Skip to content

Instantly share code, notes, and snippets.

@matt448
Last active July 16, 2020 19:45
Show Gist options
  • Star 2 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save matt448/12df872913ee64a4fe8c to your computer and use it in GitHub Desktop.
Save matt448/12df872913ee64a4fe8c to your computer and use it in GitHub Desktop.
This code is a work in progress for my TFT speedometer project.
#include "SPI.h"
#include "Adafruit_GFX.h"
#include "Adafruit_ILI9340.h"
#include <SD.h>
#if defined(__SAM3X8E__)
#undef __FlashStringHelper::F(string_literal)
#define F(string_literal) string_literal
#endif
// These are the pins used for the Mega
// for Due/Uno/Leonardo use the hardware SPI pins (which are different)
#define _sclk 52
#define _miso 50
#define _mosi 51
#define _cs 53
#define _rst 7
#define _dc 6
#define SD_CS 5
Adafruit_ILI9340 tft = Adafruit_ILI9340(_cs, _dc, _rst);
int potPin=0;
int count=0;
int prevCount=1;
int countdigits[] = {0, 0, 0};
int prevdigits[] = {0, 0, 0};
int digitpos[] = {30, 90, 150};
int x=0;
void setup() {
Serial.begin(9600);
//Init the SD Card
Serial.print("Initializing SD card...");
if (!SD.begin(SD_CS)) {
Serial.println("failed!");
return;
}
Serial.println("OK!");
//Start the TFT screen and paint it black
tft.begin();
tft.setRotation(1);
tft.fillScreen(ILI9340_BLACK);
//Draw TRD Logo before turing on backlight
bmpDraw("trdlogo.bmp", 40, 60);
//fade in back lighting
for(int b=0; b < 230; b++){
analogWrite(2, b);
delay(20);
}
//Sleep a while to display the logo
delay(2000);
tft.fillScreen(ILI9340_BLACK);
tft.drawFastHLine(0, 180, 320, ILI9340_RED);
//Draw static screen elements
bmpDraw("trdsml24.bmp", 110, 195);
tft.setTextColor(ILI9340_WHITE);
tft.setTextSize(4);
tft.setCursor(230, 90);
tft.print("mph");
}
void loop(void) {
//This simulates input of a VSS
//This will be replaced with pulse counting of the VSS sensor.
count = analogRead(potPin) / 8;
//Split each digit of the speed into an array
//This will allow printing of just numbers that have changed.
//The speed of a car can exceed a two digit number, certantly
//in kph and occasionally in mph. The splitting is done by
//taking the modulo, dividing or a combination of both.
//Grab the last digit of the speed
countdigits[2] = count % 10;
//How to handle the middle digit depends on if the
//the speed is a two or three digit number
if(count > 99){
countdigits[1] = (count / 10) % 10;
}else{
countdigits[1] = count / 10;
}
//Grab the first digit
countdigits[0] = count / 100;
//Split out the digits of the previous speed
prevdigits[2] = prevCount % 10;
if(prevCount > 99){
prevdigits[1] = (prevCount / 10) % 10;
}else{
prevdigits[1] = prevCount / 10;
}
prevdigits[0] = prevCount / 100;
//Now print the digits on the TFT screen.
//Only execute this block if the speed has changed.
if(count != prevCount){
tft.setTextSize(10);
//Compare each digit to the value from the previous loop.
//The digit will only be redrawn if it has changed.
for(x=0; x < 3; x++){
if(countdigits[x] != prevdigits[x]){
//black out old value first.
//Draw digit in black over the top of white digit
tft.setCursor(digitpos[x], 70);
tft.setTextColor(ILI9340_BLACK);
tft.print(prevdigits[x]);
//print new value in white
if((x == 0) and (count > 99) and (countdigits[x] > 0)){
tft.setCursor(digitpos[x], 70);
tft.setTextColor(ILI9340_WHITE);
tft.print(countdigits[x]);
}
if((x == 1) and (count >= 99)){
tft.setCursor(digitpos[x], 70);
tft.setTextColor(ILI9340_WHITE);
tft.print(countdigits[x]);
}else if((x == 1) and (count < 99) and (countdigits[x] > 0)){
tft.setCursor(digitpos[x], 70);
tft.setTextColor(ILI9340_WHITE);
tft.print(countdigits[x]);
}
if(x == 2){
tft.setCursor(digitpos[x], 70);
tft.setTextColor(ILI9340_WHITE);
tft.print(countdigits[x]);
}
}
}
}
delay(999); //Delay screen updates to simulate 1 second pulse counting.
prevCount = count; //Store current speed for comparison on the next loop.
}
//--------------------------------------------------------------------------------
//I didn't write anything below here. The code below is from the
//Adafruit library and it is used to load images from the SD card.
//--------------------------------------------------------------------------------
// This function opens a Windows Bitmap (BMP) file and
// displays it at the given coordinates. It's sped up
// by reading many pixels worth of data at a time
// (rather than pixel by pixel). Increasing the buffer
// size takes more of the Arduino's precious RAM but
// makes loading a little faster. 20 pixels seems a
// good balance.
#define BUFFPIXEL 50
void bmpDraw(char *filename, uint8_t x, uint8_t y) {
File bmpFile;
int bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
boolean goodBmp = false; // Set to true on valid header parse
boolean flip = true; // BMP is stored bottom-to-top
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0, startTime = millis();
if((x >= tft.width()) || (y >= tft.height())) return;
Serial.println();
Serial.print("Loading image '");
Serial.print(filename);
Serial.println('\'');
// Open requested file on SD card
if ((bmpFile = SD.open(filename)) == NULL) {
Serial.print("File not found");
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
Serial.print("File size: "); Serial.println(read32(bmpFile));
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
Serial.print("Image Offset: "); Serial.println(bmpImageoffset, DEC);
// Read DIB header
Serial.print("Header size: "); Serial.println(read32(bmpFile));
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
Serial.print("Bit Depth: "); Serial.println(bmpDepth);
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
Serial.print("Image size: ");
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft.width()) w = tft.width() - x;
if((y+h-1) >= tft.height()) h = tft.height() - y;
// Set TFT address window to clipped image bounds
tft.setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
tft.pushColor(tft.Color565(r,g,b));
} // end pixel
} // end scanline
Serial.print("Loaded in ");
Serial.print(millis() - startTime);
Serial.println(" ms");
} // end goodBmp
}
}
bmpFile.close();
if(!goodBmp) Serial.println("BMP format not recognized.");
}
// These read 16- and 32-bit types from the SD card file.
// BMP data is stored little-endian, Arduino is little-endian too.
// May need to reverse subscript order if porting elsewhere.
uint16_t read16(File f) {
uint16_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read(); // MSB
return result;
}
uint32_t read32(File f) {
uint32_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read();
((uint8_t *)&result)[2] = f.read();
((uint8_t *)&result)[3] = f.read(); // MSB
return result;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment