Skip to content

Instantly share code, notes, and snippets.

@mathcodes
Created June 12, 2021 06:43
Show Gist options
  • Save mathcodes/411c2f18c38495d24cfef574c26a2ee7 to your computer and use it in GitHub Desktop.
Save mathcodes/411c2f18c38495d24cfef574c26a2ee7 to your computer and use it in GitHub Desktop.
Three.js - Voxel Geometry - UI
<canvas id="c"></canvas>
<div id="ui">
<div class="tiles">
<input type="radio" name="voxel" id="voxel1" value="1"><label for="voxel1" style="background-position: -0% -0%"></label>
<input type="radio" name="voxel" id="voxel2" value="2"><label for="voxel2" style="background-position: -100% -0%"></label>
<input type="radio" name="voxel" id="voxel3" value="3"><label for="voxel3" style="background-position: -200% -0%"></label>
<input type="radio" name="voxel" id="voxel4" value="4"><label for="voxel4" style="background-position: -300% -0%"></label>
<input type="radio" name="voxel" id="voxel5" value="5"><label for="voxel5" style="background-position: -400% -0%"></label>
<input type="radio" name="voxel" id="voxel6" value="6"><label for="voxel6" style="background-position: -500% -0%"></label>
<input type="radio" name="voxel" id="voxel7" value="7"><label for="voxel7" style="background-position: -600% -0%"></label>
<input type="radio" name="voxel" id="voxel8" value="8"><label for="voxel8" style="background-position: -700% -0%"></label>
</div>
<div class="tiles">
<input type="radio" name="voxel" id="voxel9" value="9" ><label for="voxel9" style="background-position: -800% -0%"></label>
<input type="radio" name="voxel" id="voxel10" value="10"><label for="voxel10" style="background-position: -900% -0%"></label>
<input type="radio" name="voxel" id="voxel11" value="11"><label for="voxel11" style="background-position: -1000% -0%"></label>
<input type="radio" name="voxel" id="voxel12" value="12"><label for="voxel12" style="background-position: -1100% -0%"></label>
<input type="radio" name="voxel" id="voxel13" value="13"><label for="voxel13" style="background-position: -1200% -0%"></label>
<input type="radio" name="voxel" id="voxel14" value="14"><label for="voxel14" style="background-position: -1300% -0%"></label>
<input type="radio" name="voxel" id="voxel15" value="15"><label for="voxel15" style="background-position: -1400% -0%"></label>
<input type="radio" name="voxel" id="voxel16" value="16"><label for="voxel16" style="background-position: -1500% -0%"></label>
</div>
</div>
// Three.js - Voxel Geometry - UI
// from https://threejsfundamentals.org/threejs/threejs-voxel-geometry-culled-faces-ui.html
import * as THREE from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/build/three.module.js';
import {OrbitControls} from 'https://threejsfundamentals.org/threejs/resources/threejs/r127/examples/jsm/controls/OrbitControls.js';
class VoxelWorld {
constructor(options) {
this.cellSize = options.cellSize;
this.tileSize = options.tileSize;
this.tileTextureWidth = options.tileTextureWidth;
this.tileTextureHeight = options.tileTextureHeight;
const {cellSize} = this;
this.cellSliceSize = cellSize * cellSize;
this.cells = {};
}
computeVoxelOffset(x, y, z) {
const {cellSize, cellSliceSize} = this;
const voxelX = THREE.MathUtils.euclideanModulo(x, cellSize) | 0;
const voxelY = THREE.MathUtils.euclideanModulo(y, cellSize) | 0;
const voxelZ = THREE.MathUtils.euclideanModulo(z, cellSize) | 0;
return voxelY * cellSliceSize +
voxelZ * cellSize +
voxelX;
}
computeCellId(x, y, z) {
const {cellSize} = this;
const cellX = Math.floor(x / cellSize);
const cellY = Math.floor(y / cellSize);
const cellZ = Math.floor(z / cellSize);
return `${cellX},${cellY},${cellZ}`;
}
addCellForVoxel(x, y, z) {
const cellId = this.computeCellId(x, y, z);
let cell = this.cells[cellId];
if (!cell) {
const {cellSize} = this;
cell = new Uint8Array(cellSize * cellSize * cellSize);
this.cells[cellId] = cell;
}
return cell;
}
getCellForVoxel(x, y, z) {
return this.cells[this.computeCellId(x, y, z)];
}
setVoxel(x, y, z, v, addCell = true) {
let cell = this.getCellForVoxel(x, y, z);
if (!cell) {
if (!addCell) {
return;
}
cell = this.addCellForVoxel(x, y, z);
}
const voxelOffset = this.computeVoxelOffset(x, y, z);
cell[voxelOffset] = v;
}
getVoxel(x, y, z) {
const cell = this.getCellForVoxel(x, y, z);
if (!cell) {
return 0;
}
const voxelOffset = this.computeVoxelOffset(x, y, z);
return cell[voxelOffset];
}
generateGeometryDataForCell(cellX, cellY, cellZ) {
const {cellSize, tileSize, tileTextureWidth, tileTextureHeight} = this;
const positions = [];
const normals = [];
const uvs = [];
const indices = [];
const startX = cellX * cellSize;
const startY = cellY * cellSize;
const startZ = cellZ * cellSize;
for (let y = 0; y < cellSize; ++y) {
const voxelY = startY + y;
for (let z = 0; z < cellSize; ++z) {
const voxelZ = startZ + z;
for (let x = 0; x < cellSize; ++x) {
const voxelX = startX + x;
const voxel = this.getVoxel(voxelX, voxelY, voxelZ);
if (voxel) {
// voxel 0 is sky (empty) so for UVs we start at 0
const uvVoxel = voxel - 1;
// There is a voxel here but do we need faces for it?
for (const {dir, corners, uvRow} of VoxelWorld.faces) {
const neighbor = this.getVoxel(
voxelX + dir[0],
voxelY + dir[1],
voxelZ + dir[2]);
if (!neighbor) {
// this voxel has no neighbor in this direction so we need a face.
const ndx = positions.length / 3;
for (const {pos, uv} of corners) {
positions.push(pos[0] + x, pos[1] + y, pos[2] + z);
normals.push(...dir);
uvs.push(
(uvVoxel + uv[0]) * tileSize / tileTextureWidth,
1 - (uvRow + 1 - uv[1]) * tileSize / tileTextureHeight);
}
indices.push(
ndx, ndx + 1, ndx + 2,
ndx + 2, ndx + 1, ndx + 3,
);
}
}
}
}
}
}
return {
positions,
normals,
uvs,
indices,
};
}
// from
// http://www.cse.chalmers.se/edu/year/2010/course/TDA361/grid.pdf
intersectRay(start, end) {
let dx = end.x - start.x;
let dy = end.y - start.y;
let dz = end.z - start.z;
const lenSq = dx * dx + dy * dy + dz * dz;
const len = Math.sqrt(lenSq);
dx /= len;
dy /= len;
dz /= len;
let t = 0.0;
let ix = Math.floor(start.x);
let iy = Math.floor(start.y);
let iz = Math.floor(start.z);
const stepX = (dx > 0) ? 1 : -1;
const stepY = (dy > 0) ? 1 : -1;
const stepZ = (dz > 0) ? 1 : -1;
const txDelta = Math.abs(1 / dx);
const tyDelta = Math.abs(1 / dy);
const tzDelta = Math.abs(1 / dz);
const xDist = (stepX > 0) ? (ix + 1 - start.x) : (start.x - ix);
const yDist = (stepY > 0) ? (iy + 1 - start.y) : (start.y - iy);
const zDist = (stepZ > 0) ? (iz + 1 - start.z) : (start.z - iz);
// location of nearest voxel boundary, in units of t
let txMax = (txDelta < Infinity) ? txDelta * xDist : Infinity;
let tyMax = (tyDelta < Infinity) ? tyDelta * yDist : Infinity;
let tzMax = (tzDelta < Infinity) ? tzDelta * zDist : Infinity;
let steppedIndex = -1;
// main loop along raycast vector
while (t <= len) {
const voxel = this.getVoxel(ix, iy, iz);
if (voxel) {
return {
position: [
start.x + t * dx,
start.y + t * dy,
start.z + t * dz,
],
normal: [
steppedIndex === 0 ? -stepX : 0,
steppedIndex === 1 ? -stepY : 0,
steppedIndex === 2 ? -stepZ : 0,
],
voxel,
};
}
// advance t to next nearest voxel boundary
if (txMax < tyMax) {
if (txMax < tzMax) {
ix += stepX;
t = txMax;
txMax += txDelta;
steppedIndex = 0;
} else {
iz += stepZ;
t = tzMax;
tzMax += tzDelta;
steppedIndex = 2;
}
} else {
if (tyMax < tzMax) {
iy += stepY;
t = tyMax;
tyMax += tyDelta;
steppedIndex = 1;
} else {
iz += stepZ;
t = tzMax;
tzMax += tzDelta;
steppedIndex = 2;
}
}
}
return null;
}
}
VoxelWorld.faces = [
{ // left
uvRow: 0,
dir: [ -1, 0, 0, ],
corners: [
{ pos: [ 0, 1, 0 ], uv: [ 0, 1 ], },
{ pos: [ 0, 0, 0 ], uv: [ 0, 0 ], },
{ pos: [ 0, 1, 1 ], uv: [ 1, 1 ], },
{ pos: [ 0, 0, 1 ], uv: [ 1, 0 ], },
],
},
{ // right
uvRow: 0,
dir: [ 1, 0, 0, ],
corners: [
{ pos: [ 1, 1, 1 ], uv: [ 0, 1 ], },
{ pos: [ 1, 0, 1 ], uv: [ 0, 0 ], },
{ pos: [ 1, 1, 0 ], uv: [ 1, 1 ], },
{ pos: [ 1, 0, 0 ], uv: [ 1, 0 ], },
],
},
{ // bottom
uvRow: 1,
dir: [ 0, -1, 0, ],
corners: [
{ pos: [ 1, 0, 1 ], uv: [ 1, 0 ], },
{ pos: [ 0, 0, 1 ], uv: [ 0, 0 ], },
{ pos: [ 1, 0, 0 ], uv: [ 1, 1 ], },
{ pos: [ 0, 0, 0 ], uv: [ 0, 1 ], },
],
},
{ // top
uvRow: 2,
dir: [ 0, 1, 0, ],
corners: [
{ pos: [ 0, 1, 1 ], uv: [ 1, 1 ], },
{ pos: [ 1, 1, 1 ], uv: [ 0, 1 ], },
{ pos: [ 0, 1, 0 ], uv: [ 1, 0 ], },
{ pos: [ 1, 1, 0 ], uv: [ 0, 0 ], },
],
},
{ // back
uvRow: 0,
dir: [ 0, 0, -1, ],
corners: [
{ pos: [ 1, 0, 0 ], uv: [ 0, 0 ], },
{ pos: [ 0, 0, 0 ], uv: [ 1, 0 ], },
{ pos: [ 1, 1, 0 ], uv: [ 0, 1 ], },
{ pos: [ 0, 1, 0 ], uv: [ 1, 1 ], },
],
},
{ // front
uvRow: 0,
dir: [ 0, 0, 1, ],
corners: [
{ pos: [ 0, 0, 1 ], uv: [ 0, 0 ], },
{ pos: [ 1, 0, 1 ], uv: [ 1, 0 ], },
{ pos: [ 0, 1, 1 ], uv: [ 0, 1 ], },
{ pos: [ 1, 1, 1 ], uv: [ 1, 1 ], },
],
},
];
function main() {
const canvas = document.querySelector('#c');
const renderer = new THREE.WebGLRenderer({canvas});
const cellSize = 32;
const fov = 75;
const aspect = 2; // the canvas default
const near = 0.1;
const far = 1000;
const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.set(-cellSize * .3, cellSize * .8, -cellSize * .3);
const controls = new OrbitControls(camera, canvas);
controls.target.set(cellSize / 2, cellSize / 3, cellSize / 2);
controls.update();
const scene = new THREE.Scene();
scene.background = new THREE.Color('lightblue');
const tileSize = 16;
const tileTextureWidth = 256;
const tileTextureHeight = 64;
const loader = new THREE.TextureLoader();
const texture = loader.load('https://threejsfundamentals.org/threejs/resources/images/minecraft/flourish-cc-by-nc-sa.png', render);
texture.magFilter = THREE.NearestFilter;
texture.minFilter = THREE.NearestFilter;
function addLight(x, y, z) {
const color = 0xFFFFFF;
const intensity = 1;
const light = new THREE.DirectionalLight(color, intensity);
light.position.set(x, y, z);
scene.add(light);
}
addLight(-1, 2, 4);
addLight( 1, -1, -2);
const world = new VoxelWorld({
cellSize,
tileSize,
tileTextureWidth,
tileTextureHeight,
});
const material = new THREE.MeshLambertMaterial({
map: texture,
side: THREE.DoubleSide,
alphaTest: 0.1,
transparent: true,
});
const cellIdToMesh = {};
function updateCellGeometry(x, y, z) {
const cellX = Math.floor(x / cellSize);
const cellY = Math.floor(y / cellSize);
const cellZ = Math.floor(z / cellSize);
const cellId = world.computeCellId(x, y, z);
let mesh = cellIdToMesh[cellId];
const geometry = mesh ? mesh.geometry : new THREE.BufferGeometry();
const {positions, normals, uvs, indices} = world.generateGeometryDataForCell(cellX, cellY, cellZ);
const positionNumComponents = 3;
geometry.setAttribute('position', new THREE.BufferAttribute(new Float32Array(positions), positionNumComponents));
const normalNumComponents = 3;
geometry.setAttribute('normal', new THREE.BufferAttribute(new Float32Array(normals), normalNumComponents));
const uvNumComponents = 2;
geometry.setAttribute('uv', new THREE.BufferAttribute(new Float32Array(uvs), uvNumComponents));
geometry.setIndex(indices);
geometry.computeBoundingSphere();
if (!mesh) {
mesh = new THREE.Mesh(geometry, material);
mesh.name = cellId;
cellIdToMesh[cellId] = mesh;
scene.add(mesh);
mesh.position.set(cellX * cellSize, cellY * cellSize, cellZ * cellSize);
}
}
const neighborOffsets = [
[ 0, 0, 0], // self
[-1, 0, 0], // left
[ 1, 0, 0], // right
[ 0, -1, 0], // down
[ 0, 1, 0], // up
[ 0, 0, -1], // back
[ 0, 0, 1], // front
];
function updateVoxelGeometry(x, y, z) {
const updatedCellIds = {};
for (const offset of neighborOffsets) {
const ox = x + offset[0];
const oy = y + offset[1];
const oz = z + offset[2];
const cellId = world.computeCellId(ox, oy, oz);
if (!updatedCellIds[cellId]) {
updatedCellIds[cellId] = true;
updateCellGeometry(ox, oy, oz);
}
}
}
for (let y = 0; y < cellSize; ++y) {
for (let z = 0; z < cellSize; ++z) {
for (let x = 0; x < cellSize; ++x) {
const height = (Math.sin(x / cellSize * Math.PI * 2) + Math.sin(z / cellSize * Math.PI * 3)) * (cellSize / 6) + (cellSize / 2);
if (y < height) {
world.setVoxel(x, y, z, randInt(1, 17));
}
}
}
}
function randInt(min, max) {
return Math.floor(Math.random() * (max - min) + min);
}
updateVoxelGeometry(1, 1, 1); // 0,0,0 will generate
function resizeRendererToDisplaySize(renderer) {
const canvas = renderer.domElement;
const width = canvas.clientWidth;
const height = canvas.clientHeight;
const needResize = canvas.width !== width || canvas.height !== height;
if (needResize) {
renderer.setSize(width, height, false);
}
return needResize;
}
let renderRequested = false;
function render() {
renderRequested = undefined;
if (resizeRendererToDisplaySize(renderer)) {
const canvas = renderer.domElement;
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
}
controls.update();
renderer.render(scene, camera);
}
render();
function requestRenderIfNotRequested() {
if (!renderRequested) {
renderRequested = true;
requestAnimationFrame(render);
}
}
let currentVoxel = 0;
let currentId;
document.querySelectorAll('#ui .tiles input[type=radio][name=voxel]').forEach((elem) => {
elem.addEventListener('click', allowUncheck);
});
function allowUncheck() {
if (this.id === currentId) {
this.checked = false;
currentId = undefined;
currentVoxel = 0;
} else {
currentId = this.id;
currentVoxel = parseInt(this.value);
}
}
function getCanvasRelativePosition(event) {
const rect = canvas.getBoundingClientRect();
return {
x: (event.clientX - rect.left) * canvas.width / rect.width,
y: (event.clientY - rect.top ) * canvas.height / rect.height,
};
}
function placeVoxel(event) {
const pos = getCanvasRelativePosition(event);
const x = (pos.x / canvas.width ) * 2 - 1;
const y = (pos.y / canvas.height) * -2 + 1; // note we flip Y
const start = new THREE.Vector3();
const end = new THREE.Vector3();
start.setFromMatrixPosition(camera.matrixWorld);
end.set(x, y, 1).unproject(camera);
const intersection = world.intersectRay(start, end);
if (intersection) {
const voxelId = event.shiftKey ? 0 : currentVoxel;
// the intersection point is on the face. That means
// the math imprecision could put us on either side of the face.
// so go half a normal into the voxel if removing (currentVoxel = 0)
// our out of the voxel if adding (currentVoxel > 0)
const pos = intersection.position.map((v, ndx) => {
return v + intersection.normal[ndx] * (voxelId > 0 ? 0.5 : -0.5);
});
world.setVoxel(...pos, voxelId);
updateVoxelGeometry(...pos);
requestRenderIfNotRequested();
}
}
const mouse = {
x: 0,
y: 0,
};
function recordStartPosition(event) {
mouse.x = event.clientX;
mouse.y = event.clientY;
mouse.moveX = 0;
mouse.moveY = 0;
}
function recordMovement(event) {
mouse.moveX += Math.abs(mouse.x - event.clientX);
mouse.moveY += Math.abs(mouse.y - event.clientY);
}
function placeVoxelIfNoMovement(event) {
if (mouse.moveX < 5 && mouse.moveY < 5) {
placeVoxel(event);
}
window.removeEventListener('pointermove', recordMovement);
window.removeEventListener('pointerup', placeVoxelIfNoMovement);
}
canvas.addEventListener('pointerdown', (event) => {
event.preventDefault();
recordStartPosition(event);
window.addEventListener('pointermove', recordMovement);
window.addEventListener('pointerup', placeVoxelIfNoMovement);
}, {passive: false});
canvas.addEventListener('touchstart', (event) => {
// prevent scrolling
event.preventDefault();
}, {passive: false});
controls.addEventListener('change', requestRenderIfNotRequested);
window.addEventListener('resize', requestRenderIfNotRequested);
}
main();
html, body {
height: 100%;
margin: 0;
}
#c {
width: 100%;
height: 100%;
display: block;
}
#ui {
position: absolute;
left: 10px;
top: 10px;
background: rgba(0, 0, 0, 0.8);
padding: 5px;
}
#ui input[type=radio] {
width: 0;
height: 0;
display: none;
}
#ui input[type=radio] + label {
background-image: url('https://threejsfundamentals.org/threejs/resources/images/minecraft/flourish-cc-by-nc-sa.png');
background-size: 1600% 400%;
image-rendering: pixelated;
width: 64px;
height: 64px;
display: inline-block;
}
#ui input[type=radio]:checked + label {
outline: 3px solid red;
}
@media (max-width: 600px), (max-height: 600px) {
#ui input[type=radio] + label {
width: 32px;
height: 32px;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment