Skip to content

Instantly share code, notes, and snippets.

@mavenlin
Last active May 22, 2024 07:28
Show Gist options
  • Save mavenlin/e56253735ef32c3c296d to your computer and use it in GitHub Desktop.
Save mavenlin/e56253735ef32c3c296d to your computer and use it in GitHub Desktop.
Network in Network CIFAR10

Info

name: Network in Network CIFAR10 Model

caffemodel: cifar10_nin.caffemodel

caffemodel_url: https://www.dropbox.com/s/blrajqirr1p31v0/cifar10_nin.caffemodel?dl=1

license: BSD

sha1: 8e89c8fcd46e02780e16c867a5308e7bb7af0803

caffe_commit: c69b3b49084b503e23b95dc387329975245949c2

gist_id: e56253735ef32c3c296d

Descriptions

This model is a 3 layer Network in Network model trained on CIFAR10 dataset.

The performance of this model on validation set is 89.6% The detailed descriptions are in the paper Network in Network

The preprocessed CIFAR10 data is downloadable in lmdb format here:

License

The data used to train this model comes from http://www.cs.toronto.edu/~kriz/cifar.html Please follow the license there if used.

net: "train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.1
momentum: 0.9
weight_decay: 0.0001
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 100
max_iter: 120000
snapshot: 10000
snapshot_prefix: "cifar10_nin"
solver_mode: GPU
name: "CIFAR10_full"
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-train-leveldb"
batch_size: 128
}
include: { phase: TRAIN }
}
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-test-leveldb"
batch_size: 100
}
include: { phase: TEST }
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1.
weight_decay: 0.
convolution_param {
num_output: 192
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "cccp1"
type: CONVOLUTION
bottom: "conv1"
top: "cccp1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 160
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp1"
type: RELU
bottom: "cccp1"
top: "cccp1"
}
layers {
name: "cccp2"
type: CONVOLUTION
bottom: "cccp1"
top: "cccp2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 96
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp2"
type: RELU
bottom: "cccp2"
top: "cccp2"
}
layers {
name: "pool1"
type: POOLING
bottom: "cccp2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "drop3"
type: DROPOUT
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1.
weight_decay: 0.
convolution_param {
num_output: 192
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "cccp3"
type: CONVOLUTION
bottom: "conv2"
top: "cccp3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 192
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp3"
type: RELU
bottom: "cccp3"
top: "cccp3"
}
layers {
name: "cccp4"
type: CONVOLUTION
bottom: "cccp3"
top: "cccp4"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 192
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp4"
type: RELU
bottom: "cccp4"
top: "cccp4"
}
layers {
name: "pool2"
type: POOLING
bottom: "cccp4"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layers {
name: "drop6"
type: DROPOUT
bottom: "pool2"
top: "pool2"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "pool2"
top: "conv3"
blobs_lr: 1.
blobs_lr: 2.
weight_decay: 1.
weight_decay: 0.
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "cccp5"
type: CONVOLUTION
bottom: "conv3"
top: "cccp5"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 192
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp5"
type: RELU
bottom: "cccp5"
top: "cccp5"
}
layers {
name: "cccp6"
type: CONVOLUTION
bottom: "cccp5"
top: "cccp6"
blobs_lr: 0.1
blobs_lr: 0.1
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 10
group: 1
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu_cccp6"
type: RELU
bottom: "cccp6"
top: "cccp6"
}
layers {
name: "pool3"
type: POOLING
bottom: "cccp6"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 8
stride: 1
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "pool3"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "pool3"
bottom: "label"
top: "loss"
}
@6eanut
Copy link

6eanut commented May 22, 2024

Does anyone have a deploy.prototxt for this model?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment