} | |
%816 = %814(%804, %813) # ty=Tensor[(1, 6132, 1), float32] | |
%817 = %741.1 | |
%818 = %796.3 | |
%819 = %796.1 | |
%820 = fn(%p0118: Tensor[(1, 6132, 1), float32], | |
%p185: Tensor[(1, 6132, 1), float32], | |
%p261: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%821 = multiply(%p0118, 0.1f) # ty=Tensor[(1, 6132, 1), float32] | |
%822 = add(%821, 0f) # ty=Tensor[(1, 6132, 1), float32] | |
%823 = multiply(%822, %p185) # ty=Tensor[(1, 6132, 1), float32] | |
%824 = add(%823, %p261) # ty=Tensor[(1, 6132, 1), float32] | |
%824 | |
} | |
%825 = %820(%817, %818, %819) # ty=Tensor[(1, 6132, 1), float32] | |
%826 = %741.3 | |
%827 = %796.3 | |
%828 = fn(%p0119: Tensor[(1, 6132, 1), float32], | |
%p186: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%829 = multiply(%p0119, 0.2f) # ty=Tensor[(1, 6132, 1), float32] | |
%830 = add(%829, 0f) # ty=Tensor[(1, 6132, 1), float32] | |
%831 = exp(%830) # ty=Tensor[(1, 6132, 1), float32] | |
%832 = multiply(%831, %p186) # ty=Tensor[(1, 6132, 1), float32] | |
%833 = divide(%832, 2f) # ty=Tensor[(1, 6132, 1), float32] | |
%833 | |
} | |
%834 = %828(%826, %827) # ty=Tensor[(1, 6132, 1), float32] | |
%835 = fn(%p0120: Tensor[(1, 6132, 1), float32], | |
%p187: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%836 = subtract(%p0120, %p187) # ty=Tensor[(1, 6132, 1), float32] | |
%836 | |
} | |
%837 = %835(%825, %834) # ty=Tensor[(1, 6132, 1), float32] | |
%838 = fn(%p0121: Tensor[(1, 6132, 1), float32], | |
%p188: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%839 = add(%p0121, %p188) # ty=Tensor[(1, 6132, 1), float32] | |
%839 | |
} | |
%840 = %838(%804, %813) # ty=Tensor[(1, 6132, 1), float32] | |
%841 = fn(%p0122: Tensor[(1, 6132, 1), float32], | |
%p189: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 6132, 1), float32] { | |
%842 = add(%p0122, %p189) # ty=Tensor[(1, 6132, 1), float32] | |
%842 | |
} | |
%843 = %841(%825, %834) # ty=Tensor[(1, 6132, 1), float32] | |
%844 = fn(%p0123: Tensor[(1, 6132, 21), float32], | |
%p190: Tensor[(1, 6132, 1), float32], | |
%p262: Tensor[(1, 6132, 1), float32], | |
%p331: Tensor[(1, 6132, 1), float32], | |
%p420: Tensor[(1, 6132, 1), float32], | |
%p519: Tensor[(1, 6132, 1), float32], | |
%p65: Tensor[(1, 6132, 1), float32], | |
%p75: Tensor[(1, 6132, 1), float32], | |
%p81: Tensor[(1, 6132, 1), float32], | |
%p91: Tensor[(1, 6132, 1), float32], | |
%p101: Tensor[(1, 6132, 1), float32], | |
%p1111: Tensor[(1, 6132, 1), float32], | |
%p1210: Tensor[(1, 6132, 1), float32], | |
%p1310: Tensor[(1, 6132, 1), float32], | |
%p1410: Tensor[(1, 6132, 1), float32], | |
%p1510: Tensor[(1, 6132, 1), float32], | |
%p1610: Tensor[(1, 6132, 1), float32], | |
%p1710: Tensor[(1, 6132, 1), float32], | |
%p1810: Tensor[(1, 6132, 1), float32], | |
%p191: Tensor[(1, 6132, 1), float32], | |
%p20: Tensor[(1, 6132, 1), float32], | |
%p2110: Tensor[(1, 6132, 1), float32], | |
%p2210: Tensor[(1, 6132, 1), float32], | |
%p2310: Tensor[(1, 6132, 1), float32], | |
%p2410: Tensor[(1, 6132, 1), float32]) | |
-> Tensor[(1, 122640, 6), float32] { | |
%845 = slice_axis(%p0123, meta.relay.attrs.SliceAxisAttrs(id=202)) # ty=Tensor[(1, 6132, 20), float32] | |
%846 = greater(%845, 0.01f) # ty=Tensor[(1, 6132, 20), bool] | |
%847 = (%p190, %p262, %p331, %p420, %p519, %p65, %p75, %p81, %p91, %p101, %p1111, %p1210, %p1310, %p1410, %p1510, %p1610, %p1710, %p1810, %p191, %p20) | |
%848 = concatenate(%847, axis=-1) # ty=Tensor[(1, 6132, 20), float32] | |
%849 = ones_like(%848) # ty=Tensor[(1, 6132, 20), float32] | |
%850 = multiply(%849, -1f) # ty=Tensor[(1, 6132, 20), float32] | |
%851 = where(%846, %848, %850) # ty=Tensor[(1, 6132, 20), float32] | |
%852 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=203)) # ty=Tensor[(1, 6132, 1), float32] | |
%853 = zeros_like(%845) # ty=Tensor[(1, 6132, 20), float32] | |
%854 = where(%846, %845, %853) # ty=Tensor[(1, 6132, 20), float32] | |
%855 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=204)) # ty=Tensor[(1, 6132, 1), float32] | |
%856 = (%p2110, %p2210, %p2310, %p2410) | |
%857 = concatenate(%856, axis=-1) # ty=Tensor[(1, 6132, 4), float32] | |
%858 = (%852, %855, %857) | |
%859 = concatenate(%858, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%860 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=205)) # ty=Tensor[(1, 6132, 1), float32] | |
%861 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=206)) # ty=Tensor[(1, 6132, 1), float32] | |
%862 = (%860, %861, %857) | |
%863 = concatenate(%862, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%864 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=207)) # ty=Tensor[(1, 6132, 1), float32] | |
%865 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=208)) # ty=Tensor[(1, 6132, 1), float32] | |
%866 = (%864, %865, %857) | |
%867 = concatenate(%866, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%868 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=209)) # ty=Tensor[(1, 6132, 1), float32] | |
%869 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=210)) # ty=Tensor[(1, 6132, 1), float32] | |
%870 = (%868, %869, %857) | |
%871 = concatenate(%870, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%872 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=211)) # ty=Tensor[(1, 6132, 1), float32] | |
%873 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=212)) # ty=Tensor[(1, 6132, 1), float32] | |
%874 = (%872, %873, %857) | |
%875 = concatenate(%874, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%876 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=213)) # ty=Tensor[(1, 6132, 1), float32] | |
%877 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=214)) # ty=Tensor[(1, 6132, 1), float32] | |
%878 = (%876, %877, %857) | |
%879 = concatenate(%878, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%880 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=215)) # ty=Tensor[(1, 6132, 1), float32] | |
%881 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=216)) # ty=Tensor[(1, 6132, 1), float32] | |
%882 = (%880, %881, %857) | |
%883 = concatenate(%882, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%884 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=217)) # ty=Tensor[(1, 6132, 1), float32] | |
%885 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=218)) # ty=Tensor[(1, 6132, 1), float32] | |
%886 = (%884, %885, %857) | |
%887 = concatenate(%886, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%888 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=219)) # ty=Tensor[(1, 6132, 1), float32] | |
%889 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=220)) # ty=Tensor[(1, 6132, 1), float32] | |
%890 = (%888, %889, %857) | |
%891 = concatenate(%890, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%892 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=221)) # ty=Tensor[(1, 6132, 1), float32] | |
%893 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=222)) # ty=Tensor[(1, 6132, 1), float32] | |
%894 = (%892, %893, %857) | |
%895 = concatenate(%894, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%896 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=223)) # ty=Tensor[(1, 6132, 1), float32] | |
%897 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=224)) # ty=Tensor[(1, 6132, 1), float32] | |
%898 = (%896, %897, %857) | |
%899 = concatenate(%898, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%900 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=225)) # ty=Tensor[(1, 6132, 1), float32] | |
%901 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=226)) # ty=Tensor[(1, 6132, 1), float32] | |
%902 = (%900, %901, %857) | |
%903 = concatenate(%902, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%904 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=227)) # ty=Tensor[(1, 6132, 1), float32] | |
%905 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=228)) # ty=Tensor[(1, 6132, 1), float32] | |
%906 = (%904, %905, %857) | |
%907 = concatenate(%906, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%908 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=229)) # ty=Tensor[(1, 6132, 1), float32] | |
%909 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=230)) # ty=Tensor[(1, 6132, 1), float32] | |
%910 = (%908, %909, %857) | |
%911 = concatenate(%910, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%912 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=231)) # ty=Tensor[(1, 6132, 1), float32] | |
%913 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=232)) # ty=Tensor[(1, 6132, 1), float32] | |
%914 = (%912, %913, %857) | |
%915 = concatenate(%914, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%916 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=233)) # ty=Tensor[(1, 6132, 1), float32] | |
%917 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=234)) # ty=Tensor[(1, 6132, 1), float32] | |
%918 = (%916, %917, %857) | |
%919 = concatenate(%918, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%920 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=235)) # ty=Tensor[(1, 6132, 1), float32] | |
%921 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=236)) # ty=Tensor[(1, 6132, 1), float32] | |
%922 = (%920, %921, %857) | |
%923 = concatenate(%922, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%924 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=237)) # ty=Tensor[(1, 6132, 1), float32] | |
%925 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=238)) # ty=Tensor[(1, 6132, 1), float32] | |
%926 = (%924, %925, %857) | |
%927 = concatenate(%926, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%928 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=239)) # ty=Tensor[(1, 6132, 1), float32] | |
%929 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=240)) # ty=Tensor[(1, 6132, 1), float32] | |
%930 = (%928, %929, %857) | |
%931 = concatenate(%930, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%932 = slice_axis(%851, meta.relay.attrs.SliceAxisAttrs(id=241)) # ty=Tensor[(1, 6132, 1), float32] | |
%933 = slice_axis(%854, meta.relay.attrs.SliceAxisAttrs(id=242)) # ty=Tensor[(1, 6132, 1), float32] | |
%934 = (%932, %933, %857) | |
%935 = concatenate(%934, axis=-1) # ty=Tensor[(1, 6132, 6), float32] | |
%936 = (%859, %863, %867, %871, %875, %879, %883, %887, %891, %895, %899, %903, %907, %911, %915, %919, %923, %927, %931, %935) | |
%937 = concatenate(%936, axis=1) # ty=Tensor[(1, 122640, 6), float32] | |
%937 | |
} | |
%938 = %844(%629, %636, %639, %642, %645, %648, %651, %654, %657, %660, %663, %666, %669, %672, %675, %678, %681, %684, %687, %690, %693, %816, %837, %840, %843) # ty=Tensor[(1, 122640, 6), float32] | |
%939 = fn(%p0124: Tensor[(1, 122640, 6), float32]) | |
-> Tuple[Tensor[(1,), int32], Tensor[(1, 122640, 6), float32]] { | |
%940 = vision.get_valid_counts(%p0124, meta.relay.attrs.GetValidCountsAttrs(id=243)) # ty=Tuple[Tensor[(1,), int32], Tensor[(1, 122640, 6), float32]] | |
%940 | |
} | |
%941 = %939(%938) # ty=Tuple[Tensor[(1,), int32], Tensor[(1, 122640, 6), float32]] | |
%942 = %941.1 | |
%943 = %941.0 | |
%944 = fn(%p0125: Tensor[(1, 122640, 6), float32], | |
%p192: Tensor[(1,), int32]) | |
-> Tensor[(1, 122640, 6), float32] { | |
%945 = vision.nms(%p0125, %p192, meta.relay.attrs.NMSAttrs(id=244)) # ty=Tensor[(1, 122640, 6), float32] | |
%945 | |
} | |
%946 = %944(%942, %943) # ty=Tensor[(1, 122640, 6), float32] | |
%947 = fn(%p0126: Tensor[(1, 122640, 6), float32]) | |
-> Tuple[Tensor[(1, 100, 1), float32], Tensor[(1, 100, 1), float32], Tensor[(1, 100, 4), float32]] { | |
%948 = slice_axis(%p0126, meta.relay.attrs.SliceAxisAttrs(id=245)) # ty=Tensor[(1, 100, 6), float32] | |
%949 = slice_axis(%948, meta.relay.attrs.SliceAxisAttrs(id=246)) # ty=Tensor[(1, 100, 1), float32] | |
%950 = slice_axis(%948, meta.relay.attrs.SliceAxisAttrs(id=247)) # ty=Tensor[(1, 100, 1), float32] | |
%951 = slice_axis(%948, meta.relay.attrs.SliceAxisAttrs(id=248)) # ty=Tensor[(1, 100, 4), float32] | |
%952 = (%949, %950, %951) | |
%952 | |
} | |
%953 = %947(%946) # ty=Tuple[Tensor[(1, 100, 1), float32], Tensor[(1, 100, 1), float32], Tensor[(1, 100, 4), float32]] | |
%953 | |
} | |
# meta data omitted. you can use show_meta_data=True to include meta-data |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment