Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
#!/usr/bin/env python
from __future__ import print_function
import argparse
import numpy as np
import time
tt = time.time()
import cv2
import tensorflow as tf
from grpc.beta import implementations
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
parser = argparse.ArgumentParser(description='incetion grpc client flags.')
parser.add_argument('--host', default='', help='inception serving host')
parser.add_argument('--port', default='9000', help='inception serving port')
parser.add_argument('--image', default='', help='path to JPEG image file')
FLAGS = parser.parse_args()
def main():
# create prediction service client stub
channel = implementations.insecure_channel(, int(FLAGS.port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# create request
request = predict_pb2.PredictRequest() = 'resnet'
request.model_spec.signature_name = 'serving_default'
# read image into numpy array
img = cv2.imread(FLAGS.image).astype(np.float32)
# convert to tensor proto and make request
# shape is in NHWC (num_samples x height x width x channels) format
tensor = tf.contrib.util.make_tensor_proto(img, shape=[1]+list(img.shape))
resp = stub.Predict(request, 30.0)
# print spec, prediction class and latency
print('max probability: {}'.format(max(resp.outputs['probabilities'].float_val)))
print('total time: {}s'.format(time.time() - tt))
if __name__ == '__main__':
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment