Last active
August 4, 2017 11:47
-
-
Save maxpumperla/1d3c67f8c787bdb534c462c314839e63 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File completeModelFile = new ClassPathResource("complete.h5").getFile(); | |
String completeModelFileName = completeModelFile.getAbsolutePath(); | |
MultiLayerNetwork network = KerasModelImport.importKerasSequentialModelAndWeights(completeModelFileName); | |
NativeImageLoader loader = new NativeImageLoader(height, width); | |
File imageFile = new ClassPathResource("1.jpg").getFile(); | |
INDArray image = loader.asMatrix(imageFile); | |
image.divi(255); // <== how about that? :) | |
INDArray output = network.output(image); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Activation, Flatten | |
from keras.layers import Convolution2D, MaxPooling2D | |
from keras import backend as K | |
from scipy.misc import imread | |
from keras.models import load_model, save_model | |
np.random.seed(1000) # for reproducibility | |
nb_classes = 10 | |
img_rows, img_cols = 24, 15 | |
nb_filters = 32 | |
pool_size = (2, 2) | |
kernel_size = (3, 3) | |
img = imread("./1.jpg") | |
X_test = img.reshape(1, img_rows, img_cols) | |
if K.image_dim_ordering() == 'th': | |
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
X_test = X_test.astype('float32') | |
X_test /= 255 | |
model = Sequential() | |
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], | |
border_mode='valid', | |
input_shape=input_shape)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1])) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=pool_size)) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(nb_classes)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer='adadelta', | |
metrics=['accuracy']) | |
model_json = model.to_json() | |
with open("keras_model.json", "w") as f: | |
f.write(model_json) | |
model.save_weights("keras_weights.h5") | |
print("Saved model to disk") | |
save_model(model, "./complete.h5") | |
print(pred) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dl4j: [0.12, 0.11, 0.09, 0.10, 0.08, 0.10, 0.09, 0.10, 0.10, 0.10] | |
keras: [0.11, 0.11, 0.09, 0.11, 0.06, 0.10, 0.09, 0.11, 0.10 0.09] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment