Skip to content

Instantly share code, notes, and snippets.

Maxim Grechkin maximsch2

  • University of Washington
  • Seattle, WA
Block or report user

Report or block maximsch2

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile

Keybase proof

I hereby claim:

  • I am maximsch2 on github.
  • I am maximsch2 ( on keybase.
  • I have a public key whose fingerprint is F13E 497C 1056 CEFE 544A CA5F C320 A1D4 ABDC 6271

To claim this, I am signing this object:

maximsch2 / jld_misc.jl
Created Jan 23, 2017
JLD optimizations
View jld_misc.jl
using JLD
type VectorOfVectorsSerializer{T}
VectorOfVectorsSerializer{T}(val::Vector{Vector{T}}) = new(vcat(val...), Int64[length(x) for x in val])
JLD.writeas{T}(data::Vector{Vector{T}}) = VectorOfVectorsSerializer{T}(data)
View GenericAutocomp.elm
module GenericAutocomp exposing (..)
import Autocomplete
import Html exposing (..)
import Html.Attributes exposing (..)
import Html.Events exposing (..)
import Html.App as Html
import String
import Json.Decode as Json
import Dom
View Main.elm
import Html exposing (Html, Attribute, div, input, text, button)
import Html.App as Html
import Html.Attributes exposing (..)
import Html.Events exposing (onInput, onClick)
import String
import Ports exposing (..)
main =
Html.program { init = init, view = view, update = update, subscriptions = \x -> Sub.none }
maximsch2 / test.jl
Created Sep 4, 2015
Julia 0.4 method dispatch bug?
View test.jl
abstract Abs
type Foo <: Abs
type Bar
type Baz
maximsch2 / picker.jl
Created Sep 2, 2015
String list picker in Escher.jl
View picker.jl
function picker{T}(data::AbstractArray{T,1}, selected = T[])
sinput = Input("")
inp = Input(nokey)
getvals = s -> begin
data = filter(x -> !(x in selected), data)
ldata = map(lowercase, data)
ls = lowercase(s)
maximsch2 /
Created Sep 28, 2012
[BUG] Bug in scikit-learn.linear_model.Lasso in v 0.12
# data is here:
from pylab import *
from sklearn import linear_model
model = linear_model.Lasso(alpha=0.1)
data = loadtxt("data.txt")
X = np.delete(data, 350, 0).T
y = data[350, :].T, y)
print model.coef_ # 1
You can’t perform that action at this time.