Skip to content

Instantly share code, notes, and snippets.

@matomatical
Last active January 30, 2023 21:12
Show Gist options
  • Save matomatical/d0014d2c01458334b88dfc7176fc19fe to your computer and use it in GitHub Desktop.
Save matomatical/d0014d2c01458334b88dfc7176fc19fe to your computer and use it in GitHub Desktop.
Efficiently scoring slot machine outcomes for *Hands-On Programming With R*, part III
---
title: Profiling score-calculation methods
author: Matthew Farrugia-Roberts (@matomatical)
---
```{r setup, include=FALSE}
options(width = 100L)
```
Generating the symbols (batch)
------------------------------
```{r}
WHEEL <- c("DD", "7", "BBB", "BB", "B", "C", "0")
PROBS <- c(0.03, 0.03, 0.06, 0.1, 0.25, 0.01, 0.52)
```
```{r}
sample_symbols <- function(n=1) {
matrix(sample(WHEEL, size=3*n, replace=TRUE, prob=PROBS), ncol=3)
}
```
Calculating the prizes
----------------------
### Method 1: Book approach
```{r}
score.book <- function(symbols) {
diamonds <- sum(symbols == "DD")
cherries <- sum(symbols == "C")
# identify case
# since diamonds are wild, only nondiamonds
# matter for three of a kind and all bars
slots <- symbols[symbols != "DD"]
same <- length(unique(slots)) == 1
bars <- slots %in% c("B", "BB", "BBB")
# assign prize
if (diamonds == 3) {
prize <- 100
} else if (same) {
payouts <- c("7" = 80, "BBB" = 40, "BB" = 25,
"B" = 10, "C" = 10, "0" = 0)
prize <- unname(payouts[slots[1]])
} else if (all(bars)) {
prize <- 5
} else if (cherries > 0) {
# diamonds count as cherries
# so long as there is one real cherry
prize <- c(0, 2, 5)[cherries + diamonds + 1]
} else {
prize <- 0
}
# double for each diamond
prize * 2^diamonds
}
score.book.loop <- function (symbols) {
v <- numeric(nrow(symbols))
for (i in 1:nrow(symbols)) {
v[i] <- score.book(symbols[i,])
}
v
}
```
### Method 2: Counting and branching
```{r}
score.count <- function(symbols) {
# count symbols
dd <- sum(symbols == "DD")
x7 <- sum(symbols == "7")
b3 <- sum(symbols == "BBB")
b2 <- sum(symbols == "BB")
b1 <- sum(symbols == "B")
cc <- sum(symbols == "C")
# calculate prize (higher prizes detected before lower ones)
if (dd == 3) {
prize <- 100
} else if (x7 + dd == 3) {
prize <- 80
} else if (b3 + dd == 3) {
prize <- 40
} else if (b2 + dd == 3) {
prize <- 25
} else if (b1 + dd == 3) {
prize <- 10
} else if (cc + dd == 3) {
prize <- 10
} else if (b3 + b2 + b1 + dd == 3) {
prize <- 5
} else if (cc > 0 && cc + dd == 2) {
prize <- 5
} else if (cc == 1) {
prize <- 2
} else {
prize <- 0
}
prize * (2 ^ dd)
}
score.count.loop <- function (symbols) {
v <- numeric(nrow(symbols))
for (i in 1:nrow(symbols)) {
v[i] <- score.count(symbols[i,])
}
v
}
```
### Method 3: Book approach, vectorised
```{r}
score.book.fast <- function(symbols) {
# Step 1: Assign base prize based on cherries and diamonds ---------
## Count the number of cherries and diamonds in each combination
cherries <- rowSums(symbols == "C")
diamonds <- rowSums(symbols == "DD")
## Wild diamonds count as cherries
prize <- c(0, 2, 5)[cherries + diamonds + 1]
## ...but not if there are zero real cherries
### (cherries is coerced to FALSE where cherries == 0)
prize[!cherries] <- 0
# Step 2: Change prize for combinations that contain three of a kind
same <- symbols[, 1] == symbols[, 2] &
symbols[, 2] == symbols[, 3]
payoffs <- c("DD" = 100, "7" = 80, "BBB" = 40,
"BB" = 25, "B" = 10, "C" = 10, "0" = 0)
prize[same] <- payoffs[symbols[same, 1]]
# Step 3: Change prize for combinations that contain all bars ------
bars <- symbols == "B" | symbols == "BB" | symbols == "BBB"
all_bars <- bars[, 1] & bars[, 2] & bars[, 3] & !same
prize[all_bars] <- 5
# Step 4: Handle wilds ---------------------------------------------
## combos with two diamonds
two_wilds <- diamonds == 2
### Identify the nonwild symbol
one <- two_wilds & symbols[, 1] != symbols[, 2] &
symbols[, 2] == symbols[, 3]
two <- two_wilds & symbols[, 1] != symbols[, 2] &
symbols[, 1] == symbols[, 3]
three <- two_wilds & symbols[, 1] == symbols[, 2] &
symbols[, 2] != symbols[, 3]
### Treat as three of a kind
prize[one] <- payoffs[symbols[one, 1]]
prize[two] <- payoffs[symbols[two, 2]]
prize[three] <- payoffs[symbols[three, 3]]
## combos with one wild
one_wild <- diamonds == 1
### Treat as all bars (if appropriate)
wild_bars <- one_wild & (rowSums(bars) == 2)
prize[wild_bars] <- 5
### Treat as three of a kind (if appropriate)
one <- one_wild & symbols[, 1] == symbols[, 2]
two <- one_wild & symbols[, 2] == symbols[, 3]
three <- one_wild & symbols[, 3] == symbols[, 1]
prize[one] <- payoffs[symbols[one, 1]]
prize[two] <- payoffs[symbols[two, 2]]
prize[three] <- payoffs[symbols[three, 3]]
# Step 5: Double prize for every diamond in combo ------------------
unname(prize * 2^diamonds)
}
```
### Method 4: Counting and vectorised overwriting
```{r}
score.count.fast <- function(symbols) {
# counts of symbols in each sample
dd <- rowSums(symbols == "DD")
x7 <- rowSums(symbols == "7")
b3 <- rowSums(symbols == "BBB")
b2 <- rowSums(symbols == "BB")
b1 <- rowSums(symbols == "B")
cc <- rowSums(symbols == "C")
# calculate prize (higher prizes later to override lower ones)
prize = integer(nrow(symbols)) # defaults to a number of 0s
prize[cc == 1] <- 2
prize[cc > 0 & cc + dd == 2] <- 5
prize[b3 + b2 + b1 + dd == 3] <- 5
prize[cc + dd == 3] <- 10
prize[b1 + dd == 3] <- 10
prize[b2 + dd == 3] <- 25
prize[b3 + dd == 3] <- 40
prize[x7 + dd == 3] <- 80
prize[dd == 3] <- 100
# apply diamonds doubling effect
prize * (2 ^ dd)
}
```
Test that all outputs are the same
----------------------------------
Construct all inputs
```{r}
combos <- expand.grid(sym1 = WHEEL, sym2 = WHEEL, sym3 = WHEEL)
```
Construct all outputs
```{r}
symbols <- as.matrix(combos[,c("sym1","sym2","sym3")])
# loop-based methods
combos$score.book <- score.book.loop(symbols)
combos$score.count <- score.count.loop(symbols)
# vectorised methods
combos$score.book.fast <- score.book.fast(symbols)
combos$score.count.fast <- score.count.fast(symbols)
head(combos)
```
All outputs should be equal
```{r}
combos$equal <- combos$score.book == combos$score.count &
combos$score.book == combos$score.book.fast &
combos$score.book == combos$score.count.fast
all(combos$equal)
```
If there are any non-equal rows, display them here
```{r}
combos[!combos$equal,]
```
Profiling
---------
```{r}
library(ggplot2)
library(microbenchmark)
```
```{r}
```
```{r}
all_symbols <- as.matrix(combos[,c("sym1","sym2","sym3")])
results <- microbenchmark(
score.book.loop(all_symbols),
score.count.loop(all_symbols),
score.book.fast(all_symbols),
score.count.fast(all_symbols),
times=100L
)
print(results)
ggplot2::autoplot(results)
```
```{r}
ten_mill_symbols <- sample_symbols(10000000)
results <- microbenchmark(
score.book.fast(ten_mill_symbols),
score.count.fast(ten_mill_symbols),
times=10L
)
print(results)
ggplot2::autoplot(results)
```
@matomatical
Copy link
Author

Compiled pdf slots.pdf (88KB)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment