Skip to content

Instantly share code, notes, and snippets.

View mattiagatti's full-sized avatar

Mattia Gatti mattiagatti

View GitHub Profile
import segmentation_models_pytorch as smp
model = smp.Unet(
encoder_name="resnet50", # choose encoder
encoder_weights="imagenet", # choose pretrained (not required)
in_channels=3, # model input channels
classes=10, # model output channels
activation="None" # None|"sigmoid"|"softmax"; default is None
)
from torchmetrics import MetricCollection, Accuracy, Precision, Recall
class MyModule(LightningModule):
def __init__(self):
...
self.metric_collection = MetricCollection({
'acc': Accuracy(),
'prec': Precision(num_classes=10, average='macro'),
'rec': Recall(num_classes=10, average='macro')
})
import torch
import torchmetrics
class MyAccuracy(Metric):
def __init__(self):
super().__init__()
# to count the correct predictions
self.add_state('corrects', default=torch.tensor(0))
# to count the total predictions
self.add_state('total', default=torch.tensor(0))
import torch
from torchmetrics import MetricCollection, Accuracy, Precision, Recall
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = YourModel().to(device)
# collection of all validation metrics
metric_collection = MetricCollection({
'acc': Accuracy(),
'prec': Precision(num_classes=10, average='macro'),
'rec': Recall(num_classes=10, average='macro')
import torch
import torchmetrics
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = YourModel().to(device)
metric = torchmetrics.Accuracy()
for batch_idx, (data, target) in enumerate(val_dataloader):
data, target = data.to(device), target.to(device)
preds = model(data)
import numpy
import open3d as o3d
from PIL import Image
# data
image = Image.open('image.jpg')
model = Model()
output = model(image) # depth, 512 x 512 matrix
H, W = output.shape[0], output.shape[1]