Skip to content

Instantly share code, notes, and snippets.

@mattyhall
Created October 23, 2013 19:40
Show Gist options
  • Save mattyhall/7125295 to your computer and use it in GitHub Desktop.
Save mattyhall/7125295 to your computer and use it in GitHub Desktop.
Neural Networks in Haskell with Control.Lens
{-# LANGUAGE TemplateHaskell, Rank2Types #-}
module NeuralNetwork where
import Control.Lens
import Control.Monad (mapM_)
import Control.Monad.State
import qualified Data.Vector as V
import Data.Vector.Lens
type NetworkState a = State Network a
data Network = Network {_layers :: V.Vector Layer} deriving (Show, Eq)
data Layer = Layer {_neurons :: V.Vector Neuron} deriving (Show, Eq)
data Neuron = Neuron { _weights :: V.Vector Double
, _value :: Double}
deriving (Show, Eq)
makeLenses ''Network
makeLenses ''Layer
makeLenses ''Neuron
fl :: [a] -> V.Vector a
fl = V.fromList
orNetwork :: Network
orNetwork = Network $ fl [Layer $ fl [Neuron (fl [20]) 0, Neuron (fl [20]) 0, Neuron (fl [-20]) 1],
Layer $ fl [Neuron (fl [1]) 0]]
vIndex :: Int -> Lens' (V.Vector a) a
vIndex n = lens (\v -> v V.! n) (\v a -> V.update v (V.fromList [(n, a)]))
sigmoid :: Double -> Double
sigmoid x = 1 / (1 + exp (-x))
classify :: Double -> Double
classify x = if sigmoid x >= 0.5 then 1 else 0
createNeuron :: Int -> Neuron
createNeuron neurons = Neuron (V.replicate neurons 1) 0
createLayer :: Int -> Int -> Layer
createLayer neurons1 neurons2 = Layer $ V.replicate (neurons1 + 1) (createNeuron neurons2)
createNetwork :: [Int] -> Network
createNetwork = Network . go
where go (n1:[]) = V.fromList [Layer $ V.replicate n1 (Neuron (V.fromList [1.0]) 0)]
go (n1:n2:ns) = V.cons (createLayer n1 n2) (go (n2:ns))
-- %= is over (modify) but with state
addInputs :: V.Vector Double -> NetworkState ()
addInputs inputs = (layers . vIndex 0 . neurons) %= (\neurons -> go (V.toList inputs) (V.toList neurons))
where go [] (n:[]) = V.fromList [set value 1 n]
go (x:xs) (n:ns) = V.cons (set value x n) (go xs ns)
propagate :: V.Vector Double -> NetworkState (V.Vector Double)
propagate inputs = do
addInputs inputs
len <- fmap V.length (use layers)
flip mapM_ [1 .. len - 1] $ \i -> do
layerBelow <- use (layers . vIndex (i - 1))
layer <- use (layers . vIndex i)
flip mapM_ [0 .. V.length (view neurons layer) - 1] $ \j -> do
let ws = toVectorOf (neurons . each . weights . vIndex j) layerBelow
values = toVectorOf (neurons . each . value) layerBelow
v = V.sum $ V.zipWith (*) ws values
-- .= is set but with state
(layers . vIndex i . neurons . vIndex j . value) .= (classify v)
fmap (toVectorOf $ vIndex (len - 1) . neurons . each . value) (use layers)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment