Skip to content

Instantly share code, notes, and snippets.

@mauro3
Last active September 1, 2016 08:15
Show Gist options
  • Save mauro3/5cc144ef258f3dd548dbf457b386f301 to your computer and use it in GitHub Desktop.
Save mauro3/5cc144ef258f3dd548dbf457b386f301 to your computer and use it in GitHub Desktop.
Salt dilution
These are two notebooks to evaluated salt dilution discharge
measurements. Used in a glaciology fieldcourse at ETH Zurich.
To get the Julia notebooks running:
- log into the practicum account on a linux machine
- open a terminal and type: cd fieldcourse/surface-hydrology/ + enter,
julia + enter
- once started type using IJulia + enter and notebook() + enter (this
will take a few seconds).
- this should open a file-browser dialog in your internet-browser (if
it doesn't open a browser and navigate to localhost:8888, by
clicking the link). Click on Salt-dilution.ipynb which should open a
new tab. The tab should look like the html-version of the notebook
you looked at so far but is now fully functional, i.e. you can edit
it and exectue code.
We can make this file beautiful and searchable if this error is corrected: No commas found in this CSV file in line 0.
Device;Device serial;ID;Date/Time;Value;Unit;Mode;Value2;Unit2;Mode2;Measurement;Calibration;Additional;Sensor;Sensor serial;User
Multi 3630; 16231200;2;30.08.2016 15:57:11;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:11;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:12;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:13;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:14;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:15;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:16;0.1;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:17;0.1;µS/cm;Cond;22.5;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:18;1.1;µS/cm;Cond;22.5;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:19;3.8;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:20;12.9;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:21;42.5;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:22;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:23;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:24;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:25;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:26;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:27;331;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:28;330;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:29;330;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:30;330;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:31;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:32;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:33;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:34;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:35;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:36;330;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:37;331;µS/cm;Cond;22.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:38;342;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:39;353;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:40;361;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:41;362;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:42;363;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:43;370;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:44;378;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:45;391;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:46;394;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:47;400;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:48;404;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:49;407;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:50;410;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:51;414;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:52;417;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:53;418;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:54;421;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:55;428;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:56;434;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:57;442;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:58;448;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:57:59;450;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:00;453;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:01;435;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:02;426;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:03;415;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:04;411;µS/cm;Cond;23.0;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:05;404;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:06;394;µS/cm;Cond;22.9;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:07;389;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:08;388;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:09;386;µS/cm;Cond;22.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:10;380;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:11;376;µS/cm;Cond;22.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:12;368;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:13;366;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:14;365;µS/cm;Cond;22.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:15;361;µS/cm;Cond;22.5;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:16;358;µS/cm;Cond;22.5;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:17;358;µS/cm;Cond;22.5;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:18;358;µS/cm;Cond;22.4;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:19;355;µS/cm;Cond;22.4;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:20;353;µS/cm;Cond;22.4;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:21;352;µS/cm;Cond;22.3;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:22;348;µS/cm;Cond;22.3;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:23;346;µS/cm;Cond;22.3;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:24;345;µS/cm;Cond;22.2;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:25;344;µS/cm;Cond;22.2;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:26;343;µS/cm;Cond;22.2;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:27;343;µS/cm;Cond;22.2;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:28;341;µS/cm;Cond;22.1;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:29;339;µS/cm;Cond;22.1;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:30;339;µS/cm;Cond;22.1;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:31;338;µS/cm;Cond;22.1;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:32;337;µS/cm;Cond;22.0;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:33;337;µS/cm;Cond;22.0;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:34;337;µS/cm;Cond;22.0;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:35;337;µS/cm;Cond;22.0;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:36;336;µS/cm;Cond;22.0;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:37;336;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:38;335;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:39;334;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:40;334;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:41;333;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:42;332;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:43;332;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:44;332;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:45;332;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:46;332;µS/cm;Cond;21.9;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:47;332;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:48;331;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:49;331;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:50;331;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:51;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:52;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:53;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:54;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:55;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:56;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:57;330;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:58;329;µS/cm;Cond;21.8;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:58:59;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:00;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:01;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:02;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:03;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:04;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:05;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:06;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:07;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:08;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:09;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;2;30.08.2016 15:59:10;329;µS/cm;Cond;21.7;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:06;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:07;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:08;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:09;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:10;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:11;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:12;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:13;0.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:14;3.9;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:15;13.4;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:16;44.2;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:17;330;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:18;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:19;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:20;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:21;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:22;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:23;329;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:24;342;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:25;366;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:26;386;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:27;405;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:28;418;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:29;420;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:30;428;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:31;452;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:32;470;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:33;486;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:34;491;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:35;497;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:36;508;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:37;516;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:38;522;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:39;529;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:40;574;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:41;578;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:42;580;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:43;587;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:44;592;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:45;604;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:46;618;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:47;626;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:48;635;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:49;650;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:50;662;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:51;678;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:52;693;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:53;706;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:54;723;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:55;729;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:56;730;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:57;735;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:58;734;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:01:59;727;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:00;694;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:01;657;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:02;643;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:03;624;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:04;613;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:05;600;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:06;573;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:07;540;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:08;525;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:09;516;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:10;529;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:11;529;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:12;504;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:13;487;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:14;452;µS/cm;Cond;21.8;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:15;450;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:16;440;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:17;443;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:18;430;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:19;416;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:20;407;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:21;401;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:22;397;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:23;395;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:24;392;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:25;386;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:26;382;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:27;375;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:28;373;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:29;371;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:30;369;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:31;363;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:32;360;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:33;358;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:34;357;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:35;355;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:36;351;µS/cm;Cond;21.7;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:37;347;µS/cm;Cond;21.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:38;347;µS/cm;Cond;21.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:39;348;µS/cm;Cond;21.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:40;347;µS/cm;Cond;21.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:41;345;µS/cm;Cond;21.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:42;343;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:43;342;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:44;341;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:45;340;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:46;339;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:47;338;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:48;337;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:49;336;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:50;335;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:51;335;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:52;334;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:53;334;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:54;333;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:55;333;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:56;332;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:57;332;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:58;332;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:02:59;332;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:00;331;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:01;331;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:02;331;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:03;330;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:04;330;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:05;329;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Multi 3630; 16231200;3;30.08.2016 16:03:06;329;µS/cm;Cond;21.6;°C;Temp;AR;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16201701;
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluation of salt dilution stream gauging\n",
"\n",
"This notebook guides you through the evaluation of the salt dilution stream gauging for the glaciology field course. The idea is that you modify the code in this notebook such that your experiments are evaluated."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Technical instructions\n",
"\n",
"The notebook is a [Jupyter notebook](https://jupyter.org/) (formerly iPython notebook) which allows combining notes (in [markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet)), codes and plots. For documentation see [here](http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Notebook%20Basics.html), but you should be able to get by with the documentation I provide below. \n",
"\n",
"To get the notebook running (what you're looking at right now is probably the non-inteactive html-rendered version of the notebook) do:\n",
"\n",
"- log into the practicum account on a linux machine\n",
"- open a terminal and type: `cd fieldcourse/surface-hydrology/` + enter, `julia` + enter\n",
"- once started type `using IJulia` + enter and `notebook()` + enter (this will take a few seconds).\n",
"- this should open a file-browser dialog in your internet-browser (if it doesn't open a browser and navigate to [localhost:8888](http://localhost:8888), by clicking the link). Click on `Salt-dilution.ipynb` which should open a new tab. The tab should look like the html-version of the notebook you looked at so far but is now fully functional, i.e. you can edit it and exectue code. \n",
"\n",
"If you want to run this on your own computer you'll have to install [Julia 0.4.6](http://www.julialang.org/downloads) and install the packages `IJulia`, `NBInclude`, `Plots`, `PyPlot`, `LsqFit` by running at the Julia prompt `Pkg.add(\"IJulia\")` etc.\n",
"\n",
"The important **notebook commands** are:\n",
"\n",
"- clicking or double-clicking into a cell allows you to edit it.\n",
"- pressing **shift+enter** evaluates it: for a cell like the one you are reading now it renders the markdown, for code cells it evaluates the code and prints/displays the output of the last line of code. Use a `;` to supress the output.\n",
"- variables and functions defined in one cell will be available for use in cells evaluated afterwards (irrespective of whether the cell is above or below).\n",
"- if you change a code-cell and re-evaluate it, the cells depending on its variables are not evaluated again automatically.\n",
"- somtimes it is good to re-start the computation and re-evaluated all cells. Go to drop down menu `Kernel -> Restart and run all`\n",
"- there is **no undo**! E.g. if you mark the contents of a cell and press backspace, it's gone, bye-bye! Thus save often (disk-icon top left). It should also auto-save but still, save often. To revert to the last save go to menu `File -> Revert to Checkpoint` (this is as close to undo as it gets!).\n",
"- To insert a new, empty cell got to the menu `Insert`\n",
"- To change the type of the cell use the drop-down menu which displays `Code` by default.\n",
"- To export the notebook as a pdf, html, etc. got to drop-down menu `File -> Download as`\n",
"\n",
"## Julia\n",
"\n",
"This notebook uses the Julia programming language (version 0.4.6), which is a new technical programming language. Its syntax is fairly close to Matlab, at least for easy stuff, to which I'll stick to here. Notable differences to Matlab are:\n",
"\n",
"- indexing is done with `[]`, e.g. `a[3]`.\n",
"- functions can be defined in-line and don't need their own m-file\n",
"\n",
"Differences to python:\n",
"\n",
"- indexing starts at 1\n",
"- indentation does not matter, instead blocks/functions, etc are closed with `end`.\n",
"\n",
"PV-wave/Idl: sorry I can't help you ;-)\n",
"\n",
"Documentation for Julia can be found [here](http://docs.julialang.org/en/release-0.4). If you're interested to get started with Julia (which I can reccomend but please after this course!) have a look at [this](https://youtu.be/gQ1y5NUD_RI) tutorial, with materials [here](https://github.com/dpsanders/invitation_to_julia)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Let's get started\n",
"\n",
"First load the plotting library [Plots.jl](https://juliaplots.github.io/) and the helper functions in the notebook `Salt-dilution-helper-functions.ipynb` (If you want to look at it, it's in the same directory as this file. You can open it by clicking it in the file-browser tab. Clicking [here](http://localhost:8888/notebooks/Salt-dilution-helper-functions.ipynb) should also open it. Once opened you can edit it too.)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Import the plotting package \"Plots\" and makes its functions available.\n",
"using Plots\n",
"\n",
"# Include a notebook-file which contains misc. helper functions\n",
"# (in the same directory as this notebook). You can open it by clicking on it in the file-browser.\n",
"using NBInclude\n",
"nbinclude(\"Salt-dilution-helper-functions.ipynb\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calibration data\n",
"\n",
"You performed several calibrations. Adapt below cell to contain your calibration results:\n",
"\n",
"- the `bucketsize` is the size of the bucket/bottle in which you preformed the calibration (in liters).\n",
"- the `solution` is the concentration of the calibration solution (in g/l).\n",
"- The `cali1`, etc., variables should contain total $ml$ calibration solution added (first column) and readout in $μS/cm$ (second column)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# UPDATE these two variables!!!\n",
"bucketsize = 1.0 # calibration bucket size in liters\n",
"solution = 1.0 # calibration solution concentration (g/l)\n",
"\n",
"# total calibration ml solution vs sensor readout (μS/cm)\n",
"# NOTE: this is bongus data. Yours will look quite differenly!\n",
"\n",
"# first calibration on 30.8.2016 at 15:34\n",
"cali1 = [ 0 331 # First row needs to be the background reading!\n",
" 1 351 # Note, that background reading will probably be much different for you\n",
" 3 392\n",
" 5 430\n",
" 10 524]\n",
"# second calibration 31.8.2016\n",
"cali2 = [ 0 320\n",
" 1 349\n",
" 3 387\n",
" 5 426\n",
" 10 520\n",
" 20 701] \n",
"# more calibarations\n",
"# cali3 = ...\n",
";"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"5-element Array{Float64,1}:\n",
" 0.0 \n",
" 0.001\n",
" 0.003\n",
" 0.005\n",
" 0.01 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\"\"\"\n",
"Converts ml added to bucket to a concentration (g/l == kg/m^3).\n",
"\n",
"Input:\n",
"\n",
"- ml -- how many mililiters were added\n",
"- solution -- the concentration of the calibration solution (kg/m^3 == g/l)\n",
"- bucketsize -- the size of the bucket/bottle to which the solution was added (l)\n",
"\n",
"Output:\n",
"\n",
"- concentration (kg/m^3 == g/l)\n",
"\"\"\"\n",
"function ml_to_concentration(ml, solution, bucketsize)\n",
" mass = ml/1e3 * solution # salt mass added to bucket (g)\n",
" return mass/bucketsize # concentration in g/l (== kg/m^3)\n",
"end\n",
"# For example, convert cali1[:,1] to concentration (g/l):\n",
"ml_to_concentration(cali1[:,1], solution, bucketsize)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What we are really after is a function which tells us the concentration for a given sensor readout. This is done with the `fit_calibration` function which is contained in the extra file `Salt-dilution-helper-functions.jl` (You can treat it as a black-box but feel free to look at it too). Running this returns us just such a function, by fitting a straight line through the data:\n",
"\n",
"$ f(x) = ax $\n",
"\n",
"where $x$ is difference between the readout and the readout at 0 concentration, and $a$ is the parameter to fit.\n",
"It will also tell you how good the fit is by giving the error on `a`. The error should be \"reasonably\" small."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Estimated linear fit: f(delta_readout) = a*conc with\n",
" a = 5.1435756708442425e-5±1.0953578016663672e-6\n",
"\n"
]
}
],
"source": [
"# Fit a straight line through the calibrations \n",
"# (executing this the first time will take ~10s, a \"In [*]\" on the side of the cell indicates that julia is\n",
"# doing calculations)\n",
"#\n",
"# Returns a function: f(readout-readout_at_0) -> concentration\n",
"delta_readout2conc = fit_calibration(bucketsize, solution, cali1, cali2);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With `delta_readout2conc` we now have a function which converts the sensor readout (above background) to a salt concentration, just what we need further down! Let's have a look at how well the line fits the data by plotting it:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Plots.jl] Initializing backend: pyplot\n"
]
},
{
"data": {
"text/html": [
"<img src=\"\" />"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Plot the calibration points:\n",
"# scatter plots (x,y) points\n",
"scatter(ml_to_concentration(cali1[:,1], solution, bucketsize), cali1[:,2]-cali1[1,2],\n",
" xlabel=\"concentration (g/l)\", ylabel=\"Sensor readout change (μS/cm)\", \n",
" label=\"Calibration 1\", legend=:topleft, size=(800,500))\n",
"# scatter! plots (x,y) points into the current plot (as opposed to make a new one)\n",
"scatter!(ml_to_concentration(cali2[:,1], solution, bucketsize), cali2[:,2]-cali2[1,2],\n",
" label=\"Calibration 2\")\n",
"# add more plots of calibrations here by copy-pasting-adapting the cali2 plot...\n",
"\n",
"## Now plot the line of best fit:\n",
"readouts = linspace(0,400,100)\n",
"# plot! plots all sorts of things, but here a line. Again the `!`-variant adds it to the existing plot\n",
"plot!(delta_readout2conc(readouts), readouts, label=\"line of best fit\")\n",
"\n",
"# (executing this the first time will take ~20s because the plotting package needs to initialize)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's the calibrations done. If you got several quite different calibration results, say from the proglacial stream and the supraglacial stream, then use only their respecive calibrations for a set of traces."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load one data file\n",
"\n",
"The datafile has the format:\n",
"```\n",
"Device;Device serial;ID;Date/Time;Value;Unit;Mode;Value2;Unit2;Mode2;Measurement;Calibration;Additional;Sensor;Sensor serial;User\n",
"Multi 3630; 16231200;2;12.08.2016 13:36:58;0.1;µS/cm;Cond;25.6;°C;Temp;;;C = 0.475 1/cm Tref25 nLF;TetraCon 925-P; 16210277;\n",
"...\n",
"```\n",
"We're interested in columns: time, conductivity (`µS/cm`), and temperature (potentially useful to check that the sensor was in the water). The loading is implemented in the function `read_conductivity_data` in the notebook `Salt-dilution-helper-functions.ipynb`, which was loaded above. Again you can treat that function as a black-box:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"2-element Array{Any,1}:\n",
" ([0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0 … 110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0],2016-08-30T15:57:11,[0.1,0.1,0.1,0.1,0.1,0.1,0.1,1.1,3.8,12.9 … 329.0,329.0,329.0,329.0,329.0,329.0,329.0,329.0,329.0,329.0],[22.6,22.6,22.6,22.6,22.6,22.6,22.5,22.5,22.6,22.6 … 21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7])\n",
" ([0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0 … 111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0],2016-08-30T16:01:06,[0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,3.9,13.4 … 332.0,332.0,332.0,331.0,331.0,331.0,330.0,330.0,329.0,329.0],[21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7,21.7 … 21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ts, readouts, temps = read_conductivity_data(\"AD281106_example.CSV\")\n",
"traces = split_conductivity_data(ts, readouts, temps, 1.0)\n",
"\n",
"# if there are several files:\n",
"# ts, readouts, temps = read_conductivity_data(\"AD281106_example_2.CSV\")\n",
"# traces2 = split_conductivity_data(ts, readouts, temps, 1.0)\n",
"# traces = vcat(traces, traces2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Aside:** Note that for most functions, including the ones in the `Salt-dilution-helper-functions.ipynb` file, help can be printed by typing `?read_conductivity_data` (as the only thing in a cell):"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"search: split_conductivity_data\n",
"\n"
]
},
{
"data": {
"text/markdown": [
"Splits up the time series returned by `read_conductivity_data` into individual traces. The output is a list of traces:\n",
"\n",
"`traces = [(t1, tstart1, readout1, temp1), (t2, tstart2, readout2, temp2), etc]`\n",
"\n",
"where `t1` is the times in seconds after recoding started, `tstart1` is the date-time of the start of the recording, `readout1` is the conductivity readout and `temp1` is the sensor temperature.\n",
"\n",
"Thus to access the times of the second trace do `traces[2][1]`, and to get the corresponding sensor readout `traces[2][3]`.\n"
],
"text/plain": [
"Splits up the time series returned by `read_conductivity_data` into individual traces. The output is a list of traces:\n",
"\n",
"`traces = [(t1, tstart1, readout1, temp1), (t2, tstart2, readout2, temp2), etc]`\n",
"\n",
"where `t1` is the times in seconds after recoding started, `tstart1` is the date-time of the start of the recording, `readout1` is the conductivity readout and `temp1` is the sensor temperature.\n",
"\n",
"Thus to access the times of the second trace do `traces[2][1]`, and to get the corresponding sensor readout `traces[2][3]`.\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"?split_conductivity_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's plot the loaded data:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"\" />"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# running this the first time will take ~10s because it initializes the plotting facilities\n",
"p = plot()\n",
"for (t, tstart, readout, temp) in traces\n",
" plot!(t, readout, \n",
" xlabel=\"time (s)\", ylabel=\"conductivity (μS/cm)\",\n",
" label=Base.Dates.format(tstart, \"d.m.y HH:MM:SS\") )\n",
"end\n",
"p"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is bongus data (produced by holding the conductivity sensor into my glas, then adding salt and then diluting). Your breakthrough curve should look like much smoother!"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"\" />"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now plot the concentrations\n",
"p = plot()\n",
"for (t, tstart, readout, temp) in traces\n",
" plot!(t, delta_readout2conc(readout-readout[end]), # note that I subtract the background reading!\n",
" xlabel=\"time (s)\", ylabel=\"concentration (g/l)\",\n",
" label=Base.Dates.format(tstart, \"d.m.y HH:MM:SS\") )\n",
"end\n",
"p"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Determine discharge of one dilution experiment\n",
"\n",
"Now that we have the data loaded, we can determine the discharge. The concentration $C$ times the (unknown) stream discharge $Q$ gives the salt mass flux. Integrate this over the the whole breakthrough curve to get the injected mass $M$:\n",
"\n",
"$ M = Q \\int C \\, d t$\n",
"\n",
"This assumes that $Q$ is constant during the salt passage (a good assumption). Solve for the unknow $Q$:\n",
"\n",
"$ Q = \\frac{M}{\\int C \\, d t}$.\n",
"\n",
"This is what we calculate here.\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"\"\"\"\n",
"Integrates the concentration time series.\n",
"\n",
"Input:\n",
"\n",
"- t -- times\n",
"- t1, t2 -- integrate from t1 to t2. Note that the concentration should be \n",
" close to zero at both t1 and t2 as we want to integrate over the whole curve.\n",
"- conc -- concentration time series (convert conductivity with f_readout2conc \n",
" to a concentration)\n",
"\n",
"Output:\n",
"\n",
"- integrated concentration (g s/l) == (kg s/ m^3)\n",
"\"\"\"\n",
"function integrate_concentration(t, conc, t1=0.0, t2=Inf)\n",
" inds = findfirst(t.>=t1):findlast(t.<=t2)\n",
" dt = t[2]-t[1]\n",
" out = sum(conc[inds]*dt) # approximate the integral by a sum\n",
" if out==0\n",
" error(\"Concentration integrates to zero! Maybe to high temp_threshold?\")\n",
" end\n",
" return out\n",
"end\n",
" \n",
"\"\"\"\n",
"Calculate discharge from sensor readout.\n",
"\n",
"Input:\n",
"- t,readout -- time series of sensor readout\n",
"- mass -- mass of salt injected\n",
"\n",
"Optional:\n",
"- t1,t2 -- integration limits (otherwise the whole series is integrated)\n",
"- delta_readout2conc -- if you got several `delta_readout2conc` functions, then\n",
" pass it in explicitly.\n",
"\n",
"Output:\n",
"- discharge Q (m^3/s)\n",
"\"\"\"\n",
"function calcQ(t, readout, mass, t1=0.0, t2=Inf, delta_readout2conc=delta_readout2conc)\n",
" i1, i2 = findfirst(t.>=t1), findlast(t.<=t2)\n",
" delta_readout = readout - mean(readout[[i1,i2]])\n",
" conc = delta_readout2conc(delta_readout)\n",
" return mass/integrate_concentration(t, conc, t1, t2)\n",
"end;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's use this to finally calculate the discharge:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Discharge for experiment 1 is 664.6744672548527 l/s\n",
"Discharge for experiment 2 is 71.16298743486254 l/s\n"
]
}
],
"source": [
"# You need to update this to reflect your salt injection masses:\n",
"masses = [0.1, 0.05]\n",
"# Integration boundaries. If the sensor was submerged before logging started, then\n",
"# you can probably delete t1s and t2s (also in below loop). If not, like in the fake-examples below,\n",
"# the boundaries need to be set to avoid integrating the negative concentrations from 0-15s.\n",
"t1s = [15, 15]\n",
"t2s = [Inf, Inf]\n",
"# Store the times and discharges\n",
"ts = DateTime[]\n",
"Qs = Float64[] # this will contain the discharges\n",
"for i = 1:length(traces)\n",
" t, tstart, readout, temp = traces[i]\n",
" Q = calcQ(t, readout, masses[i], t1s[i], t2s[i]) # in m^3/s\n",
" println(\"Discharge for experiment $i is $(Q*1000) l/s\")\n",
" push!(Qs, Q)\n",
" push!(ts, tstart)\n",
"end;"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"\" />"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# plot the discharge vs time:\n",
"scatter(ts, Qs, label=\"\", xlabel=\"injection time\", ylabel=\"discharge (m^3/s)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Store output in text files"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# store discharge and time in a csv file\n",
"out = hcat(ts, Qs)\n",
"writecsv(\"discharge.csv\", out) # this will write the date-time in ISO format, which should be easy to read-in\n",
"\n",
"# if you prefer this writes it as days since some date:\n",
"out = hcat(datetime2julian(ts), Qs)\n",
"writecsv(\"discharge-julian.csv\", out)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# More stuff to do\n",
"\n",
"Try to find a stage-discharge relation: fit a line (probably not staight) through the `(stage, Qs)` points (if you want to do this in Julia, look at the `fit_calibration` function in the helper-file). Where `stage` are the stage measurements you took simultaneously with the salt dilution. Also try using the cross section instead of the stage.\n",
"\n",
"Calculate discharge using the velocity x cross-sectional area method (if you managed to get those measurements). How does it compare to the discharge from salt dilution?\n",
"\n",
"Calculate the melt which occured in the moulin catchment from the ablation measurement. How does it compare to the measured discharge? Is there a lag? If there is a lag, can you fit a linear storage model: https://en.wikipedia.org/wiki/Runoff_model_(reservoir)?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 0.4.6",
"language": "julia",
"name": "julia-0.4"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "0.4.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment