Skip to content

Instantly share code, notes, and snippets.

@mayeths
Created July 27, 2021 09:48
Show Gist options
  • Save mayeths/c4b4e21b79bf1a48fd08d9b2e8e54b23 to your computer and use it in GitHub Desktop.
Save mayeths/c4b4e21b79bf1a48fd08d9b2e8e54b23 to your computer and use it in GitHub Desktop.
C++11 format library, {fmt}. (All-in-one header only mode)
// https://github.com/fmtlib/fmt
// Usage: g++ main.c && ./a.out
// -- #include <fmt.h>
// -- int main() {
// -- fmt::print("hello {}\n", 123);
// -- }
#define FMT_HEADER_ONLY
/*
Formatting library for C++
Copyright (c) 2012 - present, Victor Zverovich
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--- Optional exception to the license ---
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into a machine-executable object form of such
source code, you may redistribute such embedded portions in such object form
without including the above copyright and permission notices.
*/
#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_
#include <cmath> // std::signbit
#include <cstdint> // uint32_t
#include <limits> // std::numeric_limits
#include <memory> // std::uninitialized_copy
#include <stdexcept> // std::runtime_error
#include <system_error> // std::system_error
#include <utility> // std::swap
/*---------------------------------------------------------------------------
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
START #include "core.h"
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
--------------------------------------------------------------------------*/
// Formatting library for C++ - the core API for char/UTF-8
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_CORE_H_
#define FMT_CORE_H_
#include <cstdio> // std::FILE
#include <cstring>
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 80000
#ifdef __clang__
# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#else
# define FMT_CLANG_VERSION 0
#endif
#if defined(__GNUC__) && !defined(__clang__)
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FMT_GCC_PRAGMA(arg) _Pragma(arg)
#else
# define FMT_GCC_VERSION 0
# define FMT_GCC_PRAGMA(arg)
#endif
#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
# define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
#else
# define FMT_HAS_GXX_CXX11 0
#endif
#if defined(__INTEL_COMPILER)
# define FMT_ICC_VERSION __INTEL_COMPILER
#else
# define FMT_ICC_VERSION 0
#endif
#ifdef __NVCC__
# define FMT_NVCC __NVCC__
#else
# define FMT_NVCC 0
#endif
#ifdef _MSC_VER
# define FMT_MSC_VER _MSC_VER
# define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
#else
# define FMT_MSC_VER 0
# define FMT_MSC_WARNING(...)
#endif
#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif
#if defined(__has_include) && !defined(__INTELLISENSE__) && \
(!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600)
# define FMT_HAS_INCLUDE(x) __has_include(x)
#else
# define FMT_HAS_INCLUDE(x) 0
#endif
#ifdef __has_cpp_attribute
# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif
#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
(__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
(__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
// Check if relaxed C++14 constexpr is supported.
// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
#ifndef FMT_USE_CONSTEXPR
# define FMT_USE_CONSTEXPR \
(FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
(FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \
!FMT_NVCC && !FMT_ICC_VERSION
#endif
#if FMT_USE_CONSTEXPR
# define FMT_CONSTEXPR constexpr
# define FMT_CONSTEXPR_DECL constexpr
#else
# define FMT_CONSTEXPR
# define FMT_CONSTEXPR_DECL
#endif
// Check if constexpr std::char_traits<>::compare,length is supported.
#if defined(__GLIBCXX__)
# if __cplusplus >= 201703L && defined(_GLIBCXX_RELEASE) && \
_GLIBCXX_RELEASE >= 7 // GCC 7+ libstdc++ has _GLIBCXX_RELEASE.
# define FMT_CONSTEXPR_CHAR_TRAITS constexpr
# endif
#elif defined(_LIBCPP_VERSION) && __cplusplus >= 201703L && \
_LIBCPP_VERSION >= 4000
# define FMT_CONSTEXPR_CHAR_TRAITS constexpr
#elif FMT_MSC_VER >= 1914 && _MSVC_LANG >= 201703L
# define FMT_CONSTEXPR_CHAR_TRAITS constexpr
#endif
#ifndef FMT_CONSTEXPR_CHAR_TRAITS
# define FMT_CONSTEXPR_CHAR_TRAITS
#endif
#ifndef FMT_OVERRIDE
# if FMT_HAS_FEATURE(cxx_override_control) || \
(FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
# define FMT_OVERRIDE override
# else
# define FMT_OVERRIDE
# endif
#endif
// Check if exceptions are disabled.
#ifndef FMT_EXCEPTIONS
# if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
FMT_MSC_VER && !_HAS_EXCEPTIONS
# define FMT_EXCEPTIONS 0
# else
# define FMT_EXCEPTIONS 1
# endif
#endif
// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
# define FMT_USE_NOEXCEPT 0
#endif
#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
(FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
# define FMT_DETECTED_NOEXCEPT noexcept
# define FMT_HAS_CXX11_NOEXCEPT 1
#else
# define FMT_DETECTED_NOEXCEPT throw()
# define FMT_HAS_CXX11_NOEXCEPT 0
#endif
#ifndef FMT_NOEXCEPT
# if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
# define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
# else
# define FMT_NOEXCEPT
# endif
#endif
// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
// warnings.
#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
!FMT_NVCC
# define FMT_NORETURN [[noreturn]]
#else
# define FMT_NORETURN
#endif
#ifndef FMT_MAYBE_UNUSED
# if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
# define FMT_MAYBE_UNUSED [[maybe_unused]]
# else
# define FMT_MAYBE_UNUSED
# endif
#endif
#if __cplusplus == 201103L || __cplusplus == 201402L
# if defined(__INTEL_COMPILER) || defined(__PGI)
# define FMT_FALLTHROUGH
# elif defined(__clang__)
# define FMT_FALLTHROUGH [[clang::fallthrough]]
# elif FMT_GCC_VERSION >= 700 && \
(!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
# define FMT_FALLTHROUGH [[gnu::fallthrough]]
# else
# define FMT_FALLTHROUGH
# endif
#elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \
(defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
# define FMT_FALLTHROUGH [[fallthrough]]
#else
# define FMT_FALLTHROUGH
#endif
#ifndef FMT_USE_FLOAT
# define FMT_USE_FLOAT 1
#endif
#ifndef FMT_USE_DOUBLE
# define FMT_USE_DOUBLE 1
#endif
#ifndef FMT_USE_LONG_DOUBLE
# define FMT_USE_LONG_DOUBLE 1
#endif
#ifndef FMT_INLINE
# if FMT_GCC_VERSION || FMT_CLANG_VERSION
# define FMT_INLINE inline __attribute__((always_inline))
# else
# define FMT_INLINE inline
# endif
#endif
#ifndef FMT_USE_INLINE_NAMESPACES
# if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
(FMT_MSC_VER >= 1900 && (!defined(_MANAGED) || !_MANAGED))
# define FMT_USE_INLINE_NAMESPACES 1
# else
# define FMT_USE_INLINE_NAMESPACES 0
# endif
#endif
#ifndef FMT_BEGIN_NAMESPACE
# if FMT_USE_INLINE_NAMESPACES
# define FMT_INLINE_NAMESPACE inline namespace
# define FMT_END_NAMESPACE \
} \
}
# else
# define FMT_INLINE_NAMESPACE namespace
# define FMT_END_NAMESPACE \
} \
using namespace v7; \
}
# endif
# define FMT_BEGIN_NAMESPACE \
namespace fmt { \
FMT_INLINE_NAMESPACE v7 {
#endif
#ifndef FMT_MODULE_EXPORT
# define FMT_MODULE_EXPORT
# define FMT_MODULE_EXPORT_BEGIN
# define FMT_MODULE_EXPORT_END
# define FMT_BEGIN_DETAIL_NAMESPACE namespace detail {
# define FMT_END_DETAIL_NAMESPACE }
#endif
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
# define FMT_CLASS_API FMT_MSC_WARNING(suppress : 4275)
# ifdef FMT_EXPORT
# define FMT_API __declspec(dllexport)
# elif defined(FMT_SHARED)
# define FMT_API __declspec(dllimport)
# endif
#else
# define FMT_CLASS_API
# if defined(FMT_EXPORT) || defined(FMT_SHARED)
# if defined(__GNUC__) || defined(__clang__)
# define FMT_API __attribute__((visibility("default")))
# endif
# endif
#endif
#ifndef FMT_API
# define FMT_API
#endif
#if FMT_GCC_VERSION
# define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#else
# define FMT_GCC_VISIBILITY_HIDDEN
#endif
// libc++ supports string_view in pre-c++17.
#if (FMT_HAS_INCLUDE(<string_view>) && \
(__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
(defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
# include <string_view>
# define FMT_USE_STRING_VIEW
#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
# include <experimental/string_view>
# define FMT_USE_EXPERIMENTAL_STRING_VIEW
#endif
#ifndef FMT_UNICODE
# define FMT_UNICODE !FMT_MSC_VER
#endif
#ifndef FMT_CONSTEVAL
# if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \
__cplusplus > 201703L) || \
(defined(__cpp_consteval) && \
!FMT_MSC_VER) // consteval is broken in MSVC.
# define FMT_CONSTEVAL consteval
# define FMT_HAS_CONSTEVAL
# else
# define FMT_CONSTEVAL
# endif
#endif
#ifndef FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
# if defined(__cpp_nontype_template_args) && \
((FMT_GCC_VERSION >= 903 && __cplusplus >= 201709L) || \
__cpp_nontype_template_args >= 201911L)
# define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 1
# else
# define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 0
# endif
#endif
// Enable minimal optimizations for more compact code in debug mode.
FMT_GCC_PRAGMA("GCC push_options")
#ifndef __OPTIMIZE__
FMT_GCC_PRAGMA("GCC optimize(\"Og\")")
#endif
FMT_BEGIN_NAMESPACE
FMT_MODULE_EXPORT_BEGIN
// Implementations of enable_if_t and other metafunctions for older systems.
template <bool B, class T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
template <typename T> struct type_identity { using type = T; };
template <typename T> using type_identity_t = typename type_identity<T>::type;
struct monostate {
constexpr monostate() {}
};
// An enable_if helper to be used in template parameters which results in much
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
#ifdef FMT_DOC
# define FMT_ENABLE_IF(...)
#else
# define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
#endif
FMT_BEGIN_DETAIL_NAMESPACE
constexpr FMT_INLINE auto is_constant_evaluated() FMT_NOEXCEPT -> bool {
#ifdef __cpp_lib_is_constant_evaluated
return std::is_constant_evaluated();
#else
return false;
#endif
}
// A function to suppress "conditional expression is constant" warnings.
template <typename T> constexpr auto const_check(T value) -> T { return value; }
FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
const char* message);
#ifndef FMT_ASSERT
# ifdef NDEBUG
// FMT_ASSERT is not empty to avoid -Werror=empty-body.
# define FMT_ASSERT(condition, message) ((void)0)
# else
# define FMT_ASSERT(condition, message) \
((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
? (void)0 \
: ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
# endif
#endif
#if defined(FMT_USE_STRING_VIEW)
template <typename Char> using std_string_view = std::basic_string_view<Char>;
#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
template <typename Char>
using std_string_view = std::experimental::basic_string_view<Char>;
#else
template <typename T> struct std_string_view {};
#endif
#ifdef FMT_USE_INT128
// Do nothing.
#elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \
!(FMT_CLANG_VERSION && FMT_MSC_VER)
# define FMT_USE_INT128 1
using int128_t = __int128_t;
using uint128_t = __uint128_t;
template <typename T> inline auto convert_for_visit(T value) -> T {
return value;
}
#else
# define FMT_USE_INT128 0
#endif
#if !FMT_USE_INT128
enum class int128_t {};
enum class uint128_t {};
// Reduce template instantiations.
template <typename T> inline auto convert_for_visit(T) -> monostate {
return {};
}
#endif
// Casts a nonnegative integer to unsigned.
template <typename Int>
FMT_CONSTEXPR auto to_unsigned(Int value) ->
typename std::make_unsigned<Int>::type {
FMT_ASSERT(value >= 0, "negative value");
return static_cast<typename std::make_unsigned<Int>::type>(value);
}
FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char micro[] = "\u00B5";
constexpr auto is_utf8() -> bool {
// Avoid buggy sign extensions in MSVC's constant evaluation mode.
// https://developercommunity.visualstudio.com/t/C-difference-in-behavior-for-unsigned/1233612
using uchar = unsigned char;
return FMT_UNICODE || (sizeof(micro) == 3 && uchar(micro[0]) == 0xC2 &&
uchar(micro[1]) == 0xB5);
}
FMT_END_DETAIL_NAMESPACE
/**
An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
subset of the API. ``fmt::basic_string_view`` is used for format strings even
if ``std::string_view`` is available to prevent issues when a library is
compiled with a different ``-std`` option than the client code (which is not
recommended).
*/
template <typename Char> class basic_string_view {
private:
const Char* data_;
size_t size_;
public:
using value_type = Char;
using iterator = const Char*;
constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
/** Constructs a string reference object from a C string and a size. */
constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
: data_(s),
size_(count) {}
/**
\rst
Constructs a string reference object from a C string computing
the size with ``std::char_traits<Char>::length``.
\endrst
*/
FMT_CONSTEXPR_CHAR_TRAITS
FMT_INLINE
basic_string_view(const Char* s) : data_(s) {
if (detail::const_check(std::is_same<Char, char>::value &&
!detail::is_constant_evaluated()))
size_ = std::strlen(reinterpret_cast<const char*>(s));
else
size_ = std::char_traits<Char>::length(s);
}
/** Constructs a string reference from a ``std::basic_string`` object. */
template <typename Traits, typename Alloc>
FMT_CONSTEXPR basic_string_view(
const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
: data_(s.data()),
size_(s.size()) {}
template <typename S, FMT_ENABLE_IF(std::is_same<
S, detail::std_string_view<Char>>::value)>
FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
size_(s.size()) {}
/** Returns a pointer to the string data. */
constexpr auto data() const -> const Char* { return data_; }
/** Returns the string size. */
constexpr auto size() const -> size_t { return size_; }
constexpr auto begin() const -> iterator { return data_; }
constexpr auto end() const -> iterator { return data_ + size_; }
constexpr auto operator[](size_t pos) const -> const Char& {
return data_[pos];
}
FMT_CONSTEXPR void remove_prefix(size_t n) {
data_ += n;
size_ -= n;
}
// Lexicographically compare this string reference to other.
FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int {
size_t str_size = size_ < other.size_ ? size_ : other.size_;
int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
if (result == 0)
result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
return result;
}
FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs,
basic_string_view rhs)
-> bool {
return lhs.compare(rhs) == 0;
}
friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) != 0;
}
friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) < 0;
}
friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) <= 0;
}
friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) > 0;
}
friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) >= 0;
}
};
using string_view = basic_string_view<char>;
/** Specifies if ``T`` is a character type. Can be specialized by users. */
template <typename T> struct is_char : std::false_type {};
template <> struct is_char<char> : std::true_type {};
/**
\rst
Returns a string view of `s`. In order to add custom string type support to
{fmt} provide an overload of `to_string_view` for it in the same namespace as
the type for the argument-dependent lookup to work.
**Example**::
namespace my_ns {
inline string_view to_string_view(const my_string& s) {
return {s.data(), s.length()};
}
}
std::string message = fmt::format(my_string("The answer is {}"), 42);
\endrst
*/
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view<Char> {
return s;
}
template <typename Char, typename Traits, typename Alloc>
inline auto to_string_view(const std::basic_string<Char, Traits, Alloc>& s)
-> basic_string_view<Char> {
return s;
}
template <typename Char>
constexpr auto to_string_view(basic_string_view<Char> s)
-> basic_string_view<Char> {
return s;
}
template <typename Char,
FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
inline auto to_string_view(detail::std_string_view<Char> s)
-> basic_string_view<Char> {
return s;
}
// A base class for compile-time strings. It is defined in the fmt namespace to
// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
struct compile_string {};
template <typename S>
struct is_compile_string : std::is_base_of<compile_string, S> {};
template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
constexpr auto to_string_view(const S& s)
-> basic_string_view<typename S::char_type> {
return basic_string_view<typename S::char_type>(s);
}
FMT_BEGIN_DETAIL_NAMESPACE
void to_string_view(...);
using fmt::v7::to_string_view;
// Specifies whether S is a string type convertible to fmt::basic_string_view.
// It should be a constexpr function but MSVC 2017 fails to compile it in
// enable_if and MSVC 2015 fails to compile it as an alias template.
template <typename S>
struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
};
template <typename S, typename = void> struct char_t_impl {};
template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
using result = decltype(to_string_view(std::declval<S>()));
using type = typename result::value_type;
};
// Reports a compile-time error if S is not a valid format string.
template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
FMT_INLINE void check_format_string(const S&) {
#ifdef FMT_ENFORCE_COMPILE_STRING
static_assert(is_compile_string<S>::value,
"FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
"FMT_STRING.");
#endif
}
template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
void check_format_string(S);
struct error_handler {
constexpr error_handler() = default;
constexpr error_handler(const error_handler&) = default;
// This function is intentionally not constexpr to give a compile-time error.
FMT_NORETURN FMT_API void on_error(const char* message);
};
FMT_END_DETAIL_NAMESPACE
/** String's character type. */
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
/**
\rst
Parsing context consisting of a format string range being parsed and an
argument counter for automatic indexing.
You can use the ```format_parse_context`` type alias for ``char`` instead.
\endrst
*/
template <typename Char, typename ErrorHandler = detail::error_handler>
class basic_format_parse_context : private ErrorHandler {
private:
basic_string_view<Char> format_str_;
int next_arg_id_;
public:
using char_type = Char;
using iterator = typename basic_string_view<Char>::iterator;
explicit constexpr basic_format_parse_context(
basic_string_view<Char> format_str, ErrorHandler eh = {},
int next_arg_id = 0)
: ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {}
/**
Returns an iterator to the beginning of the format string range being
parsed.
*/
constexpr auto begin() const FMT_NOEXCEPT -> iterator {
return format_str_.begin();
}
/**
Returns an iterator past the end of the format string range being parsed.
*/
constexpr auto end() const FMT_NOEXCEPT -> iterator {
return format_str_.end();
}
/** Advances the begin iterator to ``it``. */
FMT_CONSTEXPR void advance_to(iterator it) {
format_str_.remove_prefix(detail::to_unsigned(it - begin()));
}
/**
Reports an error if using the manual argument indexing; otherwise returns
the next argument index and switches to the automatic indexing.
*/
FMT_CONSTEXPR auto next_arg_id() -> int {
// Don't check if the argument id is valid to avoid overhead and because it
// will be checked during formatting anyway.
if (next_arg_id_ >= 0) return next_arg_id_++;
on_error("cannot switch from manual to automatic argument indexing");
return 0;
}
/**
Reports an error if using the automatic argument indexing; otherwise
switches to the manual indexing.
*/
FMT_CONSTEXPR void check_arg_id(int) {
if (next_arg_id_ > 0)
on_error("cannot switch from automatic to manual argument indexing");
else
next_arg_id_ = -1;
}
FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
FMT_CONSTEXPR void on_error(const char* message) {
ErrorHandler::on_error(message);
}
constexpr auto error_handler() const -> ErrorHandler { return *this; }
};
using format_parse_context = basic_format_parse_context<char>;
template <typename Context> class basic_format_arg;
template <typename Context> class basic_format_args;
template <typename Context> class dynamic_format_arg_store;
// A formatter for objects of type T.
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
// A deleted default constructor indicates a disabled formatter.
formatter() = delete;
};
// Specifies if T has an enabled formatter specialization. A type can be
// formattable even if it doesn't have a formatter e.g. via a conversion.
template <typename T, typename Context>
using has_formatter =
std::is_constructible<typename Context::template formatter_type<T>>;
// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};
template <typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
class appender;
FMT_BEGIN_DETAIL_NAMESPACE
// Extracts a reference to the container from back_insert_iterator.
template <typename Container>
inline auto get_container(std::back_insert_iterator<Container> it)
-> Container& {
using bi_iterator = std::back_insert_iterator<Container>;
struct accessor : bi_iterator {
accessor(bi_iterator iter) : bi_iterator(iter) {}
using bi_iterator::container;
};
return *accessor(it).container;
}
template <typename Char, typename InputIt, typename OutputIt>
FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out)
-> OutputIt {
while (begin != end) *out++ = static_cast<Char>(*begin++);
return out;
}
template <typename Char, FMT_ENABLE_IF(std::is_same<Char, char>::value)>
FMT_CONSTEXPR auto copy_str(const Char* begin, const Char* end, Char* out)
-> Char* {
if (is_constant_evaluated())
return copy_str<Char, const Char*, Char*>(begin, end, out);
auto size = to_unsigned(end - begin);
memcpy(out, begin, size);
return out + size;
}
/**
\rst
A contiguous memory buffer with an optional growing ability. It is an internal
class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
\endrst
*/
template <typename T> class buffer {
private:
T* ptr_;
size_t size_;
size_t capacity_;
protected:
// Don't initialize ptr_ since it is not accessed to save a few cycles.
FMT_MSC_WARNING(suppress : 26495)
buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
: ptr_(p),
size_(sz),
capacity_(cap) {}
~buffer() = default;
buffer(buffer&&) = default;
/** Sets the buffer data and capacity. */
void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
ptr_ = buf_data;
capacity_ = buf_capacity;
}
/** Increases the buffer capacity to hold at least *capacity* elements. */
virtual void grow(size_t capacity) = 0;
public:
using value_type = T;
using const_reference = const T&;
buffer(const buffer&) = delete;
void operator=(const buffer&) = delete;
auto begin() FMT_NOEXCEPT -> T* { return ptr_; }
auto end() FMT_NOEXCEPT -> T* { return ptr_ + size_; }
auto begin() const FMT_NOEXCEPT -> const T* { return ptr_; }
auto end() const FMT_NOEXCEPT -> const T* { return ptr_ + size_; }
/** Returns the size of this buffer. */
auto size() const FMT_NOEXCEPT -> size_t { return size_; }
/** Returns the capacity of this buffer. */
auto capacity() const FMT_NOEXCEPT -> size_t { return capacity_; }
/** Returns a pointer to the buffer data. */
auto data() FMT_NOEXCEPT -> T* { return ptr_; }
/** Returns a pointer to the buffer data. */
auto data() const FMT_NOEXCEPT -> const T* { return ptr_; }
/** Clears this buffer. */
void clear() { size_ = 0; }
// Tries resizing the buffer to contain *count* elements. If T is a POD type
// the new elements may not be initialized.
void try_resize(size_t count) {
try_reserve(count);
size_ = count <= capacity_ ? count : capacity_;
}
// Tries increasing the buffer capacity to *new_capacity*. It can increase the
// capacity by a smaller amount than requested but guarantees there is space
// for at least one additional element either by increasing the capacity or by
// flushing the buffer if it is full.
void try_reserve(size_t new_capacity) {
if (new_capacity > capacity_) grow(new_capacity);
}
void push_back(const T& value) {
try_reserve(size_ + 1);
ptr_[size_++] = value;
}
/** Appends data to the end of the buffer. */
template <typename U> void append(const U* begin, const U* end);
template <typename I> auto operator[](I index) -> T& { return ptr_[index]; }
template <typename I> auto operator[](I index) const -> const T& {
return ptr_[index];
}
};
struct buffer_traits {
explicit buffer_traits(size_t) {}
auto count() const -> size_t { return 0; }
auto limit(size_t size) -> size_t { return size; }
};
class fixed_buffer_traits {
private:
size_t count_ = 0;
size_t limit_;
public:
explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
auto count() const -> size_t { return count_; }
auto limit(size_t size) -> size_t {
size_t n = limit_ > count_ ? limit_ - count_ : 0;
count_ += size;
return size < n ? size : n;
}
};
// A buffer that writes to an output iterator when flushed.
template <typename OutputIt, typename T, typename Traits = buffer_traits>
class iterator_buffer final : public Traits, public buffer<T> {
private:
OutputIt out_;
enum { buffer_size = 256 };
T data_[buffer_size];
protected:
void grow(size_t) final FMT_OVERRIDE {
if (this->size() == buffer_size) flush();
}
void flush() {
auto size = this->size();
this->clear();
out_ = copy_str<T>(data_, data_ + this->limit(size), out_);
}
public:
explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
: Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {}
iterator_buffer(iterator_buffer&& other)
: Traits(other), buffer<T>(data_, 0, buffer_size), out_(other.out_) {}
~iterator_buffer() { flush(); }
auto out() -> OutputIt {
flush();
return out_;
}
auto count() const -> size_t { return Traits::count() + this->size(); }
};
template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
protected:
void grow(size_t) final FMT_OVERRIDE {}
public:
explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
auto out() -> T* { return &*this->end(); }
};
// A buffer that writes to a container with the contiguous storage.
template <typename Container>
class iterator_buffer<std::back_insert_iterator<Container>,
enable_if_t<is_contiguous<Container>::value,
typename Container::value_type>>
final : public buffer<typename Container::value_type> {
private:
Container& container_;
protected:
void grow(size_t capacity) final FMT_OVERRIDE {
container_.resize(capacity);
this->set(&container_[0], capacity);
}
public:
explicit iterator_buffer(Container& c)
: buffer<typename Container::value_type>(c.size()), container_(c) {}
explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
: iterator_buffer(get_container(out)) {}
auto out() -> std::back_insert_iterator<Container> {
return std::back_inserter(container_);
}
};
// A buffer that counts the number of code units written discarding the output.
template <typename T = char> class counting_buffer final : public buffer<T> {
private:
enum { buffer_size = 256 };
T data_[buffer_size];
size_t count_ = 0;
protected:
void grow(size_t) final FMT_OVERRIDE {
if (this->size() != buffer_size) return;
count_ += this->size();
this->clear();
}
public:
counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
auto count() -> size_t { return count_ + this->size(); }
};
template <typename T>
using buffer_appender = conditional_t<std::is_same<T, char>::value, appender,
std::back_insert_iterator<buffer<T>>>;
// Maps an output iterator to a buffer.
template <typename T, typename OutputIt>
auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
return iterator_buffer<OutputIt, T>(out);
}
template <typename Buffer>
auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
return buf.out();
}
template <typename T> auto get_iterator(buffer<T>& buf) -> buffer_appender<T> {
return buffer_appender<T>(buf);
}
template <typename T, typename Char = char, typename Enable = void>
struct fallback_formatter {
fallback_formatter() = delete;
};
// Specifies if T has an enabled fallback_formatter specialization.
template <typename T, typename Char>
using has_fallback_formatter =
std::is_constructible<fallback_formatter<T, Char>>;
struct view {};
template <typename Char, typename T> struct named_arg : view {
const Char* name;
const T& value;
named_arg(const Char* n, const T& v) : name(n), value(v) {}
};
template <typename Char> struct named_arg_info {
const Char* name;
int id;
};
template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
struct arg_data {
// args_[0].named_args points to named_args_ to avoid bloating format_args.
// +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
template <typename... U>
arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
arg_data(const arg_data& other) = delete;
auto args() const -> const T* { return args_ + 1; }
auto named_args() -> named_arg_info<Char>* { return named_args_; }
};
template <typename T, typename Char, size_t NUM_ARGS>
struct arg_data<T, Char, NUM_ARGS, 0> {
// +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
template <typename... U>
FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {}
FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; }
FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t {
return nullptr;
}
};
template <typename Char>
inline void init_named_args(named_arg_info<Char>*, int, int) {}
template <typename T> struct is_named_arg : std::false_type {};
template <typename T> struct is_statically_named_arg : std::false_type {};
template <typename T, typename Char>
struct is_named_arg<named_arg<Char, T>> : std::true_type {};
template <typename Char, typename T, typename... Tail,
FMT_ENABLE_IF(!is_named_arg<T>::value)>
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
int named_arg_count, const T&, const Tail&... args) {
init_named_args(named_args, arg_count + 1, named_arg_count, args...);
}
template <typename Char, typename T, typename... Tail,
FMT_ENABLE_IF(is_named_arg<T>::value)>
void init_named_args(named_arg_info<Char>* named_args, int arg_count,
int named_arg_count, const T& arg, const Tail&... args) {
named_args[named_arg_count++] = {arg.name, arg_count};
init_named_args(named_args, arg_count + 1, named_arg_count, args...);
}
template <typename... Args>
FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int,
const Args&...) {}
template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; }
template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t {
return (B1 ? 1 : 0) + count<B2, Tail...>();
}
template <typename... Args> constexpr auto count_named_args() -> size_t {
return count<is_named_arg<Args>::value...>();
}
enum class type {
none_type,
// Integer types should go first,
int_type,
uint_type,
long_long_type,
ulong_long_type,
int128_type,
uint128_type,
bool_type,
char_type,
last_integer_type = char_type,
// followed by floating-point types.
float_type,
double_type,
long_double_type,
last_numeric_type = long_double_type,
cstring_type,
string_type,
pointer_type,
custom_type
};
// Maps core type T to the corresponding type enum constant.
template <typename T, typename Char>
struct type_constant : std::integral_constant<type, type::custom_type> {};
#define FMT_TYPE_CONSTANT(Type, constant) \
template <typename Char> \
struct type_constant<Type, Char> \
: std::integral_constant<type, type::constant> {}
FMT_TYPE_CONSTANT(int, int_type);
FMT_TYPE_CONSTANT(unsigned, uint_type);
FMT_TYPE_CONSTANT(long long, long_long_type);
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
FMT_TYPE_CONSTANT(int128_t, int128_type);
FMT_TYPE_CONSTANT(uint128_t, uint128_type);
FMT_TYPE_CONSTANT(bool, bool_type);
FMT_TYPE_CONSTANT(Char, char_type);
FMT_TYPE_CONSTANT(float, float_type);
FMT_TYPE_CONSTANT(double, double_type);
FMT_TYPE_CONSTANT(long double, long_double_type);
FMT_TYPE_CONSTANT(const Char*, cstring_type);
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
FMT_TYPE_CONSTANT(const void*, pointer_type);
constexpr bool is_integral_type(type t) {
return t > type::none_type && t <= type::last_integer_type;
}
constexpr bool is_arithmetic_type(type t) {
return t > type::none_type && t <= type::last_numeric_type;
}
template <typename Char> struct string_value {
const Char* data;
size_t size;
};
template <typename Char> struct named_arg_value {
const named_arg_info<Char>* data;
size_t size;
};
template <typename Context> struct custom_value {
using parse_context = typename Context::parse_context_type;
const void* value;
void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
};
// A formatting argument value.
template <typename Context> class value {
public:
using char_type = typename Context::char_type;
union {
monostate no_value;
int int_value;
unsigned uint_value;
long long long_long_value;
unsigned long long ulong_long_value;
int128_t int128_value;
uint128_t uint128_value;
bool bool_value;
char_type char_value;
float float_value;
double double_value;
long double long_double_value;
const void* pointer;
string_value<char_type> string;
custom_value<Context> custom;
named_arg_value<char_type> named_args;
};
constexpr FMT_INLINE value() : no_value() {}
constexpr FMT_INLINE value(int val) : int_value(val) {}
constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
constexpr FMT_INLINE value(long long val) : long_long_value(val) {}
constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
FMT_INLINE value(int128_t val) : int128_value(val) {}
FMT_INLINE value(uint128_t val) : uint128_value(val) {}
FMT_INLINE value(float val) : float_value(val) {}
FMT_INLINE value(double val) : double_value(val) {}
FMT_INLINE value(long double val) : long_double_value(val) {}
constexpr FMT_INLINE value(bool val) : bool_value(val) {}
constexpr FMT_INLINE value(char_type val) : char_value(val) {}
FMT_CONSTEXPR FMT_INLINE value(const char_type* val) {
string.data = val;
if (is_constant_evaluated()) string.size = {};
}
FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) {
string.data = val.data();
string.size = val.size();
}
FMT_INLINE value(const void* val) : pointer(val) {}
FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
: named_args{args, size} {}
template <typename T> FMT_CONSTEXPR FMT_INLINE value(const T& val) {
custom.value = &val;
// Get the formatter type through the context to allow different contexts
// have different extension points, e.g. `formatter<T>` for `format` and
// `printf_formatter<T>` for `printf`.
custom.format = format_custom_arg<
T, conditional_t<has_formatter<T, Context>::value,
typename Context::template formatter_type<T>,
fallback_formatter<T, char_type>>>;
}
private:
// Formats an argument of a custom type, such as a user-defined class.
template <typename T, typename Formatter>
static void format_custom_arg(const void* arg,
typename Context::parse_context_type& parse_ctx,
Context& ctx) {
Formatter f;
parse_ctx.advance_to(f.parse(parse_ctx));
ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
}
};
template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(const T& value) -> basic_format_arg<Context>;
// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
using long_type = conditional_t<long_short, int, long long>;
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
struct unformattable {};
// Maps formatting arguments to core types.
template <typename Context> struct arg_mapper {
using char_type = typename Context::char_type;
FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val)
-> unsigned long long {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(int128_t val) -> int128_t { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(uint128_t val) -> uint128_t { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; }
template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type {
static_assert(
std::is_same<T, char>::value || std::is_same<T, char_type>::value,
"mixing character types is disallowed");
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* {
return val;
}
template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
-> basic_string_view<char_type> {
static_assert(std::is_same<char_type, char_t<T>>::value,
"mixing character types is disallowed");
return to_string_view(val);
}
template <typename T,
FMT_ENABLE_IF(
std::is_constructible<basic_string_view<char_type>, T>::value &&
!is_string<T>::value && !has_formatter<T, Context>::value &&
!has_fallback_formatter<T, char_type>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
-> basic_string_view<char_type> {
return basic_string_view<char_type>(val);
}
template <
typename T,
FMT_ENABLE_IF(
std::is_constructible<std_string_view<char_type>, T>::value &&
!std::is_constructible<basic_string_view<char_type>, T>::value &&
!is_string<T>::value && !has_formatter<T, Context>::value &&
!has_fallback_formatter<T, char_type>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
-> basic_string_view<char_type> {
return std_string_view<char_type>(val);
}
FMT_CONSTEXPR FMT_INLINE auto map(const signed char* val) -> const char* {
static_assert(std::is_same<char_type, char>::value, "invalid string type");
return reinterpret_cast<const char*>(val);
}
FMT_CONSTEXPR FMT_INLINE auto map(const unsigned char* val) -> const char* {
static_assert(std::is_same<char_type, char>::value, "invalid string type");
return reinterpret_cast<const char*>(val);
}
FMT_CONSTEXPR FMT_INLINE auto map(signed char* val) -> const char* {
const auto* const_val = val;
return map(const_val);
}
FMT_CONSTEXPR FMT_INLINE auto map(unsigned char* val) -> const char* {
const auto* const_val = val;
return map(const_val);
}
FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; }
FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* {
return val;
}
FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* {
return val;
}
// We use SFINAE instead of a const T* parameter to avoid conflicting with
// the C array overload.
template <typename T>
FMT_CONSTEXPR auto map(T) -> enable_if_t<std::is_pointer<T>::value, int> {
// Formatting of arbitrary pointers is disallowed. If you want to output
// a pointer cast it to "void *" or "const void *". In particular, this
// forbids formatting of "[const] volatile char *" which is printed as bool
// by iostreams.
static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
return 0;
}
template <typename T, std::size_t N>
FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] {
return values;
}
template <typename T,
FMT_ENABLE_IF(std::is_enum<T>::value &&
!has_formatter<T, Context>::value &&
!has_fallback_formatter<T, char_type>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
-> decltype(std::declval<arg_mapper>().map(
static_cast<typename std::underlying_type<T>::type>(val))) {
return map(static_cast<typename std::underlying_type<T>::type>(val));
}
template <typename T,
FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
(has_formatter<T, Context>::value ||
has_fallback_formatter<T, char_type>::value))>
FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> const T& {
return val;
}
template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg)
-> decltype(std::declval<arg_mapper>().map(named_arg.value)) {
return map(named_arg.value);
}
auto map(...) -> unformattable { return {}; }
};
// A type constant after applying arg_mapper<Context>.
template <typename T, typename Context>
using mapped_type_constant =
type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
typename Context::char_type>;
enum { packed_arg_bits = 4 };
// Maximum number of arguments with packed types.
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
FMT_END_DETAIL_NAMESPACE
// An output iterator that appends to a buffer.
// It is used to reduce symbol sizes for the common case.
class appender : public std::back_insert_iterator<detail::buffer<char>> {
using base = std::back_insert_iterator<detail::buffer<char>>;
template <typename T>
friend auto get_buffer(appender out) -> detail::buffer<char>& {
return detail::get_container(out);
}
public:
using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
appender(base it) : base(it) {}
using _Unchecked_type = appender; // Mark iterator as checked.
auto operator++() -> appender& {
base::operator++();
return *this;
}
auto operator++(int) -> appender {
auto tmp = *this;
++*this;
return tmp;
}
};
// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in basic_memory_buffer.
template <typename Context> class basic_format_arg {
private:
detail::value<Context> value_;
detail::type type_;
template <typename ContextType, typename T>
friend FMT_CONSTEXPR auto detail::make_arg(const T& value)
-> basic_format_arg<ContextType>;
template <typename Visitor, typename Ctx>
friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
const basic_format_arg<Ctx>& arg)
-> decltype(vis(0));
friend class basic_format_args<Context>;
friend class dynamic_format_arg_store<Context>;
using char_type = typename Context::char_type;
template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
friend struct detail::arg_data;
basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
: value_(args, size) {}
public:
class handle {
public:
explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
void format(typename Context::parse_context_type& parse_ctx,
Context& ctx) const {
custom_.format(custom_.value, parse_ctx, ctx);
}
private:
detail::custom_value<Context> custom_;
};
constexpr basic_format_arg() : type_(detail::type::none_type) {}
constexpr explicit operator bool() const FMT_NOEXCEPT {
return type_ != detail::type::none_type;
}
auto type() const -> detail::type { return type_; }
auto is_integral() const -> bool { return detail::is_integral_type(type_); }
auto is_arithmetic() const -> bool {
return detail::is_arithmetic_type(type_);
}
};
/**
\rst
Visits an argument dispatching to the appropriate visit method based on
the argument type. For example, if the argument type is ``double`` then
``vis(value)`` will be called with the value of type ``double``.
\endrst
*/
template <typename Visitor, typename Context>
FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
switch (arg.type_) {
case detail::type::none_type:
break;
case detail::type::int_type:
return vis(arg.value_.int_value);
case detail::type::uint_type:
return vis(arg.value_.uint_value);
case detail::type::long_long_type:
return vis(arg.value_.long_long_value);
case detail::type::ulong_long_type:
return vis(arg.value_.ulong_long_value);
case detail::type::int128_type:
return vis(detail::convert_for_visit(arg.value_.int128_value));
case detail::type::uint128_type:
return vis(detail::convert_for_visit(arg.value_.uint128_value));
case detail::type::bool_type:
return vis(arg.value_.bool_value);
case detail::type::char_type:
return vis(arg.value_.char_value);
case detail::type::float_type:
return vis(arg.value_.float_value);
case detail::type::double_type:
return vis(arg.value_.double_value);
case detail::type::long_double_type:
return vis(arg.value_.long_double_value);
case detail::type::cstring_type:
return vis(arg.value_.string.data);
case detail::type::string_type:
using sv = basic_string_view<typename Context::char_type>;
return vis(sv(arg.value_.string.data, arg.value_.string.size));
case detail::type::pointer_type:
return vis(arg.value_.pointer);
case detail::type::custom_type:
return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
}
return vis(monostate());
}
FMT_BEGIN_DETAIL_NAMESPACE
template <typename Char, typename InputIt>
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
get_container(out).append(begin, end);
return out;
}
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename... Ts> struct void_t_impl { using type = void; };
template <typename... Ts>
using void_t = typename detail::void_t_impl<Ts...>::type;
#else
template <typename...> using void_t = void;
#endif
template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};
template <typename It, typename T>
struct is_output_iterator<
It, T,
void_t<typename std::iterator_traits<It>::iterator_category,
decltype(*std::declval<It>() = std::declval<T>())>>
: std::true_type {};
template <typename OutputIt>
struct is_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
: std::true_type {};
template <typename OutputIt>
struct is_contiguous_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
: is_contiguous<Container> {};
template <>
struct is_contiguous_back_insert_iterator<appender> : std::true_type {};
// A type-erased reference to an std::locale to avoid heavy <locale> include.
class locale_ref {
private:
const void* locale_; // A type-erased pointer to std::locale.
public:
constexpr locale_ref() : locale_(nullptr) {}
template <typename Locale> explicit locale_ref(const Locale& loc);
explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
template <typename Locale> auto get() const -> Locale;
};
template <typename> constexpr auto encode_types() -> unsigned long long {
return 0;
}
template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
(encode_types<Context, Args...>() << packed_arg_bits);
}
template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(const T& value) -> basic_format_arg<Context> {
basic_format_arg<Context> arg;
arg.type_ = mapped_type_constant<T, Context>::value;
arg.value_ = arg_mapper<Context>().map(value);
return arg;
}
// The type template parameter is there to avoid an ODR violation when using
// a fallback formatter in one translation unit and an implicit conversion in
// another (not recommended).
template <bool IS_PACKED, typename Context, type, typename T,
FMT_ENABLE_IF(IS_PACKED)>
FMT_CONSTEXPR FMT_INLINE auto make_arg(const T& val) -> value<Context> {
const auto& arg = arg_mapper<Context>().map(val);
static_assert(
!std::is_same<decltype(arg), const unformattable&>::value,
"Cannot format an argument. To make type T formattable provide a "
"formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
return {arg};
}
template <bool IS_PACKED, typename Context, type, typename T,
FMT_ENABLE_IF(!IS_PACKED)>
inline auto make_arg(const T& value) -> basic_format_arg<Context> {
return make_arg<Context>(value);
}
FMT_END_DETAIL_NAMESPACE
// Formatting context.
template <typename OutputIt, typename Char> class basic_format_context {
public:
/** The character type for the output. */
using char_type = Char;
private:
OutputIt out_;
basic_format_args<basic_format_context> args_;
detail::locale_ref loc_;
public:
using iterator = OutputIt;
using format_arg = basic_format_arg<basic_format_context>;
using parse_context_type = basic_format_parse_context<Char>;
template <typename T> using formatter_type = formatter<T, char_type>;
basic_format_context(basic_format_context&&) = default;
basic_format_context(const basic_format_context&) = delete;
void operator=(const basic_format_context&) = delete;
/**
Constructs a ``basic_format_context`` object. References to the arguments are
stored in the object so make sure they have appropriate lifetimes.
*/
constexpr basic_format_context(
OutputIt out, basic_format_args<basic_format_context> ctx_args,
detail::locale_ref loc = detail::locale_ref())
: out_(out), args_(ctx_args), loc_(loc) {}
constexpr auto arg(int id) const -> format_arg { return args_.get(id); }
FMT_CONSTEXPR auto arg(basic_string_view<char_type> name) -> format_arg {
return args_.get(name);
}
FMT_CONSTEXPR auto arg_id(basic_string_view<char_type> name) -> int {
return args_.get_id(name);
}
auto args() const -> const basic_format_args<basic_format_context>& {
return args_;
}
FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; }
void on_error(const char* message) { error_handler().on_error(message); }
// Returns an iterator to the beginning of the output range.
FMT_CONSTEXPR auto out() -> iterator { return out_; }
// Advances the begin iterator to ``it``.
void advance_to(iterator it) {
if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
}
FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; }
};
template <typename Char>
using buffer_context =
basic_format_context<detail::buffer_appender<Char>, Char>;
using format_context = buffer_context<char>;
// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
#define FMT_BUFFER_CONTEXT(Char) \
basic_format_context<detail::buffer_appender<Char>, Char>
template <typename T, typename Char = char>
using is_formattable = bool_constant<
!std::is_same<decltype(detail::arg_mapper<buffer_context<Char>>().map(
std::declval<T>())),
detail::unformattable>::value &&
!detail::has_fallback_formatter<T, Char>::value>;
/**
\rst
An array of references to arguments. It can be implicitly converted into
`~fmt::basic_format_args` for passing into type-erased formatting functions
such as `~fmt::vformat`.
\endrst
*/
template <typename Context, typename... Args>
class format_arg_store
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
// Workaround a GCC template argument substitution bug.
: public basic_format_args<Context>
#endif
{
private:
static const size_t num_args = sizeof...(Args);
static const size_t num_named_args = detail::count_named_args<Args...>();
static const bool is_packed = num_args <= detail::max_packed_args;
using value_type = conditional_t<is_packed, detail::value<Context>,
basic_format_arg<Context>>;
detail::arg_data<value_type, typename Context::char_type, num_args,
num_named_args>
data_;
friend class basic_format_args<Context>;
static constexpr unsigned long long desc =
(is_packed ? detail::encode_types<Context, Args...>()
: detail::is_unpacked_bit | num_args) |
(num_named_args != 0
? static_cast<unsigned long long>(detail::has_named_args_bit)
: 0);
public:
FMT_CONSTEXPR FMT_INLINE format_arg_store(const Args&... args)
:
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
basic_format_args<Context>(*this),
#endif
data_{detail::make_arg<
is_packed, Context,
detail::mapped_type_constant<Args, Context>::value>(args)...} {
detail::init_named_args(data_.named_args(), 0, 0, args...);
}
};
/**
\rst
Constructs a `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::format_args`. `Context`
can be omitted in which case it defaults to `~fmt::context`.
See `~fmt::arg` for lifetime considerations.
\endrst
*/
template <typename Context = format_context, typename... Args>
constexpr auto make_format_args(const Args&... args)
-> format_arg_store<Context, Args...> {
return {args...};
}
/**
\rst
Returns a named argument to be used in a formatting function.
It should only be used in a call to a formatting function or
`dynamic_format_arg_store::push_back`.
**Example**::
fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
\endrst
*/
template <typename Char, typename T>
inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
static_assert(!detail::is_named_arg<T>(), "nested named arguments");
return {name, arg};
}
/**
\rst
A view of a collection of formatting arguments. To avoid lifetime issues it
should only be used as a parameter type in type-erased functions such as
``vformat``::
void vlog(string_view format_str, format_args args); // OK
format_args args = make_format_args(42); // Error: dangling reference
\endrst
*/
template <typename Context> class basic_format_args {
public:
using size_type = int;
using format_arg = basic_format_arg<Context>;
private:
// A descriptor that contains information about formatting arguments.
// If the number of arguments is less or equal to max_packed_args then
// argument types are passed in the descriptor. This reduces binary code size
// per formatting function call.
unsigned long long desc_;
union {
// If is_packed() returns true then argument values are stored in values_;
// otherwise they are stored in args_. This is done to improve cache
// locality and reduce compiled code size since storing larger objects
// may require more code (at least on x86-64) even if the same amount of
// data is actually copied to stack. It saves ~10% on the bloat test.
const detail::value<Context>* values_;
const format_arg* args_;
};
constexpr auto is_packed() const -> bool {
return (desc_ & detail::is_unpacked_bit) == 0;
}
auto has_named_args() const -> bool {
return (desc_ & detail::has_named_args_bit) != 0;
}
FMT_CONSTEXPR auto type(int index) const -> detail::type {
int shift = index * detail::packed_arg_bits;
unsigned int mask = (1 << detail::packed_arg_bits) - 1;
return static_cast<detail::type>((desc_ >> shift) & mask);
}
constexpr FMT_INLINE basic_format_args(unsigned long long desc,
const detail::value<Context>* values)
: desc_(desc), values_(values) {}
constexpr basic_format_args(unsigned long long desc, const format_arg* args)
: desc_(desc), args_(args) {}
public:
constexpr basic_format_args() : desc_(0), args_(nullptr) {}
/**
\rst
Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
\endrst
*/
template <typename... Args>
constexpr FMT_INLINE basic_format_args(
const format_arg_store<Context, Args...>& store)
: basic_format_args(format_arg_store<Context, Args...>::desc,
store.data_.args()) {}
/**
\rst
Constructs a `basic_format_args` object from
`~fmt::dynamic_format_arg_store`.
\endrst
*/
constexpr FMT_INLINE basic_format_args(
const dynamic_format_arg_store<Context>& store)
: basic_format_args(store.get_types(), store.data()) {}
/**
\rst
Constructs a `basic_format_args` object from a dynamic set of arguments.
\endrst
*/
constexpr basic_format_args(const format_arg* args, int count)
: basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
args) {}
/** Returns the argument with the specified id. */
FMT_CONSTEXPR auto get(int id) const -> format_arg {
format_arg arg;
if (!is_packed()) {
if (id < max_size()) arg = args_[id];
return arg;
}
if (id >= detail::max_packed_args) return arg;
arg.type_ = type(id);
if (arg.type_ == detail::type::none_type) return arg;
arg.value_ = values_[id];
return arg;
}
template <typename Char>
auto get(basic_string_view<Char> name) const -> format_arg {
int id = get_id(name);
return id >= 0 ? get(id) : format_arg();
}
template <typename Char>
auto get_id(basic_string_view<Char> name) const -> int {
if (!has_named_args()) return -1;
const auto& named_args =
(is_packed() ? values_[-1] : args_[-1].value_).named_args;
for (size_t i = 0; i < named_args.size; ++i) {
if (named_args.data[i].name == name) return named_args.data[i].id;
}
return -1;
}
auto max_size() const -> int {
unsigned long long max_packed = detail::max_packed_args;
return static_cast<int>(is_packed() ? max_packed
: desc_ & ~detail::is_unpacked_bit);
}
};
/** An alias to ``basic_format_args<format_context>``. */
// A separate type would result in shorter symbols but break ABI compatibility
// between clang and gcc on ARM (#1919).
using format_args = basic_format_args<format_context>;
// We cannot use enum classes as bit fields because of a gcc bug
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414.
namespace align {
enum type { none, left, right, center, numeric };
}
using align_t = align::type;
namespace sign {
enum type { none, minus, plus, space };
}
using sign_t = sign::type;
FMT_BEGIN_DETAIL_NAMESPACE
void throw_format_error(const char* message);
// Workaround an array initialization issue in gcc 4.8.
template <typename Char> struct fill_t {
private:
enum { max_size = 4 };
Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)};
unsigned char size_ = 1;
public:
FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
auto size = s.size();
if (size > max_size) return throw_format_error("invalid fill");
for (size_t i = 0; i < size; ++i) data_[i] = s[i];
size_ = static_cast<unsigned char>(size);
}
constexpr auto size() const -> size_t { return size_; }
constexpr auto data() const -> const Char* { return data_; }
FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; }
FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& {
return data_[index];
}
};
FMT_END_DETAIL_NAMESPACE
// Format specifiers for built-in and string types.
template <typename Char> struct basic_format_specs {
int width;
int precision;
char type;
align_t align : 4;
sign_t sign : 3;
bool alt : 1; // Alternate form ('#').
bool localized : 1;
detail::fill_t<Char> fill;
constexpr basic_format_specs()
: width(0),
precision(-1),
type(0),
align(align::none),
sign(sign::none),
alt(false),
localized(false) {}
};
using format_specs = basic_format_specs<char>;
FMT_BEGIN_DETAIL_NAMESPACE
enum class arg_id_kind { none, index, name };
// An argument reference.
template <typename Char> struct arg_ref {
FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}
FMT_CONSTEXPR explicit arg_ref(int index)
: kind(arg_id_kind::index), val(index) {}
FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
: kind(arg_id_kind::name), val(name) {}
FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& {
kind = arg_id_kind::index;
val.index = idx;
return *this;
}
arg_id_kind kind;
union value {
FMT_CONSTEXPR value(int id = 0) : index{id} {}
FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}
int index;
basic_string_view<Char> name;
} val;
};
// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow re-using the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char>
struct dynamic_format_specs : basic_format_specs<Char> {
arg_ref<Char> width_ref;
arg_ref<Char> precision_ref;
};
struct auto_id {};
// A format specifier handler that sets fields in basic_format_specs.
template <typename Char> class specs_setter {
protected:
basic_format_specs<Char>& specs_;
public:
explicit FMT_CONSTEXPR specs_setter(basic_format_specs<Char>& specs)
: specs_(specs) {}
FMT_CONSTEXPR specs_setter(const specs_setter& other)
: specs_(other.specs_) {}
FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; }
FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) {
specs_.fill = fill;
}
FMT_CONSTEXPR void on_sign(sign_t s) { specs_.sign = s; }
FMT_CONSTEXPR void on_hash() { specs_.alt = true; }
FMT_CONSTEXPR void on_localized() { specs_.localized = true; }
FMT_CONSTEXPR void on_zero() {
if (specs_.align == align::none) specs_.align = align::numeric;
specs_.fill[0] = Char('0');
}
FMT_CONSTEXPR void on_width(int width) { specs_.width = width; }
FMT_CONSTEXPR void on_precision(int precision) {
specs_.precision = precision;
}
FMT_CONSTEXPR void end_precision() {}
FMT_CONSTEXPR void on_type(Char type) {
specs_.type = static_cast<char>(type);
}
};
// Format spec handler that saves references to arguments representing dynamic
// width and precision to be resolved at formatting time.
template <typename ParseContext>
class dynamic_specs_handler
: public specs_setter<typename ParseContext::char_type> {
public:
using char_type = typename ParseContext::char_type;
FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs<char_type>& specs,
ParseContext& ctx)
: specs_setter<char_type>(specs), specs_(specs), context_(ctx) {}
FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other)
: specs_setter<char_type>(other),
specs_(other.specs_),
context_(other.context_) {}
template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
specs_.width_ref = make_arg_ref(arg_id);
}
template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
specs_.precision_ref = make_arg_ref(arg_id);
}
FMT_CONSTEXPR void on_error(const char* message) {
context_.on_error(message);
}
private:
dynamic_format_specs<char_type>& specs_;
ParseContext& context_;
using arg_ref_type = arg_ref<char_type>;
FMT_CONSTEXPR auto make_arg_ref(int arg_id) -> arg_ref_type {
context_.check_arg_id(arg_id);
return arg_ref_type(arg_id);
}
FMT_CONSTEXPR auto make_arg_ref(auto_id) -> arg_ref_type {
return arg_ref_type(context_.next_arg_id());
}
FMT_CONSTEXPR auto make_arg_ref(basic_string_view<char_type> arg_id)
-> arg_ref_type {
context_.check_arg_id(arg_id);
basic_string_view<char_type> format_str(
context_.begin(), to_unsigned(context_.end() - context_.begin()));
return arg_ref_type(arg_id);
}
};
template <typename Char> constexpr bool is_ascii_letter(Char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}
// Converts a character to ASCII. Returns a number > 127 on conversion failure.
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
constexpr auto to_ascii(Char value) -> Char {
return value;
}
template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)>
constexpr auto to_ascii(Char value) ->
typename std::underlying_type<Char>::type {
return value;
}
template <typename Char>
FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
if (const_check(sizeof(Char) != 1)) return 1;
constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0};
int len = lengths[static_cast<unsigned char>(*begin) >> 3];
// Compute the pointer to the next character early so that the next
// iteration can start working on the next character. Neither Clang
// nor GCC figure out this reordering on their own.
return len + !len;
}
// Return the result via the out param to workaround gcc bug 77539.
template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool {
for (out = first; out != last; ++out) {
if (*out == value) return true;
}
return false;
}
template <>
inline auto find<false, char>(const char* first, const char* last, char value,
const char*& out) -> bool {
out = static_cast<const char*>(
std::memchr(first, value, to_unsigned(last - first)));
return out != nullptr;
}
// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char>
FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
int error_value) noexcept -> int {
FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
unsigned value = 0, prev = 0;
auto p = begin;
do {
prev = value;
value = value * 10 + unsigned(*p - '0');
++p;
} while (p != end && '0' <= *p && *p <= '9');
auto num_digits = p - begin;
begin = p;
if (num_digits <= std::numeric_limits<int>::digits10)
return static_cast<int>(value);
// Check for overflow.
const unsigned max = to_unsigned((std::numeric_limits<int>::max)());
return num_digits == std::numeric_limits<int>::digits10 + 1 &&
prev * 10ull + unsigned(p[-1] - '0') <= max
? static_cast<int>(value)
: error_value;
}
// Parses fill and alignment.
template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
Handler&& handler) -> const Char* {
FMT_ASSERT(begin != end, "");
auto align = align::none;
auto p = begin + code_point_length(begin);
if (p >= end) p = begin;
for (;;) {
switch (to_ascii(*p)) {
case '<':
align = align::left;
break;
case '>':
align = align::right;
break;
case '^':
align = align::center;
break;
default:
break;
}
if (align != align::none) {
if (p != begin) {
auto c = *begin;
if (c == '{')
return handler.on_error("invalid fill character '{'"), begin;
handler.on_fill(basic_string_view<Char>(begin, to_unsigned(p - begin)));
begin = p + 1;
} else
++begin;
handler.on_align(align);
break;
} else if (p == begin) {
break;
}
p = begin;
}
return begin;
}
template <typename Char> FMT_CONSTEXPR bool is_name_start(Char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c;
}
template <typename Char, typename IDHandler>
FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end,
IDHandler&& handler) -> const Char* {
FMT_ASSERT(begin != end, "");
Char c = *begin;
if (c >= '0' && c <= '9') {
int index = 0;
if (c != '0')
index =
parse_nonnegative_int(begin, end, (std::numeric_limits<int>::max)());
else
++begin;
if (begin == end || (*begin != '}' && *begin != ':'))
handler.on_error("invalid format string");
else
handler(index);
return begin;
}
if (!is_name_start(c)) {
handler.on_error("invalid format string");
return begin;
}
auto it = begin;
do {
++it;
} while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9')));
handler(basic_string_view<Char>(begin, to_unsigned(it - begin)));
return it;
}
template <typename Char, typename IDHandler>
FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end,
IDHandler&& handler) -> const Char* {
Char c = *begin;
if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler);
handler();
return begin;
}
template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_width(const Char* begin, const Char* end,
Handler&& handler) -> const Char* {
using detail::auto_id;
struct width_adapter {
Handler& handler;
FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); }
FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); }
FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
handler.on_dynamic_width(id);
}
FMT_CONSTEXPR void on_error(const char* message) {
if (message) handler.on_error(message);
}
};
FMT_ASSERT(begin != end, "");
if ('0' <= *begin && *begin <= '9') {
int width = parse_nonnegative_int(begin, end, -1);
if (width != -1)
handler.on_width(width);
else
handler.on_error("number is too big");
} else if (*begin == '{') {
++begin;
if (begin != end) begin = parse_arg_id(begin, end, width_adapter{handler});
if (begin == end || *begin != '}')
return handler.on_error("invalid format string"), begin;
++begin;
}
return begin;
}
template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
Handler&& handler) -> const Char* {
using detail::auto_id;
struct precision_adapter {
Handler& handler;
FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); }
FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); }
FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
handler.on_dynamic_precision(id);
}
FMT_CONSTEXPR void on_error(const char* message) {
if (message) handler.on_error(message);
}
};
++begin;
auto c = begin != end ? *begin : Char();
if ('0' <= c && c <= '9') {
auto precision = parse_nonnegative_int(begin, end, -1);
if (precision != -1)
handler.on_precision(precision);
else
handler.on_error("number is too big");
} else if (c == '{') {
++begin;
if (begin != end)
begin = parse_arg_id(begin, end, precision_adapter{handler});
if (begin == end || *begin++ != '}')
return handler.on_error("invalid format string"), begin;
} else {
return handler.on_error("missing precision specifier"), begin;
}
handler.end_precision();
return begin;
}
// Parses standard format specifiers and sends notifications about parsed
// components to handler.
template <typename Char, typename SpecHandler>
FMT_CONSTEXPR FMT_INLINE auto parse_format_specs(const Char* begin,
const Char* end,
SpecHandler&& handler)
-> const Char* {
if (begin + 1 < end && begin[1] == '}' && is_ascii_letter(*begin) &&
*begin != 'L') {
handler.on_type(*begin++);
return begin;
}
if (begin == end) return begin;
begin = parse_align(begin, end, handler);
if (begin == end) return begin;
// Parse sign.
switch (to_ascii(*begin)) {
case '+':
handler.on_sign(sign::plus);
++begin;
break;
case '-':
handler.on_sign(sign::minus);
++begin;
break;
case ' ':
handler.on_sign(sign::space);
++begin;
break;
default:
break;
}
if (begin == end) return begin;
if (*begin == '#') {
handler.on_hash();
if (++begin == end) return begin;
}
// Parse zero flag.
if (*begin == '0') {
handler.on_zero();
if (++begin == end) return begin;
}
begin = parse_width(begin, end, handler);
if (begin == end) return begin;
// Parse precision.
if (*begin == '.') {
begin = parse_precision(begin, end, handler);
if (begin == end) return begin;
}
if (*begin == 'L') {
handler.on_localized();
++begin;
}
// Parse type.
if (begin != end && *begin != '}') handler.on_type(*begin++);
return begin;
}
template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end,
Handler&& handler) -> const Char* {
struct id_adapter {
Handler& handler;
int arg_id;
FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); }
FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); }
FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
arg_id = handler.on_arg_id(id);
}
FMT_CONSTEXPR void on_error(const char* message) {
if (message) handler.on_error(message);
}
};
++begin;
if (begin == end) return handler.on_error("invalid format string"), end;
if (*begin == '}') {
handler.on_replacement_field(handler.on_arg_id(), begin);
} else if (*begin == '{') {
handler.on_text(begin, begin + 1);
} else {
auto adapter = id_adapter{handler, 0};
begin = parse_arg_id(begin, end, adapter);
Char c = begin != end ? *begin : Char();
if (c == '}') {
handler.on_replacement_field(adapter.arg_id, begin);
} else if (c == ':') {
begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
if (begin == end || *begin != '}')
return handler.on_error("unknown format specifier"), end;
} else {
return handler.on_error("missing '}' in format string"), end;
}
}
return begin + 1;
}
template <bool IS_CONSTEXPR, typename Char, typename Handler>
FMT_CONSTEXPR FMT_INLINE void parse_format_string(
basic_string_view<Char> format_str, Handler&& handler) {
// this is most likely a name-lookup defect in msvc's modules implementation
using detail::find;
auto begin = format_str.data();
auto end = begin + format_str.size();
if (end - begin < 32) {
// Use a simple loop instead of memchr for small strings.
const Char* p = begin;
while (p != end) {
auto c = *p++;
if (c == '{') {
handler.on_text(begin, p - 1);
begin = p = parse_replacement_field(p - 1, end, handler);
} else if (c == '}') {
if (p == end || *p != '}')
return handler.on_error("unmatched '}' in format string");
handler.on_text(begin, p);
begin = ++p;
}
}
handler.on_text(begin, end);
return;
}
struct writer {
FMT_CONSTEXPR void operator()(const Char* pbegin, const Char* pend) {
if (pbegin == pend) return;
for (;;) {
const Char* p = nullptr;
if (!find<IS_CONSTEXPR>(pbegin, pend, '}', p))
return handler_.on_text(pbegin, pend);
++p;
if (p == pend || *p != '}')
return handler_.on_error("unmatched '}' in format string");
handler_.on_text(pbegin, p);
pbegin = p + 1;
}
}
Handler& handler_;
} write{handler};
while (begin != end) {
// Doing two passes with memchr (one for '{' and another for '}') is up to
// 2.5x faster than the naive one-pass implementation on big format strings.
const Char* p = begin;
if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, '{', p))
return write(begin, end);
write(begin, p);
begin = parse_replacement_field(p, end, handler);
}
}
template <typename T, typename ParseContext>
FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx)
-> decltype(ctx.begin()) {
using char_type = typename ParseContext::char_type;
using context = buffer_context<char_type>;
using mapped_type = conditional_t<
mapped_type_constant<T, context>::value != type::custom_type,
decltype(arg_mapper<context>().map(std::declval<const T&>())), T>;
auto f = conditional_t<has_formatter<mapped_type, context>::value,
formatter<mapped_type, char_type>,
fallback_formatter<T, char_type>>();
return f.parse(ctx);
}
// A parse context with extra argument id checks. It is only used at compile
// time because adding checks at runtime would introduce substantial overhead
// and would be redundant since argument ids are checked when arguments are
// retrieved anyway.
template <typename Char, typename ErrorHandler = error_handler>
class compile_parse_context
: public basic_format_parse_context<Char, ErrorHandler> {
private:
int num_args_;
using base = basic_format_parse_context<Char, ErrorHandler>;
public:
explicit FMT_CONSTEXPR compile_parse_context(
basic_string_view<Char> format_str,
int num_args = (std::numeric_limits<int>::max)(), ErrorHandler eh = {})
: base(format_str, eh), num_args_(num_args) {}
FMT_CONSTEXPR auto next_arg_id() -> int {
int id = base::next_arg_id();
if (id >= num_args_) this->on_error("argument not found");
return id;
}
FMT_CONSTEXPR void check_arg_id(int id) {
base::check_arg_id(id);
if (id >= num_args_) this->on_error("argument not found");
}
using base::check_arg_id;
};
template <typename ErrorHandler>
FMT_CONSTEXPR void check_int_type_spec(char spec, ErrorHandler&& eh) {
switch (spec) {
case 0:
case 'd':
case 'x':
case 'X':
case 'b':
case 'B':
case 'o':
case 'c':
break;
default:
eh.on_error("invalid type specifier");
break;
}
}
// Checks char specs and returns true if the type spec is char (and not int).
template <typename Char, typename ErrorHandler = error_handler>
FMT_CONSTEXPR auto check_char_specs(const basic_format_specs<Char>& specs,
ErrorHandler&& eh = {}) -> bool {
if (specs.type && specs.type != 'c') {
check_int_type_spec(specs.type, eh);
return false;
}
if (specs.align == align::numeric || specs.sign != sign::none || specs.alt)
eh.on_error("invalid format specifier for char");
return true;
}
// A floating-point presentation format.
enum class float_format : unsigned char {
general, // General: exponent notation or fixed point based on magnitude.
exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3.
fixed, // Fixed point with the default precision of 6, e.g. 0.0012.
hex
};
struct float_specs {
int precision;
float_format format : 8;
sign_t sign : 8;
bool upper : 1;
bool locale : 1;
bool binary32 : 1;
bool use_grisu : 1;
bool showpoint : 1;
};
template <typename ErrorHandler = error_handler, typename Char>
FMT_CONSTEXPR auto parse_float_type_spec(const basic_format_specs<Char>& specs,
ErrorHandler&& eh = {})
-> float_specs {
auto result = float_specs();
result.showpoint = specs.alt;
result.locale = specs.localized;
switch (specs.type) {
case 0:
result.format = float_format::general;
break;
case 'G':
result.upper = true;
FMT_FALLTHROUGH;
case 'g':
result.format = float_format::general;
break;
case 'E':
result.upper = true;
FMT_FALLTHROUGH;
case 'e':
result.format = float_format::exp;
result.showpoint |= specs.precision != 0;
break;
case 'F':
result.upper = true;
FMT_FALLTHROUGH;
case 'f':
result.format = float_format::fixed;
result.showpoint |= specs.precision != 0;
break;
case 'A':
result.upper = true;
FMT_FALLTHROUGH;
case 'a':
result.format = float_format::hex;
break;
default:
eh.on_error("invalid type specifier");
break;
}
return result;
}
template <typename Char, typename ErrorHandler = error_handler>
FMT_CONSTEXPR auto check_cstring_type_spec(Char spec, ErrorHandler&& eh = {})
-> bool {
if (spec == 0 || spec == 's') return true;
if (spec != 'p') eh.on_error("invalid type specifier");
return false;
}
template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) {
if (spec != 0 && spec != 's') eh.on_error("invalid type specifier");
}
template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) {
if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier");
}
// A parse_format_specs handler that checks if specifiers are consistent with
// the argument type.
template <typename Handler> class specs_checker : public Handler {
private:
detail::type arg_type_;
FMT_CONSTEXPR void require_numeric_argument() {
if (!is_arithmetic_type(arg_type_))
this->on_error("format specifier requires numeric argument");
}
public:
FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type)
: Handler(handler), arg_type_(arg_type) {}
FMT_CONSTEXPR void on_align(align_t align) {
if (align == align::numeric) require_numeric_argument();
Handler::on_align(align);
}
FMT_CONSTEXPR void on_sign(sign_t s) {
require_numeric_argument();
if (is_integral_type(arg_type_) && arg_type_ != type::int_type &&
arg_type_ != type::long_long_type && arg_type_ != type::char_type) {
this->on_error("format specifier requires signed argument");
}
Handler::on_sign(s);
}
FMT_CONSTEXPR void on_hash() {
require_numeric_argument();
Handler::on_hash();
}
FMT_CONSTEXPR void on_localized() {
require_numeric_argument();
Handler::on_localized();
}
FMT_CONSTEXPR void on_zero() {
require_numeric_argument();
Handler::on_zero();
}
FMT_CONSTEXPR void end_precision() {
if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type)
this->on_error("precision not allowed for this argument type");
}
};
constexpr int invalid_arg_index = -1;
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <int N, typename T, typename... Args, typename Char>
constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
if constexpr (detail::is_statically_named_arg<T>()) {
if (name == T::name) return N;
}
if constexpr (sizeof...(Args) > 0)
return get_arg_index_by_name<N + 1, Args...>(name);
(void)name; // Workaround an MSVC bug about "unused" parameter.
return invalid_arg_index;
}
#endif
template <typename... Args, typename Char>
FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
if constexpr (sizeof...(Args) > 0)
return get_arg_index_by_name<0, Args...>(name);
#endif
(void)name;
return invalid_arg_index;
}
template <typename Char, typename ErrorHandler, typename... Args>
class format_string_checker {
private:
using parse_context_type = compile_parse_context<Char, ErrorHandler>;
enum { num_args = sizeof...(Args) };
// Format specifier parsing function.
using parse_func = const Char* (*)(parse_context_type&);
parse_context_type context_;
parse_func parse_funcs_[num_args > 0 ? num_args : 1];
public:
explicit FMT_CONSTEXPR format_string_checker(
basic_string_view<Char> format_str, ErrorHandler eh)
: context_(format_str, num_args, eh),
parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
return context_.check_arg_id(id), id;
}
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
auto index = get_arg_index_by_name<Args...>(id);
if (index == invalid_arg_index) on_error("named argument is not found");
return context_.check_arg_id(index), index;
#else
(void)id;
on_error("compile-time checks for named arguments require C++20 support");
return 0;
#endif
}
FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}
FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
-> const Char* {
context_.advance_to(context_.begin() + (begin - &*context_.begin()));
// id >= 0 check is a workaround for gcc 10 bug (#2065).
return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin;
}
FMT_CONSTEXPR void on_error(const char* message) {
context_.on_error(message);
}
};
template <typename... Args, typename S,
enable_if_t<(is_compile_string<S>::value), int>>
void check_format_string(S format_str) {
FMT_CONSTEXPR auto s = to_string_view(format_str);
using checker = format_string_checker<typename S::char_type, error_handler,
remove_cvref_t<Args>...>;
FMT_CONSTEXPR bool invalid_format =
(parse_format_string<true>(s, checker(s, {})), true);
(void)invalid_format;
}
template <typename Char>
void vformat_to(
buffer<Char>& buf, basic_string_view<Char> fmt,
basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
detail::locale_ref loc = {});
FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
#ifndef _WIN32
inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
#endif
FMT_END_DETAIL_NAMESPACE
// A formatter specialization for the core types corresponding to detail::type
// constants.
template <typename T, typename Char>
struct formatter<T, Char,
enable_if_t<detail::type_constant<T, Char>::value !=
detail::type::custom_type>> {
private:
detail::dynamic_format_specs<Char> specs_;
public:
// Parses format specifiers stopping either at the end of the range or at the
// terminating '}'.
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end) return begin;
using handler_type = detail::dynamic_specs_handler<ParseContext>;
auto type = detail::type_constant<T, Char>::value;
auto checker =
detail::specs_checker<handler_type>(handler_type(specs_, ctx), type);
auto it = detail::parse_format_specs(begin, end, checker);
auto eh = ctx.error_handler();
switch (type) {
case detail::type::none_type:
FMT_ASSERT(false, "invalid argument type");
break;
case detail::type::bool_type:
if (!specs_.type || specs_.type == 's') break;
FMT_FALLTHROUGH;
case detail::type::int_type:
case detail::type::uint_type:
case detail::type::long_long_type:
case detail::type::ulong_long_type:
case detail::type::int128_type:
case detail::type::uint128_type:
detail::check_int_type_spec(specs_.type, eh);
break;
case detail::type::char_type:
detail::check_char_specs(specs_, eh);
break;
case detail::type::float_type:
if (detail::const_check(FMT_USE_FLOAT))
detail::parse_float_type_spec(specs_, eh);
else
FMT_ASSERT(false, "float support disabled");
break;
case detail::type::double_type:
if (detail::const_check(FMT_USE_DOUBLE))
detail::parse_float_type_spec(specs_, eh);
else
FMT_ASSERT(false, "double support disabled");
break;
case detail::type::long_double_type:
if (detail::const_check(FMT_USE_LONG_DOUBLE))
detail::parse_float_type_spec(specs_, eh);
else
FMT_ASSERT(false, "long double support disabled");
break;
case detail::type::cstring_type:
detail::check_cstring_type_spec(specs_.type, eh);
break;
case detail::type::string_type:
detail::check_string_type_spec(specs_.type, eh);
break;
case detail::type::pointer_type:
detail::check_pointer_type_spec(specs_.type, eh);
break;
case detail::type::custom_type:
// Custom format specifiers are checked in parse functions of
// formatter specializations.
break;
}
return it;
}
template <typename FormatContext>
FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
-> decltype(ctx.out());
};
template <typename Char> struct basic_runtime { basic_string_view<Char> str; };
template <typename Char, typename... Args> class basic_format_string {
private:
basic_string_view<Char> str_;
public:
template <typename S,
FMT_ENABLE_IF(
std::is_convertible<const S&, basic_string_view<Char>>::value)>
FMT_CONSTEVAL basic_format_string(const S& s) : str_(s) {
static_assert(
detail::count<
(std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
std::is_reference<Args>::value)...>() == 0,
"passing views as lvalues is disallowed");
#ifdef FMT_HAS_CONSTEVAL
if constexpr (detail::count_named_args<Args...>() == 0) {
using checker = detail::format_string_checker<Char, detail::error_handler,
remove_cvref_t<Args>...>;
detail::parse_format_string<true>(str_, checker(s, {}));
}
#else
detail::check_format_string<Args...>(s);
#endif
}
basic_format_string(basic_runtime<Char> r) : str_(r.str) {}
FMT_INLINE operator basic_string_view<Char>() const { return str_; }
};
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
// Workaround broken conversion on older gcc.
template <typename... Args> using format_string = string_view;
template <typename S> auto runtime(const S& s) -> basic_string_view<char_t<S>> {
return s;
}
#else
template <typename... Args>
using format_string = basic_format_string<char, type_identity_t<Args>...>;
// Creates a runtime format string.
template <typename S> auto runtime(const S& s) -> basic_runtime<char_t<S>> {
return {{s}};
}
#endif
FMT_API auto vformat(string_view fmt, format_args args) -> std::string;
/**
\rst
Formats ``args`` according to specifications in ``fmt`` and returns the result
as a string.
**Example**::
#include <fmt/core.h>
std::string message = fmt::format("The answer is {}", 42);
\endrst
*/
template <typename... T>
FMT_INLINE auto format(format_string<T...> fmt, T&&... args) -> std::string {
return vformat(fmt, fmt::make_format_args(args...));
}
/** Formats a string and writes the output to ``out``. */
template <typename OutputIt,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt {
using detail::get_buffer;
auto&& buf = get_buffer<char>(out);
detail::vformat_to(buf, string_view(fmt), args);
return detail::get_iterator(buf);
}
/**
\rst
Formats ``args`` according to specifications in ``fmt``, writes the result to
the output iterator ``out`` and returns the iterator past the end of the output
range.
**Example**::
auto out = std::vector<char>();
fmt::format_to(std::back_inserter(out), "{}", 42);
\endrst
*/
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
FMT_INLINE auto format_to(OutputIt out, format_string<T...> fmt, T&&... args)
-> OutputIt {
return vformat_to(out, fmt, fmt::make_format_args(args...));
}
template <typename OutputIt> struct format_to_n_result {
/** Iterator past the end of the output range. */
OutputIt out;
/** Total (not truncated) output size. */
size_t size;
};
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
-> format_to_n_result<OutputIt> {
using buffer =
detail::iterator_buffer<OutputIt, char, detail::fixed_buffer_traits>;
auto buf = buffer(out, n);
detail::vformat_to(buf, fmt, args);
return {buf.out(), buf.count()};
}
/**
\rst
Formats ``args`` according to specifications in ``fmt``, writes up to ``n``
characters of the result to the output iterator ``out`` and returns the total
(not truncated) output size and the iterator past the end of the output range.
\endrst
*/
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
const T&... args) -> format_to_n_result<OutputIt> {
return vformat_to_n(out, n, fmt, fmt::make_format_args(args...));
}
/** Returns the number of chars in the output of ``format(fmt, args...)``. */
template <typename... T>
FMT_INLINE auto formatted_size(format_string<T...> fmt, T&&... args) -> size_t {
auto buf = detail::counting_buffer<>();
detail::vformat_to(buf, string_view(fmt), fmt::make_format_args(args...));
return buf.count();
}
FMT_API void vprint(string_view fmt, format_args args);
FMT_API void vprint(std::FILE* f, string_view fmt, format_args args);
/**
\rst
Formats ``args`` according to specifications in ``fmt`` and writes the output
to ``stdout``.
**Example**::
fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
\endrst
*/
template <typename... T>
FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
const auto& vargs = fmt::make_format_args(args...);
return detail::is_utf8() ? vprint(fmt, vargs)
: detail::vprint_mojibake(stdout, fmt, vargs);
}
/**
\rst
Formats ``args`` according to specifications in ``fmt`` and writes the
output to the file ``f``.
**Example**::
fmt::print(stderr, "Don't {}!", "panic");
\endrst
*/
template <typename... T>
FMT_INLINE void print(std::FILE* f, format_string<T...> fmt, T&&... args) {
const auto& vargs = fmt::make_format_args(args...);
return detail::is_utf8() ? vprint(f, fmt, vargs)
: detail::vprint_mojibake(f, fmt, vargs);
}
FMT_MODULE_EXPORT_END
FMT_GCC_PRAGMA("GCC pop_options")
FMT_END_NAMESPACE
#ifdef FMT_HEADER_ONLY
// # include "format.h"
#endif
#endif // FMT_CORE_H_
/*---------------------------------------------------------------------------
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
END #include "core.h"
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
--------------------------------------------------------------------------*/
#ifdef __INTEL_COMPILER
# define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
# define FMT_ICC_VERSION __ICL
#else
# define FMT_ICC_VERSION 0
#endif
#ifdef __NVCC__
# define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#else
# define FMT_CUDA_VERSION 0
#endif
#ifdef __has_builtin
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
# define FMT_HAS_BUILTIN(x) 0
#endif
#if FMT_GCC_VERSION || FMT_CLANG_VERSION
# define FMT_NOINLINE __attribute__((noinline))
#else
# define FMT_NOINLINE
#endif
#if FMT_MSC_VER
# define FMT_MSC_DEFAULT = default
#else
# define FMT_MSC_DEFAULT
#endif
#ifndef FMT_THROW
# if FMT_EXCEPTIONS
# if FMT_MSC_VER || FMT_NVCC
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Exception> inline void do_throw(const Exception& x) {
// Silence unreachable code warnings in MSVC and NVCC because these
// are nearly impossible to fix in a generic code.
volatile bool b = true;
if (b) throw x;
}
} // namespace detail
FMT_END_NAMESPACE
# define FMT_THROW(x) detail::do_throw(x)
# else
# define FMT_THROW(x) throw x
# endif
# else
# define FMT_THROW(x) \
do { \
FMT_ASSERT(false, (x).what()); \
} while (false)
# endif
#endif
#if FMT_EXCEPTIONS
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif
#ifndef FMT_DEPRECATED
# if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
# define FMT_DEPRECATED [[deprecated]]
# else
# if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
# define FMT_DEPRECATED __attribute__((deprecated))
# elif FMT_MSC_VER
# define FMT_DEPRECATED __declspec(deprecated)
# else
# define FMT_DEPRECATED /* deprecated */
# endif
# endif
#endif
// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
# define FMT_DEPRECATED_ALIAS
#else
# define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
#endif
#ifndef FMT_USE_USER_DEFINED_LITERALS
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
# if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
FMT_MSC_VER >= 1900) && \
(!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
# define FMT_USE_USER_DEFINED_LITERALS 1
# else
# define FMT_USE_USER_DEFINED_LITERALS 0
# endif
#endif
// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
// integer formatter template instantiations to just one by only using the
// largest integer type. This results in a reduction in binary size but will
// cause a decrease in integer formatting performance.
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
# define FMT_REDUCE_INT_INSTANTIATIONS 0
#endif
// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER
# define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER
# define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz))
# define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll))
# define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
#endif
#if FMT_MSC_VER
# include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128
#endif
// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
// MSVC intrinsics if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(FMT_BUILTIN_CTZLL)
FMT_BEGIN_NAMESPACE
namespace detail {
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
# if !defined(__clang__)
# pragma managed(push, off)
# pragma intrinsic(_BitScanForward)
# pragma intrinsic(_BitScanReverse)
# if defined(_WIN64)
# pragma intrinsic(_BitScanForward64)
# pragma intrinsic(_BitScanReverse64)
# endif
# endif
inline auto clz(uint32_t x) -> int {
unsigned long r = 0;
_BitScanReverse(&r, x);
FMT_ASSERT(x != 0, "");
// Static analysis complains about using uninitialized data
// "r", but the only way that can happen is if "x" is 0,
// which the callers guarantee to not happen.
FMT_MSC_WARNING(suppress : 6102)
return 31 ^ static_cast<int>(r);
}
# define FMT_BUILTIN_CLZ(n) detail::clz(n)
inline auto clzll(uint64_t x) -> int {
unsigned long r = 0;
# ifdef _WIN64
_BitScanReverse64(&r, x);
# else
// Scan the high 32 bits.
if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32);
// Scan the low 32 bits.
_BitScanReverse(&r, static_cast<uint32_t>(x));
# endif
FMT_ASSERT(x != 0, "");
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
return 63 ^ static_cast<int>(r);
}
# define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
inline auto ctz(uint32_t x) -> int {
unsigned long r = 0;
_BitScanForward(&r, x);
FMT_ASSERT(x != 0, "");
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
return static_cast<int>(r);
}
# define FMT_BUILTIN_CTZ(n) detail::ctz(n)
inline auto ctzll(uint64_t x) -> int {
unsigned long r = 0;
FMT_ASSERT(x != 0, "");
FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
# ifdef _WIN64
_BitScanForward64(&r, x);
# else
// Scan the low 32 bits.
if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
// Scan the high 32 bits.
_BitScanForward(&r, static_cast<uint32_t>(x >> 32));
r += 32;
# endif
return static_cast<int>(r);
}
# define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
# if !defined(__clang__)
# pragma managed(pop)
# endif
} // namespace detail
FMT_END_NAMESPACE
#endif
FMT_BEGIN_NAMESPACE
namespace detail {
#if __cplusplus >= 202002L || \
(__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002)
# define FMT_CONSTEXPR20 constexpr
#else
# define FMT_CONSTEXPR20
#endif
// An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have
// undefined behavior (e.g. due to type aliasing).
// Example: uint64_t d = bit_cast<uint64_t>(2.718);
template <typename Dest, typename Source>
inline auto bit_cast(const Source& source) -> Dest {
static_assert(sizeof(Dest) == sizeof(Source), "size mismatch");
Dest dest;
std::memcpy(&dest, &source, sizeof(dest));
return dest;
}
inline auto is_big_endian() -> bool {
const auto u = 1u;
struct bytes {
char data[sizeof(u)];
};
return bit_cast<bytes>(u).data[0] == 0;
}
// A fallback implementation of uintptr_t for systems that lack it.
struct fallback_uintptr {
unsigned char value[sizeof(void*)];
fallback_uintptr() = default;
explicit fallback_uintptr(const void* p) {
*this = bit_cast<fallback_uintptr>(p);
if (is_big_endian()) {
for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j)
std::swap(value[i], value[j]);
}
}
};
#ifdef UINTPTR_MAX
using uintptr_t = ::uintptr_t;
inline auto to_uintptr(const void* p) -> uintptr_t {
return bit_cast<uintptr_t>(p);
}
#else
using uintptr_t = fallback_uintptr;
inline auto to_uintptr(const void* p) -> fallback_uintptr {
return fallback_uintptr(p);
}
#endif
// Returns the largest possible value for type T. Same as
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
template <typename T> constexpr auto max_value() -> T {
return (std::numeric_limits<T>::max)();
}
template <typename T> constexpr auto num_bits() -> int {
return std::numeric_limits<T>::digits;
}
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
template <> constexpr auto num_bits<int128_t>() -> int { return 128; }
template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
template <> constexpr auto num_bits<fallback_uintptr>() -> int {
return static_cast<int>(sizeof(void*) *
std::numeric_limits<unsigned char>::digits);
}
FMT_INLINE void assume(bool condition) {
(void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume)
__builtin_assume(condition);
#endif
}
// An approximation of iterator_t for pre-C++20 systems.
template <typename T>
using iterator_t = decltype(std::begin(std::declval<T&>()));
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
// A workaround for std::string not having mutable data() until C++17.
template <typename Char>
inline auto get_data(std::basic_string<Char>& s) -> Char* {
return &s[0];
}
template <typename Container>
inline auto get_data(Container& c) -> typename Container::value_type* {
return c.data();
}
#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T> auto make_checked(T* p, size_t size) -> checked_ptr<T> {
return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> inline auto make_checked(T* p, size_t) -> T* { return p; }
#endif
// Attempts to reserve space for n extra characters in the output range.
// Returns a pointer to the reserved range or a reference to it.
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
__attribute__((no_sanitize("undefined")))
#endif
inline auto
reserve(std::back_insert_iterator<Container> it, size_t n)
-> checked_ptr<typename Container::value_type> {
Container& c = get_container(it);
size_t size = c.size();
c.resize(size + n);
return make_checked(get_data(c) + size, n);
}
template <typename T>
inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
buffer<T>& buf = get_container(it);
buf.try_reserve(buf.size() + n);
return it;
}
template <typename Iterator>
constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
return it;
}
template <typename OutputIt>
using reserve_iterator =
remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
template <typename T, typename OutputIt>
constexpr auto to_pointer(OutputIt, size_t) -> T* {
return nullptr;
}
template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
buffer<T>& buf = get_container(it);
auto size = buf.size();
if (buf.capacity() < size + n) return nullptr;
buf.try_resize(size + n);
return buf.data() + size;
}
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline auto base_iterator(std::back_insert_iterator<Container>& it,
checked_ptr<typename Container::value_type>)
-> std::back_insert_iterator<Container> {
return it;
}
template <typename Iterator>
constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
return it;
}
// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
// instead (#1998).
template <typename OutputIt, typename Size, typename T>
FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
-> OutputIt {
for (Size i = 0; i < count; ++i) *out++ = value;
return out;
}
template <typename T, typename Size>
FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
if (is_constant_evaluated()) {
return fill_n<T*, Size, T>(out, count, value);
}
std::memset(out, value, to_unsigned(count));
return out + count;
}
#ifdef __cpp_char8_t
using char8_type = char8_t;
#else
enum char8_type : unsigned char {};
#endif
template <typename OutChar, typename InputIt, typename OutputIt>
FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
OutputIt out) -> OutputIt {
return copy_str<OutChar>(begin, end, out);
}
// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from s, reporting errors in e.
*
* Since this is a branchless decoder, four bytes will be read from the
* buffer regardless of the actual length of the next character. This
* means the buffer _must_ have at least three bytes of zero padding
* following the end of the data stream.
*
* Errors are reported in e, which will be non-zero if the parsed
* character was somehow invalid: invalid byte sequence, non-canonical
* encoding, or a surrogate half.
*
* The function returns a pointer to the next character. When an error
* occurs, this pointer will be a guess that depends on the particular
* error, but it will always advance at least one byte.
*/
FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
-> const char* {
constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
constexpr const int shiftc[] = {0, 18, 12, 6, 0};
constexpr const int shifte[] = {0, 6, 4, 2, 0};
int len = code_point_length(s);
const char* next = s + len;
// Assume a four-byte character and load four bytes. Unused bits are
// shifted out.
*c = uint32_t(s[0] & masks[len]) << 18;
*c |= uint32_t(s[1] & 0x3f) << 12;
*c |= uint32_t(s[2] & 0x3f) << 6;
*c |= uint32_t(s[3] & 0x3f) << 0;
*c >>= shiftc[len];
// Accumulate the various error conditions.
using uchar = unsigned char;
*e = (*c < mins[len]) << 6; // non-canonical encoding
*e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
*e |= (*c > 0x10FFFF) << 8; // out of range?
*e |= (uchar(s[1]) & 0xc0) >> 2;
*e |= (uchar(s[2]) & 0xc0) >> 4;
*e |= uchar(s[3]) >> 6;
*e ^= 0x2a; // top two bits of each tail byte correct?
*e >>= shifte[len];
return next;
}
template <typename F>
FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
auto decode = [f](const char* p) {
auto cp = uint32_t();
auto error = 0;
p = utf8_decode(p, &cp, &error);
f(cp, error);
return p;
};
auto p = s.data();
const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
if (s.size() >= block_size) {
for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p);
}
if (auto num_chars_left = s.data() + s.size() - p) {
char buf[2 * block_size - 1] = {};
copy_str<char>(p, p + num_chars_left, buf);
p = buf;
do {
p = decode(p);
} while (p - buf < num_chars_left);
}
}
template <typename Char>
inline auto compute_width(basic_string_view<Char> s) -> size_t {
return s.size();
}
// Computes approximate display width of a UTF-8 string.
FMT_CONSTEXPR inline size_t compute_width(string_view s) {
size_t num_code_points = 0;
// It is not a lambda for compatibility with C++14.
struct count_code_points {
size_t* count;
FMT_CONSTEXPR void operator()(uint32_t cp, int error) const {
*count += detail::to_unsigned(
1 +
(error == 0 && cp >= 0x1100 &&
(cp <= 0x115f || // Hangul Jamo init. consonants
cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET〈
cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET 〉
// CJK ... Yi except Unicode Character “〿”:
(cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
(cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables
(cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs
(cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms
(cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms
(cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms
(cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms
(cp >= 0x20000 && cp <= 0x2fffd) || // CJK
(cp >= 0x30000 && cp <= 0x3fffd) ||
// Miscellaneous Symbols and Pictographs + Emoticons:
(cp >= 0x1f300 && cp <= 0x1f64f) ||
// Supplemental Symbols and Pictographs:
(cp >= 0x1f900 && cp <= 0x1f9ff))));
}
};
for_each_codepoint(s, count_code_points{&num_code_points});
return num_code_points;
}
inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
return compute_width(basic_string_view<char>(
reinterpret_cast<const char*>(s.data()), s.size()));
}
template <typename Char>
inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
size_t size = s.size();
return n < size ? n : size;
}
// Calculates the index of the nth code point in a UTF-8 string.
inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
-> size_t {
const char8_type* data = s.data();
size_t num_code_points = 0;
for (size_t i = 0, size = s.size(); i != size; ++i) {
if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
}
return s.size();
}
template <typename T>
using is_fast_float = bool_constant<std::numeric_limits<T>::is_iec559 &&
sizeof(T) <= sizeof(double)>;
#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
# define FMT_USE_FULL_CACHE_DRAGONBOX 0
#endif
template <typename T>
template <typename U>
void buffer<T>::append(const U* begin, const U* end) {
while (begin != end) {
auto count = to_unsigned(end - begin);
try_reserve(size_ + count);
auto free_cap = capacity_ - size_;
if (free_cap < count) count = free_cap;
std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
size_ += count;
begin += count;
}
}
template <typename T, typename Enable = void>
struct is_locale : std::false_type {};
template <typename T>
struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
} // namespace detail
FMT_MODULE_EXPORT_BEGIN
// The number of characters to store in the basic_memory_buffer object itself
// to avoid dynamic memory allocation.
enum { inline_buffer_size = 500 };
/**
\rst
A dynamically growing memory buffer for trivially copyable/constructible types
with the first ``SIZE`` elements stored in the object itself.
You can use the ```memory_buffer`` type alias for ``char`` instead.
**Example**::
fmt::memory_buffer out;
format_to(out, "The answer is {}.", 42);
This will append the following output to the ``out`` object:
.. code-block:: none
The answer is 42.
The output can be converted to an ``std::string`` with ``to_string(out)``.
\endrst
*/
template <typename T, size_t SIZE = inline_buffer_size,
typename Allocator = std::allocator<T>>
class basic_memory_buffer final : public detail::buffer<T> {
private:
T store_[SIZE];
// Don't inherit from Allocator avoid generating type_info for it.
Allocator alloc_;
// Deallocate memory allocated by the buffer.
void deallocate() {
T* data = this->data();
if (data != store_) alloc_.deallocate(data, this->capacity());
}
protected:
void grow(size_t size) final FMT_OVERRIDE;
public:
using value_type = T;
using const_reference = const T&;
explicit basic_memory_buffer(const Allocator& alloc = Allocator())
: alloc_(alloc) {
this->set(store_, SIZE);
}
~basic_memory_buffer() { deallocate(); }
private:
// Move data from other to this buffer.
void move(basic_memory_buffer& other) {
alloc_ = std::move(other.alloc_);
T* data = other.data();
size_t size = other.size(), capacity = other.capacity();
if (data == other.store_) {
this->set(store_, capacity);
std::uninitialized_copy(other.store_, other.store_ + size,
detail::make_checked(store_, capacity));
} else {
this->set(data, capacity);
// Set pointer to the inline array so that delete is not called
// when deallocating.
other.set(other.store_, 0);
}
this->resize(size);
}
public:
/**
\rst
Constructs a :class:`fmt::basic_memory_buffer` object moving the content
of the other object to it.
\endrst
*/
basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); }
/**
\rst
Moves the content of the other ``basic_memory_buffer`` object to this one.
\endrst
*/
auto operator=(basic_memory_buffer&& other) FMT_NOEXCEPT
-> basic_memory_buffer& {
FMT_ASSERT(this != &other, "");
deallocate();
move(other);
return *this;
}
// Returns a copy of the allocator associated with this buffer.
auto get_allocator() const -> Allocator { return alloc_; }
/**
Resizes the buffer to contain *count* elements. If T is a POD type new
elements may not be initialized.
*/
void resize(size_t count) { this->try_resize(count); }
/** Increases the buffer capacity to *new_capacity*. */
void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
// Directly append data into the buffer
using detail::buffer<T>::append;
template <typename ContiguousRange>
void append(const ContiguousRange& range) {
append(range.data(), range.data() + range.size());
}
};
template <typename T, size_t SIZE, typename Allocator>
void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) {
#ifdef FMT_FUZZ
if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much");
#endif
const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
size_t old_capacity = this->capacity();
size_t new_capacity = old_capacity + old_capacity / 2;
if (size > new_capacity)
new_capacity = size;
else if (new_capacity > max_size)
new_capacity = size > max_size ? size : max_size;
T* old_data = this->data();
T* new_data =
std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
// The following code doesn't throw, so the raw pointer above doesn't leak.
std::uninitialized_copy(old_data, old_data + this->size(),
detail::make_checked(new_data, new_capacity));
this->set(new_data, new_capacity);
// deallocate must not throw according to the standard, but even if it does,
// the buffer already uses the new storage and will deallocate it in
// destructor.
if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
}
using memory_buffer = basic_memory_buffer<char>;
template <typename T, size_t SIZE, typename Allocator>
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
};
namespace detail {
FMT_API void print(std::FILE*, string_view);
}
/** A formatting error such as invalid format string. */
FMT_CLASS_API
class FMT_API format_error : public std::runtime_error {
public:
explicit format_error(const char* message) : std::runtime_error(message) {}
explicit format_error(const std::string& message)
: std::runtime_error(message) {}
format_error(const format_error&) = default;
format_error& operator=(const format_error&) = default;
format_error(format_error&&) = default;
format_error& operator=(format_error&&) = default;
~format_error() FMT_NOEXCEPT FMT_OVERRIDE FMT_MSC_DEFAULT;
};
/**
\rst
Constructs a `~fmt::format_arg_store` object that contains references
to arguments and can be implicitly converted to `~fmt::format_args`.
If ``fmt`` is a compile-time string then `make_args_checked` checks
its validity at compile time.
\endrst
*/
template <typename... Args, typename S, typename Char = char_t<S>>
FMT_INLINE auto make_args_checked(const S& fmt,
const remove_reference_t<Args>&... args)
-> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
static_assert(
detail::count<(
std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
std::is_reference<Args>::value)...>() == 0,
"passing views as lvalues is disallowed");
detail::check_format_string<Args...>(fmt);
return {args...};
}
// compile-time support
namespace detail_exported {
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <typename Char, size_t N> struct fixed_string {
constexpr fixed_string(const Char (&str)[N]) {
detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
str + N, data);
}
Char data[N]{};
};
#endif
// Converts a compile-time string to basic_string_view.
template <typename Char, size_t N>
constexpr auto compile_string_to_view(const Char (&s)[N])
-> basic_string_view<Char> {
// Remove trailing NUL character if needed. Won't be present if this is used
// with a raw character array (i.e. not defined as a string).
return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
}
template <typename Char>
constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
-> basic_string_view<Char> {
return {s.data(), s.size()};
}
} // namespace detail_exported
FMT_BEGIN_DETAIL_NAMESPACE
inline void throw_format_error(const char* message) {
FMT_THROW(format_error(message));
}
template <typename T> struct is_integral : std::is_integral<T> {};
template <> struct is_integral<int128_t> : std::true_type {};
template <> struct is_integral<uint128_t> : std::true_type {};
template <typename T>
using is_signed =
std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
std::is_same<T, int128_t>::value>;
// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
FMT_CONSTEXPR auto is_negative(T value) -> bool {
return value < 0;
}
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
FMT_CONSTEXPR auto is_negative(T) -> bool {
return false;
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
FMT_CONSTEXPR auto is_supported_floating_point(T) -> uint16_t {
return (std::is_same<T, float>::value && FMT_USE_FLOAT) ||
(std::is_same<T, double>::value && FMT_USE_DOUBLE) ||
(std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE);
}
// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
// represent all values of an integral type T.
template <typename T>
using uint32_or_64_or_128_t =
conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
uint32_t,
conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
template <typename T>
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
#define FMT_POWERS_OF_10(factor) \
factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
(factor)*1000000, (factor)*10000000, (factor)*100000000, \
(factor)*1000000000
// Static data is placed in this class template for the header-only config.
template <typename T = void> struct basic_data {
// log10(2) = 0x0.4d104d427de7fbcc...
static const uint64_t log10_2_significand = 0x4d104d427de7fbcc;
// GCC generates slightly better code for pairs than chars.
FMT_API static constexpr const char digits[][2] = {
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
{'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
{'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
{'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
{'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
{'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
{'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
{'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
{'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
{'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
{'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
{'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
{'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
{'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
FMT_API static constexpr const char hex_digits[] = "0123456789abcdef";
FMT_API static constexpr const char signs[] = {0, '-', '+', ' '};
FMT_API static constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
0x1000000u | ' '};
FMT_API static constexpr const char left_padding_shifts[] = {31, 31, 0, 1, 0};
FMT_API static constexpr const char right_padding_shifts[] = {0, 31, 0, 1, 0};
};
#ifdef FMT_SHARED
// Required for -flto, -fivisibility=hidden and -shared to work
extern template struct basic_data<void>;
#endif
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};
template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
int count = 1;
for (;;) {
// Integer division is slow so do it for a group of four digits instead
// of for every digit. The idea comes from the talk by Alexandrescu
// "Three Optimization Tips for C++". See speed-test for a comparison.
if (n < 10) return count;
if (n < 100) return count + 1;
if (n < 1000) return count + 2;
if (n < 10000) return count + 3;
n /= 10000u;
count += 4;
}
}
#if FMT_USE_INT128
FMT_CONSTEXPR inline auto count_digits(uint128_t n) -> int {
return count_digits_fallback(n);
}
#endif
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
#ifdef FMT_BUILTIN_CLZLL
if (!is_constant_evaluated()) {
// https://github.com/fmtlib/format-benchmark/blob/master/digits10
// Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
constexpr uint16_t bsr2log10[] = {
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
constexpr const uint64_t zero_or_powers_of_10[] = {
0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
return t - (n < zero_or_powers_of_10[t]);
}
#endif
return count_digits_fallback(n);
}
// Counts the number of digits in n. BITS = log2(radix).
template <int BITS, typename UInt>
FMT_CONSTEXPR auto count_digits(UInt n) -> int {
#ifdef FMT_BUILTIN_CLZ
if (num_bits<UInt>() == 32)
return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
#endif
int num_digits = 0;
do {
++num_digits;
} while ((n >>= BITS) != 0);
return num_digits;
}
template <> auto count_digits<4>(detail::fallback_uintptr n) -> int;
// It is a separate function rather than a part of count_digits to workaround
// the lack of static constexpr in constexpr functions.
FMT_INLINE uint64_t count_digits_inc(int n) {
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
#define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
static constexpr uint64_t table[] = {
FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512
FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096
FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k
FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k
FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k
FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M
FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M
FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M
FMT_INC(1000000000), FMT_INC(1000000000) // 4B
};
return table[n];
}
// Optional version of count_digits for better performance on 32-bit platforms.
FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
#ifdef FMT_BUILTIN_CLZ
if (!is_constant_evaluated()) {
auto inc = count_digits_inc(FMT_BUILTIN_CLZ(n | 1) ^ 31);
return static_cast<int>((n + inc) >> 32);
}
#endif
return count_digits_fallback(n);
}
template <typename Int> constexpr auto digits10() FMT_NOEXCEPT -> int {
return std::numeric_limits<Int>::digits10;
}
template <> constexpr auto digits10<int128_t>() FMT_NOEXCEPT -> int {
return 38;
}
template <> constexpr auto digits10<uint128_t>() FMT_NOEXCEPT -> int {
return 38;
}
template <typename Char> struct thousands_sep_result {
std::string grouping;
Char thousands_sep;
};
template <typename Char>
FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
template <typename Char>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
auto result = thousands_sep_impl<char>(loc);
return {result.grouping, Char(result.thousands_sep)};
}
template <>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
return thousands_sep_impl<wchar_t>(loc);
}
template <typename Char>
FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
return Char(decimal_point_impl<char>(loc));
}
template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
return decimal_point_impl<wchar_t>(loc);
}
// Compares two characters for equality.
template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
return lhs[0] == rhs[0] && lhs[1] == rhs[1];
}
inline auto equal2(const char* lhs, const char* rhs) -> bool {
return memcmp(lhs, rhs, 2) == 0;
}
// Copies two characters from src to dst.
template <typename Char> void copy2(Char* dst, const char* src) {
*dst++ = static_cast<Char>(*src++);
*dst = static_cast<Char>(*src);
}
FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); }
template <typename Iterator> struct format_decimal_result {
Iterator begin;
Iterator end;
};
// Formats a decimal unsigned integer value writing into out pointing to a
// buffer of specified size. The caller must ensure that the buffer is large
// enough.
template <typename Char, typename UInt>
FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
-> format_decimal_result<Char*> {
FMT_ASSERT(size >= count_digits(value), "invalid digit count");
out += size;
Char* end = out;
if (is_constant_evaluated()) {
while (value >= 10) {
*--out = static_cast<Char>('0' + value % 10);
value /= 10;
}
*--out = static_cast<Char>('0' + value);
return {out, end};
}
while (value >= 100) {
// Integer division is slow so do it for a group of two digits instead
// of for every digit. The idea comes from the talk by Alexandrescu
// "Three Optimization Tips for C++". See speed-test for a comparison.
out -= 2;
copy2(out, data::digits[value % 100]);
value /= 100;
}
if (value < 10) {
*--out = static_cast<Char>('0' + value);
return {out, end};
}
out -= 2;
copy2(out, data::digits[value]);
return {out, end};
}
template <typename Char, typename UInt, typename Iterator,
FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
inline auto format_decimal(Iterator out, UInt value, int size)
-> format_decimal_result<Iterator> {
// Buffer is large enough to hold all digits (digits10 + 1).
Char buffer[digits10<UInt>() + 1];
auto end = format_decimal(buffer, value, size).end;
return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
}
template <unsigned BASE_BITS, typename Char, typename UInt>
FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
bool upper = false) -> Char* {
buffer += num_digits;
Char* end = buffer;
do {
const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits;
unsigned digit = (value & ((1 << BASE_BITS) - 1));
*--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
: digits[digit]);
} while ((value >>= BASE_BITS) != 0);
return end;
}
template <unsigned BASE_BITS, typename Char>
auto format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits,
bool = false) -> Char* {
auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
int start = (num_digits + char_digits - 1) / char_digits - 1;
if (int start_digits = num_digits % char_digits) {
unsigned value = n.value[start--];
buffer = format_uint<BASE_BITS>(buffer, value, start_digits);
}
for (; start >= 0; --start) {
unsigned value = n.value[start];
buffer += char_digits;
auto p = buffer;
for (int i = 0; i < char_digits; ++i) {
unsigned digit = (value & ((1 << BASE_BITS) - 1));
*--p = static_cast<Char>(data::hex_digits[digit]);
value >>= BASE_BITS;
}
}
return buffer;
}
template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
-> It {
if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
format_uint<BASE_BITS>(ptr, value, num_digits, upper);
return out;
}
// Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
char buffer[num_bits<UInt>() / BASE_BITS + 1];
format_uint<BASE_BITS>(buffer, value, num_digits, upper);
return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
}
// A converter from UTF-8 to UTF-16.
class utf8_to_utf16 {
private:
basic_memory_buffer<wchar_t> buffer_;
public:
FMT_API explicit utf8_to_utf16(string_view s);
operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
auto size() const -> size_t { return buffer_.size() - 1; }
auto c_str() const -> const wchar_t* { return &buffer_[0]; }
auto str() const -> std::wstring { return {&buffer_[0], size()}; }
};
namespace dragonbox {
// Type-specific information that Dragonbox uses.
template <class T> struct float_info;
template <> struct float_info<float> {
using carrier_uint = uint32_t;
static const int significand_bits = 23;
static const int exponent_bits = 8;
static const int min_exponent = -126;
static const int max_exponent = 127;
static const int exponent_bias = -127;
static const int decimal_digits = 9;
static const int kappa = 1;
static const int big_divisor = 100;
static const int small_divisor = 10;
static const int min_k = -31;
static const int max_k = 46;
static const int cache_bits = 64;
static const int divisibility_check_by_5_threshold = 39;
static const int case_fc_pm_half_lower_threshold = -1;
static const int case_fc_pm_half_upper_threshold = 6;
static const int case_fc_lower_threshold = -2;
static const int case_fc_upper_threshold = 6;
static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
static const int shorter_interval_tie_lower_threshold = -35;
static const int shorter_interval_tie_upper_threshold = -35;
static const int max_trailing_zeros = 7;
};
template <> struct float_info<double> {
using carrier_uint = uint64_t;
static const int significand_bits = 52;
static const int exponent_bits = 11;
static const int min_exponent = -1022;
static const int max_exponent = 1023;
static const int exponent_bias = -1023;
static const int decimal_digits = 17;
static const int kappa = 2;
static const int big_divisor = 1000;
static const int small_divisor = 100;
static const int min_k = -292;
static const int max_k = 326;
static const int cache_bits = 128;
static const int divisibility_check_by_5_threshold = 86;
static const int case_fc_pm_half_lower_threshold = -2;
static const int case_fc_pm_half_upper_threshold = 9;
static const int case_fc_lower_threshold = -4;
static const int case_fc_upper_threshold = 9;
static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
static const int shorter_interval_tie_lower_threshold = -77;
static const int shorter_interval_tie_upper_threshold = -77;
static const int max_trailing_zeros = 16;
};
template <typename T> struct decimal_fp {
using significand_type = typename float_info<T>::carrier_uint;
significand_type significand;
int exponent;
};
template <typename T>
FMT_API auto to_decimal(T x) FMT_NOEXCEPT -> decimal_fp<T>;
} // namespace dragonbox
template <typename T>
constexpr auto exponent_mask() ->
typename dragonbox::float_info<T>::carrier_uint {
using uint = typename dragonbox::float_info<T>::carrier_uint;
return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1)
<< dragonbox::float_info<T>::significand_bits;
}
// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Char, typename It>
auto write_exponent(int exp, It it) -> It {
FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
if (exp < 0) {
*it++ = static_cast<Char>('-');
exp = -exp;
} else {
*it++ = static_cast<Char>('+');
}
if (exp >= 100) {
const char* top = data::digits[exp / 100];
if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
*it++ = static_cast<Char>(top[1]);
exp %= 100;
}
const char* d = data::digits[exp];
*it++ = static_cast<Char>(d[0]);
*it++ = static_cast<Char>(d[1]);
return it;
}
template <typename T>
auto format_float(T value, int precision, float_specs specs, buffer<char>& buf)
-> int;
// Formats a floating-point number with snprintf.
template <typename T>
auto snprintf_float(T value, int precision, float_specs specs,
buffer<char>& buf) -> int;
template <typename T> auto promote_float(T value) -> T { return value; }
inline auto promote_float(float value) -> double {
return static_cast<double>(value);
}
template <typename OutputIt, typename Char>
FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
const fill_t<Char>& fill) -> OutputIt {
auto fill_size = fill.size();
if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
auto data = fill.data();
for (size_t i = 0; i < n; ++i)
it = copy_str<Char>(data, data + fill_size, it);
return it;
}
// Writes the output of f, padded according to format specifications in specs.
// size: output size in code units.
// width: output display width in (terminal) column positions.
template <align::type align = align::left, typename OutputIt, typename Char,
typename F>
FMT_CONSTEXPR auto write_padded(OutputIt out,
const basic_format_specs<Char>& specs,
size_t size, size_t width, F&& f) -> OutputIt {
static_assert(align == align::left || align == align::right, "");
unsigned spec_width = to_unsigned(specs.width);
size_t padding = spec_width > width ? spec_width - width : 0;
auto* shifts = align == align::left ? data::left_padding_shifts
: data::right_padding_shifts;
size_t left_padding = padding >> shifts[specs.align];
size_t right_padding = padding - left_padding;
auto it = reserve(out, size + padding * specs.fill.size());
if (left_padding != 0) it = fill(it, left_padding, specs.fill);
it = f(it);
if (right_padding != 0) it = fill(it, right_padding, specs.fill);
return base_iterator(out, it);
}
template <align::type align = align::left, typename OutputIt, typename Char,
typename F>
constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs,
size_t size, F&& f) -> OutputIt {
return write_padded<align>(out, specs, size, size, f);
}
template <align::type align = align::left, typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
const basic_format_specs<Char>& specs)
-> OutputIt {
return write_padded<align>(
out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
const char* data = bytes.data();
return copy_str<Char>(data, data + bytes.size(), it);
});
}
template <typename Char, typename OutputIt, typename UIntPtr>
auto write_ptr(OutputIt out, UIntPtr value,
const basic_format_specs<Char>* specs) -> OutputIt {
int num_digits = count_digits<4>(value);
auto size = to_unsigned(num_digits) + size_t(2);
auto write = [=](reserve_iterator<OutputIt> it) {
*it++ = static_cast<Char>('0');
*it++ = static_cast<Char>('x');
return format_uint<4, Char>(it, value, num_digits);
};
return specs ? write_padded<align::right>(out, *specs, size, write)
: base_iterator(out, write(reserve(out, size)));
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
const basic_format_specs<Char>& specs)
-> OutputIt {
return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
*it++ = value;
return it;
});
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value,
const basic_format_specs<Char>& specs,
locale_ref loc = {}) -> OutputIt {
return check_char_specs(specs)
? write_char(out, value, specs)
: write(out, static_cast<int>(value), specs, loc);
}
// Data for write_int that doesn't depend on output iterator type. It is used to
// avoid template code bloat.
template <typename Char> struct write_int_data {
size_t size;
size_t padding;
FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
const basic_format_specs<Char>& specs)
: size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
if (specs.align == align::numeric) {
auto width = to_unsigned(specs.width);
if (width > size) {
padding = width - size;
size = width;
}
} else if (specs.precision > num_digits) {
size = (prefix >> 24) + to_unsigned(specs.precision);
padding = to_unsigned(specs.precision - num_digits);
}
}
};
// Writes an integer in the format
// <left-padding><prefix><numeric-padding><digits><right-padding>
// where <digits> are written by write_digits(it).
// prefix contains chars in three lower bytes and the size in the fourth byte.
template <typename OutputIt, typename Char, typename W>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
unsigned prefix,
const basic_format_specs<Char>& specs,
W write_digits) -> OutputIt {
// Slightly faster check for specs.width == 0 && specs.precision == -1.
if ((specs.width | (specs.precision + 1)) == 0) {
auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
if (prefix != 0) {
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
*it++ = static_cast<Char>(p & 0xff);
}
return base_iterator(out, write_digits(it));
}
auto data = write_int_data<Char>(num_digits, prefix, specs);
return write_padded<align::right>(
out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
*it++ = static_cast<Char>(p & 0xff);
it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
return write_digits(it);
});
}
template <typename OutputIt, typename UInt, typename Char>
auto write_int_localized(OutputIt& out, UInt value, unsigned prefix,
const basic_format_specs<Char>& specs, locale_ref loc)
-> bool {
static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
const auto sep_size = 1;
auto ts = thousands_sep<Char>(loc);
if (!ts.thousands_sep) return false;
int num_digits = count_digits(value);
int size = num_digits, n = num_digits;
const std::string& groups = ts.grouping;
std::string::const_iterator group = groups.cbegin();
while (group != groups.cend() && n > *group && *group > 0 &&
*group != max_value<char>()) {
size += sep_size;
n -= *group;
++group;
}
if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back());
char digits[40];
format_decimal(digits, value, num_digits);
basic_memory_buffer<Char> buffer;
if (prefix != 0) ++size;
const auto usize = to_unsigned(size);
buffer.resize(usize);
basic_string_view<Char> s(&ts.thousands_sep, sep_size);
// Index of a decimal digit with the least significant digit having index 0.
int digit_index = 0;
group = groups.cbegin();
auto p = buffer.data() + size - 1;
for (int i = num_digits - 1; i > 0; --i) {
*p-- = static_cast<Char>(digits[i]);
if (*group <= 0 || ++digit_index % *group != 0 ||
*group == max_value<char>())
continue;
if (group + 1 != groups.cend()) {
digit_index = 0;
++group;
}
std::uninitialized_copy(s.data(), s.data() + s.size(),
make_checked(p, s.size()));
p -= s.size();
}
*p-- = static_cast<Char>(*digits);
if (prefix != 0) *p = static_cast<Char>(prefix);
auto data = buffer.data();
out = write_padded<align::right>(
out, specs, usize, usize, [=](reserve_iterator<OutputIt> it) {
return copy_str<Char>(data, data + size, it);
});
return true;
}
FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
prefix |= prefix != 0 ? value << 8 : value;
prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
}
template <typename UInt> struct write_int_arg {
UInt abs_value;
unsigned prefix;
};
template <typename T>
FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
-> write_int_arg<uint32_or_64_or_128_t<T>> {
auto prefix = 0u;
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
if (is_negative(value)) {
prefix = 0x01000000 | '-';
abs_value = 0 - abs_value;
} else {
prefix = data::prefixes[sign];
}
return {abs_value, prefix};
}
template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
const basic_format_specs<Char>& specs,
locale_ref loc) -> OutputIt {
static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
auto abs_value = arg.abs_value;
auto prefix = arg.prefix;
auto utype = static_cast<unsigned>(specs.type);
switch (specs.type) {
case 0:
case 'd': {
if (specs.localized &&
write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value),
prefix, specs, loc)) {
return out;
}
auto num_digits = count_digits(abs_value);
return write_int(
out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
return format_decimal<Char>(it, abs_value, num_digits).end;
});
}
case 'x':
case 'X': {
if (specs.alt) prefix_append(prefix, (utype << 8) | '0');
bool upper = specs.type != 'x';
int num_digits = count_digits<4>(abs_value);
return write_int(
out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
return format_uint<4, Char>(it, abs_value, num_digits, upper);
});
}
case 'b':
case 'B': {
if (specs.alt) prefix_append(prefix, (utype << 8) | '0');
int num_digits = count_digits<1>(abs_value);
return write_int(out, num_digits, prefix, specs,
[=](reserve_iterator<OutputIt> it) {
return format_uint<1, Char>(it, abs_value, num_digits);
});
}
case 'o': {
int num_digits = count_digits<3>(abs_value);
if (specs.alt && specs.precision <= num_digits && abs_value != 0) {
// Octal prefix '0' is counted as a digit, so only add it if precision
// is not greater than the number of digits.
prefix_append(prefix, '0');
}
return write_int(out, num_digits, prefix, specs,
[=](reserve_iterator<OutputIt> it) {
return format_uint<3, Char>(it, abs_value, num_digits);
});
}
case 'c':
return write_char(out, static_cast<Char>(abs_value), specs);
default:
FMT_THROW(format_error("invalid type specifier"));
}
return out;
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(is_integral<T>::value &&
!std::is_same<T, bool>::value &&
std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value,
const basic_format_specs<Char>& specs, locale_ref loc)
-> OutputIt {
return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
}
// An inlined version of write used in format string compilation.
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(is_integral<T>::value &&
!std::is_same<T, bool>::value &&
!std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
const basic_format_specs<Char>& specs,
locale_ref loc) -> OutputIt {
return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
const basic_format_specs<Char>& specs) -> OutputIt {
auto data = s.data();
auto size = s.size();
if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
size = code_point_index(s, to_unsigned(specs.precision));
auto width =
specs.width != 0 ? compute_width(basic_string_view<Char>(data, size)) : 0;
return write_padded(out, specs, size, width,
[=](reserve_iterator<OutputIt> it) {
return copy_str<Char>(data, data + size, it);
});
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out,
basic_string_view<type_identity_t<Char>> s,
const basic_format_specs<Char>& specs, locale_ref)
-> OutputIt {
return write(out, s, specs);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
const basic_format_specs<Char>& specs, locale_ref)
-> OutputIt {
return check_cstring_type_spec(specs.type)
? write(out, basic_string_view<Char>(s), specs, {})
: write_ptr<Char>(out, to_uintptr(s), &specs);
}
template <typename Char, typename OutputIt>
auto write_nonfinite(OutputIt out, bool isinf, basic_format_specs<Char> specs,
const float_specs& fspecs) -> OutputIt {
auto str =
isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan");
constexpr size_t str_size = 3;
auto sign = fspecs.sign;
auto size = str_size + (sign ? 1 : 0);
// Replace '0'-padding with space for non-finite values.
const bool is_zero_fill =
specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
if (sign) *it++ = static_cast<Char>(data::signs[sign]);
return copy_str<Char>(str, str + str_size, it);
});
}
// A decimal floating-point number significand * pow(10, exp).
struct big_decimal_fp {
const char* significand;
int significand_size;
int exponent;
};
inline auto get_significand_size(const big_decimal_fp& fp) -> int {
return fp.significand_size;
}
template <typename T>
inline auto get_significand_size(const dragonbox::decimal_fp<T>& fp) -> int {
return count_digits(fp.significand);
}
template <typename Char, typename OutputIt>
inline auto write_significand(OutputIt out, const char* significand,
int& significand_size) -> OutputIt {
return copy_str<Char>(significand, significand + significand_size, out);
}
template <typename Char, typename OutputIt, typename UInt>
inline auto write_significand(OutputIt out, UInt significand,
int significand_size) -> OutputIt {
return format_decimal<Char>(out, significand, significand_size).end;
}
template <typename Char, typename UInt,
FMT_ENABLE_IF(std::is_integral<UInt>::value)>
inline auto write_significand(Char* out, UInt significand, int significand_size,
int integral_size, Char decimal_point) -> Char* {
if (!decimal_point)
return format_decimal(out, significand, significand_size).end;
auto end = format_decimal(out + 1, significand, significand_size).end;
if (integral_size == 1) {
out[0] = out[1];
} else {
std::uninitialized_copy_n(out + 1, integral_size,
make_checked(out, to_unsigned(integral_size)));
}
out[integral_size] = decimal_point;
return end;
}
template <typename OutputIt, typename UInt, typename Char,
FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
inline auto write_significand(OutputIt out, UInt significand,
int significand_size, int integral_size,
Char decimal_point) -> OutputIt {
// Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
Char buffer[digits10<UInt>() + 2];
auto end = write_significand(buffer, significand, significand_size,
integral_size, decimal_point);
return detail::copy_str_noinline<Char>(buffer, end, out);
}
template <typename OutputIt, typename Char>
inline auto write_significand(OutputIt out, const char* significand,
int significand_size, int integral_size,
Char decimal_point) -> OutputIt {
out = detail::copy_str_noinline<Char>(significand,
significand + integral_size, out);
if (!decimal_point) return out;
*out++ = decimal_point;
return detail::copy_str_noinline<Char>(significand + integral_size,
significand + significand_size, out);
}
template <typename OutputIt, typename DecimalFP, typename Char>
auto write_float(OutputIt out, const DecimalFP& fp,
const basic_format_specs<Char>& specs, float_specs fspecs,
Char decimal_point) -> OutputIt {
auto significand = fp.significand;
int significand_size = get_significand_size(fp);
static const Char zero = static_cast<Char>('0');
auto sign = fspecs.sign;
size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
using iterator = reserve_iterator<OutputIt>;
int output_exp = fp.exponent + significand_size - 1;
auto use_exp_format = [=]() {
if (fspecs.format == float_format::exp) return true;
if (fspecs.format != float_format::general) return false;
// Use the fixed notation if the exponent is in [exp_lower, exp_upper),
// e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
const int exp_lower = -4, exp_upper = 16;
return output_exp < exp_lower ||
output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
};
if (use_exp_format()) {
int num_zeros = 0;
if (fspecs.showpoint) {
num_zeros = fspecs.precision - significand_size;
if (num_zeros < 0) num_zeros = 0;
size += to_unsigned(num_zeros);
} else if (significand_size == 1) {
decimal_point = Char();
}
auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
int exp_digits = 2;
if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
char exp_char = fspecs.upper ? 'E' : 'e';
auto write = [=](iterator it) {
if (sign) *it++ = static_cast<Char>(data::signs[sign]);
// Insert a decimal point after the first digit and add an exponent.
it = write_significand(it, significand, significand_size, 1,
decimal_point);
if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
*it++ = static_cast<Char>(exp_char);
return write_exponent<Char>(output_exp, it);
};
return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
: base_iterator(out, write(reserve(out, size)));
}
int exp = fp.exponent + significand_size;
if (fp.exponent >= 0) {
// 1234e5 -> 123400000[.0+]
size += to_unsigned(fp.exponent);
int num_zeros = fspecs.precision - exp;
#ifdef FMT_FUZZ
if (num_zeros > 5000)
throw std::runtime_error("fuzz mode - avoiding excessive cpu use");
#endif
if (fspecs.showpoint) {
if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1;
if (num_zeros > 0) size += to_unsigned(num_zeros) + 1;
}
return write_padded<align::right>(out, specs, size, [&](iterator it) {
if (sign) *it++ = static_cast<Char>(data::signs[sign]);
it = write_significand<Char>(it, significand, significand_size);
it = detail::fill_n(it, fp.exponent, zero);
if (!fspecs.showpoint) return it;
*it++ = decimal_point;
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
});
} else if (exp > 0) {
// 1234e-2 -> 12.34[0+]
int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
return write_padded<align::right>(out, specs, size, [&](iterator it) {
if (sign) *it++ = static_cast<Char>(data::signs[sign]);
it = write_significand(it, significand, significand_size, exp,
decimal_point);
return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
});
}
// 1234e-6 -> 0.001234
int num_zeros = -exp;
if (significand_size == 0 && fspecs.precision >= 0 &&
fspecs.precision < num_zeros) {
num_zeros = fspecs.precision;
}
bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
return write_padded<align::right>(out, specs, size, [&](iterator it) {
if (sign) *it++ = static_cast<Char>(data::signs[sign]);
*it++ = zero;
if (!pointy) return it;
*it++ = decimal_point;
it = detail::fill_n(it, num_zeros, zero);
return write_significand<Char>(it, significand, significand_size);
});
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(std::is_floating_point<T>::value)>
auto write(OutputIt out, T value, basic_format_specs<Char> specs,
locale_ref loc = {}) -> OutputIt {
if (const_check(!is_supported_floating_point(value))) return out;
float_specs fspecs = parse_float_type_spec(specs);
fspecs.sign = specs.sign;
if (std::signbit(value)) { // value < 0 is false for NaN so use signbit.
fspecs.sign = sign::minus;
value = -value;
} else if (fspecs.sign == sign::minus) {
fspecs.sign = sign::none;
}
if (!std::isfinite(value))
return write_nonfinite(out, std::isinf(value), specs, fspecs);
if (specs.align == align::numeric && fspecs.sign) {
auto it = reserve(out, 1);
*it++ = static_cast<Char>(data::signs[fspecs.sign]);
out = base_iterator(out, it);
fspecs.sign = sign::none;
if (specs.width != 0) --specs.width;
}
memory_buffer buffer;
if (fspecs.format == float_format::hex) {
if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]);
snprintf_float(promote_float(value), specs.precision, fspecs, buffer);
return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
specs);
}
int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6;
if (fspecs.format == float_format::exp) {
if (precision == max_value<int>())
FMT_THROW(format_error("number is too big"));
else
++precision;
}
if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
fspecs.use_grisu = is_fast_float<T>();
int exp = format_float(promote_float(value), precision, fspecs, buffer);
fspecs.precision = precision;
Char point =
fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.');
auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
return write_float(out, fp, specs, fspecs, point);
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(is_fast_float<T>::value)>
auto write(OutputIt out, T value) -> OutputIt {
if (const_check(!is_supported_floating_point(value))) return out;
using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
using uint = typename dragonbox::float_info<floaty>::carrier_uint;
auto bits = bit_cast<uint>(value);
auto fspecs = float_specs();
auto sign_bit = bits & (uint(1) << (num_bits<uint>() - 1));
if (sign_bit != 0) {
fspecs.sign = sign::minus;
value = -value;
}
static const auto specs = basic_format_specs<Char>();
uint mask = exponent_mask<floaty>();
if ((bits & mask) == mask)
return write_nonfinite(out, std::isinf(value), specs, fspecs);
auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
return write_float(out, dec, specs, fspecs, static_cast<Char>('.'));
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(std::is_floating_point<T>::value &&
!is_fast_float<T>::value)>
inline auto write(OutputIt out, T value) -> OutputIt {
return write(out, value, basic_format_specs<Char>());
}
template <typename Char, typename OutputIt>
auto write(OutputIt out, monostate, basic_format_specs<Char> = {},
locale_ref = {}) -> OutputIt {
FMT_ASSERT(false, "");
return out;
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
-> OutputIt {
auto it = reserve(out, value.size());
it = copy_str_noinline<Char>(value.begin(), value.end(), it);
return base_iterator(out, it);
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(is_string<T>::value)>
constexpr auto write(OutputIt out, const T& value) -> OutputIt {
return write<Char>(out, to_string_view(value));
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(is_integral<T>::value &&
!std::is_same<T, bool>::value &&
!std::is_same<T, Char>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
bool negative = is_negative(value);
// Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
if (negative) abs_value = ~abs_value + 1;
int num_digits = count_digits(abs_value);
auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
auto it = reserve(out, size);
if (auto ptr = to_pointer<Char>(it, size)) {
if (negative) *ptr++ = static_cast<Char>('-');
format_decimal<Char>(ptr, abs_value, num_digits);
return out;
}
if (negative) *it++ = static_cast<Char>('-');
it = format_decimal<Char>(it, abs_value, num_digits).end;
return base_iterator(out, it);
}
// FMT_ENABLE_IF() condition separated to workaround MSVC bug
template <
typename Char, typename OutputIt, typename T,
bool check =
std::is_enum<T>::value && !std::is_same<T, Char>::value &&
mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
type::custom_type,
FMT_ENABLE_IF(check)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
return write<Char>(
out, static_cast<typename std::underlying_type<T>::type>(value));
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(std::is_same<T, bool>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value,
const basic_format_specs<Char>& specs = {},
locale_ref = {}) -> OutputIt {
return specs.type && specs.type != 's'
? write(out, value ? 1 : 0, specs, {})
: write_bytes(out, value ? "true" : "false", specs);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
auto it = reserve(out, 1);
*it++ = value;
return base_iterator(out, it);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
-> OutputIt {
if (!value) {
FMT_THROW(format_error("string pointer is null"));
} else {
auto length = std::char_traits<Char>::length(value);
out = write(out, basic_string_view<Char>(value, length));
}
return out;
}
template <typename Char, typename OutputIt, typename T,
FMT_ENABLE_IF(std::is_same<T, void>::value)>
auto write(OutputIt out, const T* value,
const basic_format_specs<Char>& specs = {}, locale_ref = {})
-> OutputIt {
check_pointer_type_spec(specs.type, error_handler());
return write_ptr<Char>(out, to_uintptr(value), &specs);
}
template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR auto write(OutputIt out, const T& value) ->
typename std::enable_if<
mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value ==
type::custom_type,
OutputIt>::type {
using context_type = basic_format_context<OutputIt, Char>;
using formatter_type =
conditional_t<has_formatter<T, context_type>::value,
typename context_type::template formatter_type<T>,
fallback_formatter<T, Char>>;
context_type ctx(out, {}, {});
return formatter_type().format(value, ctx);
}
// An argument visitor that formats the argument and writes it via the output
// iterator. It's a class and not a generic lambda for compatibility with C++11.
template <typename Char> struct default_arg_formatter {
using iterator = buffer_appender<Char>;
using context = buffer_context<Char>;
iterator out;
basic_format_args<context> args;
locale_ref loc;
template <typename T> auto operator()(T value) -> iterator {
return write<Char>(out, value);
}
auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
basic_format_parse_context<Char> parse_ctx({});
context format_ctx(out, args, loc);
h.format(parse_ctx, format_ctx);
return format_ctx.out();
}
};
template <typename Char> struct arg_formatter {
using iterator = buffer_appender<Char>;
using context = buffer_context<Char>;
iterator out;
const basic_format_specs<Char>& specs;
locale_ref locale;
template <typename T>
FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
return detail::write(out, value, specs, locale);
}
auto operator()(typename basic_format_arg<context>::handle) -> iterator {
// User-defined types are handled separately because they require access
// to the parse context.
return out;
}
};
template <typename Char> struct custom_formatter {
basic_format_parse_context<Char>& parse_ctx;
buffer_context<Char>& ctx;
void operator()(
typename basic_format_arg<buffer_context<Char>>::handle h) const {
h.format(parse_ctx, ctx);
}
template <typename T> void operator()(T) const {}
};
template <typename T>
using is_integer =
bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
!std::is_same<T, char>::value &&
!std::is_same<T, wchar_t>::value>;
template <typename ErrorHandler> class width_checker {
public:
explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
if (is_negative(value)) handler_.on_error("negative width");
return static_cast<unsigned long long>(value);
}
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
handler_.on_error("width is not integer");
return 0;
}
private:
ErrorHandler& handler_;
};
template <typename ErrorHandler> class precision_checker {
public:
explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}
template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
if (is_negative(value)) handler_.on_error("negative precision");
return static_cast<unsigned long long>(value);
}
template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
handler_.on_error("precision is not integer");
return 0;
}
private:
ErrorHandler& handler_;
};
template <template <typename> class Handler, typename FormatArg,
typename ErrorHandler>
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
return static_cast<int>(value);
}
template <typename Context, typename ID>
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
typename Context::format_arg {
auto arg = ctx.arg(id);
if (!arg) ctx.on_error("argument not found");
return arg;
}
// The standard format specifier handler with checking.
template <typename Char> class specs_handler : public specs_setter<Char> {
private:
basic_format_parse_context<Char>& parse_context_;
buffer_context<Char>& context_;
// This is only needed for compatibility with gcc 4.4.
using format_arg = basic_format_arg<buffer_context<Char>>;
FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg {
return detail::get_arg(context_, parse_context_.next_arg_id());
}
FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg {
parse_context_.check_arg_id(arg_id);
return detail::get_arg(context_, arg_id);
}
FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg {
parse_context_.check_arg_id(arg_id);
return detail::get_arg(context_, arg_id);
}
public:
FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs,
basic_format_parse_context<Char>& parse_ctx,
buffer_context<Char>& ctx)
: specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {}
template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
this->specs_.width = get_dynamic_spec<width_checker>(
get_arg(arg_id), context_.error_handler());
}
template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
this->specs_.precision = get_dynamic_spec<precision_checker>(
get_arg(arg_id), context_.error_handler());
}
void on_error(const char* message) { context_.on_error(message); }
};
template <template <typename> class Handler, typename Context>
FMT_CONSTEXPR void handle_dynamic_spec(int& value,
arg_ref<typename Context::char_type> ref,
Context& ctx) {
switch (ref.kind) {
case arg_id_kind::none:
break;
case arg_id_kind::index:
value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
ctx.error_handler());
break;
case arg_id_kind::name:
value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
ctx.error_handler());
break;
}
}
#define FMT_STRING_IMPL(s, base, explicit) \
[] { \
/* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
/* Use a macro-like name to avoid shadowing warnings. */ \
struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \
using char_type = fmt::remove_cvref_t<decltype(s[0])>; \
FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \
operator fmt::basic_string_view<char_type>() const { \
return fmt::detail_exported::compile_string_to_view<char_type>(s); \
} \
}; \
return FMT_COMPILE_STRING(); \
}()
/**
\rst
Constructs a compile-time format string from a string literal *s*.
**Example**::
// A compile-time error because 'd' is an invalid specifier for strings.
std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
\endrst
*/
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string, )
#if FMT_USE_USER_DEFINED_LITERALS
template <typename Char> struct udl_formatter {
basic_string_view<Char> str;
template <typename... T>
auto operator()(T&&... args) const -> std::basic_string<Char> {
return vformat(str, fmt::make_args_checked<T...>(str, args...));
}
};
# if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <typename T, typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
struct statically_named_arg : view {
static constexpr auto name = Str.data;
const T& value;
statically_named_arg(const T& v) : value(v) {}
};
template <typename T, typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
template <typename T, typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
: std::true_type {};
template <typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
struct udl_arg {
template <typename T> auto operator=(T&& value) const {
return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
}
};
# else
template <typename Char> struct udl_arg {
const Char* str;
template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
return {str, std::forward<T>(value)};
}
};
# endif
#endif // FMT_USE_USER_DEFINED_LITERALS
template <typename Locale, typename Char>
auto vformat(const Locale& loc, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
basic_memory_buffer<Char> buffer;
detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc));
return {buffer.data(), buffer.size()};
}
using format_func = void (*)(detail::buffer<char>&, int, const char*);
FMT_API void format_error_code(buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT;
FMT_API void report_error(format_func func, int error_code,
const char* message) FMT_NOEXCEPT;
FMT_END_DETAIL_NAMESPACE
FMT_API auto vsystem_error(int error_code, string_view format_str,
format_args args) -> std::system_error;
/**
\rst
Constructs :class:`std::system_error` with a message formatted with
``fmt::format(fmt, args...)``.
*error_code* is a system error code as given by ``errno``.
**Example**::
// This throws std::system_error with the description
// cannot open file 'madeup': No such file or directory
// or similar (system message may vary).
const char* filename = "madeup";
std::FILE* file = std::fopen(filename, "r");
if (!file)
throw fmt::system_error(errno, "cannot open file '{}'", filename);
\endrst
*/
template <typename... T>
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
-> std::system_error {
return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
}
/**
\rst
Formats an error message for an error returned by an operating system or a
language runtime, for example a file opening error, and writes it to *out*.
The format is the same as the one used by ``std::system_error(ec, message)``
where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
It is implementation-defined but normally looks like:
.. parsed-literal::
*<message>*: *<system-message>*
where *<message>* is the passed message and *<system-message>* is the system
message corresponding to the error code.
*error_code* is a system error code as given by ``errno``.
\endrst
*/
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
const char* message) FMT_NOEXCEPT;
// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
const char* message) FMT_NOEXCEPT;
/** Fast integer formatter. */
class format_int {
private:
// Buffer should be large enough to hold all digits (digits10 + 1),
// a sign and a null character.
enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
mutable char buffer_[buffer_size];
char* str_;
template <typename UInt> auto format_unsigned(UInt value) -> char* {
auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
}
template <typename Int> auto format_signed(Int value) -> char* {
auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
bool negative = value < 0;
if (negative) abs_value = 0 - abs_value;
auto begin = format_unsigned(abs_value);
if (negative) *--begin = '-';
return begin;
}
public:
explicit format_int(int value) : str_(format_signed(value)) {}
explicit format_int(long value) : str_(format_signed(value)) {}
explicit format_int(long long value) : str_(format_signed(value)) {}
explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
explicit format_int(unsigned long long value)
: str_(format_unsigned(value)) {}
/** Returns the number of characters written to the output buffer. */
auto size() const -> size_t {
return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
}
/**
Returns a pointer to the output buffer content. No terminating null
character is appended.
*/
auto data() const -> const char* { return str_; }
/**
Returns a pointer to the output buffer content with terminating null
character appended.
*/
auto c_str() const -> const char* {
buffer_[buffer_size - 1] = '\0';
return str_;
}
/**
\rst
Returns the content of the output buffer as an ``std::string``.
\endrst
*/
auto str() const -> std::string { return std::string(str_, size()); }
};
template <typename T, typename Char>
template <typename FormatContext>
FMT_CONSTEXPR FMT_INLINE auto
formatter<T, Char,
enable_if_t<detail::type_constant<T, Char>::value !=
detail::type::custom_type>>::format(const T& val,
FormatContext& ctx)
const -> decltype(ctx.out()) {
if (specs_.width_ref.kind != detail::arg_id_kind::none ||
specs_.precision_ref.kind != detail::arg_id_kind::none) {
auto specs = specs_;
detail::handle_dynamic_spec<detail::width_checker>(specs.width,
specs.width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(
specs.precision, specs.precision_ref, ctx);
return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
}
return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
}
#define FMT_FORMAT_AS(Type, Base) \
template <typename Char> \
struct formatter<Type, Char> : formatter<Base, Char> { \
template <typename FormatContext> \
auto format(Type const& val, FormatContext& ctx) const \
-> decltype(ctx.out()) { \
return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
} \
}
FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, long long);
FMT_FORMAT_AS(unsigned long, unsigned long long);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
template <typename FormatContext>
auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
return formatter<const void*, Char>::format(val, ctx);
}
};
template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
template <typename FormatContext>
FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
-> decltype(ctx.out()) {
return formatter<basic_string_view<Char>, Char>::format(val, ctx);
}
};
// A formatter for types known only at run time such as variant alternatives.
//
// Usage:
// using variant = std::variant<int, std::string>;
// template <>
// struct formatter<variant>: dynamic_formatter<> {
// auto format(const variant& v, format_context& ctx) {
// return visit([&](const auto& val) {
// return dynamic_formatter<>::format(val, ctx);
// }, v);
// }
// };
template <typename Char = char> class dynamic_formatter {
private:
detail::dynamic_format_specs<Char> specs_;
const Char* format_str_;
struct null_handler : detail::error_handler {
void on_align(align_t) {}
void on_sign(sign_t) {}
void on_hash() {}
};
template <typename Context> void handle_specs(Context& ctx) {
detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
specs_.width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(
specs_.precision, specs_.precision_ref, ctx);
}
public:
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
format_str_ = ctx.begin();
// Checks are deferred to formatting time when the argument type is known.
detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
return detail::parse_format_specs(ctx.begin(), ctx.end(), handler);
}
template <typename T, typename FormatContext>
auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
handle_specs(ctx);
detail::specs_checker<null_handler> checker(
null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
checker.on_align(specs_.align);
if (specs_.sign != sign::none) checker.on_sign(specs_.sign);
if (specs_.alt) checker.on_hash();
if (specs_.precision >= 0) checker.end_precision();
return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
}
};
/**
\rst
Converts ``p`` to ``const void*`` for pointer formatting.
**Example**::
auto s = fmt::format("{}", fmt::ptr(p));
\endrst
*/
template <typename T> auto ptr(T p) -> const void* {
static_assert(std::is_pointer<T>::value, "");
return detail::bit_cast<const void*>(p);
}
template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* {
return p.get();
}
template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
return p.get();
}
class bytes {
private:
string_view data_;
friend struct formatter<bytes>;
public:
explicit bytes(string_view data) : data_(data) {}
};
template <> struct formatter<bytes> {
private:
detail::dynamic_format_specs<char> specs_;
public:
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
using handler_type = detail::dynamic_specs_handler<ParseContext>;
detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
detail::type::string_type);
auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
detail::check_string_type_spec(specs_.type, ctx.error_handler());
return it;
}
template <typename FormatContext>
auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
specs_.width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(
specs_.precision, specs_.precision_ref, ctx);
return detail::write_bytes(ctx.out(), b.data_, specs_);
}
};
template <typename It, typename Sentinel, typename Char = char>
struct join_view : detail::view {
It begin;
Sentinel end;
basic_string_view<Char> sep;
join_view(It b, Sentinel e, basic_string_view<Char> s)
: begin(b), end(e), sep(s) {}
};
template <typename It, typename Sentinel, typename Char>
using arg_join FMT_DEPRECATED_ALIAS = join_view<It, Sentinel, Char>;
template <typename It, typename Sentinel, typename Char>
struct formatter<join_view<It, Sentinel, Char>, Char> {
private:
using value_type = typename std::iterator_traits<It>::value_type;
using context = buffer_context<Char>;
using mapper = detail::arg_mapper<context>;
template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)>
static auto map(const T& value) -> const T& {
return value;
}
template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)>
static auto map(const T& value) -> decltype(mapper().map(value)) {
return mapper().map(value);
}
using formatter_type =
conditional_t<is_formattable<value_type, Char>::value,
formatter<remove_cvref_t<decltype(map(
std::declval<const value_type&>()))>,
Char>,
detail::fallback_formatter<value_type, Char>>;
formatter_type value_formatter_;
public:
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return value_formatter_.parse(ctx);
}
template <typename FormatContext>
auto format(const join_view<It, Sentinel, Char>& value, FormatContext& ctx)
-> decltype(ctx.out()) {
auto it = value.begin;
auto out = ctx.out();
if (it != value.end) {
out = value_formatter_.format(map(*it++), ctx);
while (it != value.end) {
out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
ctx.advance_to(out);
out = value_formatter_.format(map(*it++), ctx);
}
}
return out;
}
};
/**
Returns an object that formats the iterator range `[begin, end)` with
elements separated by `sep`.
*/
template <typename It, typename Sentinel>
auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
return {begin, end, sep};
}
/**
\rst
Returns an object that formats `range` with elements separated by `sep`.
**Example**::
std::vector<int> v = {1, 2, 3};
fmt::print("{}", fmt::join(v, ", "));
// Output: "1, 2, 3"
``fmt::join`` applies passed format specifiers to the range elements::
fmt::print("{:02}", fmt::join(v, ", "));
// Output: "01, 02, 03"
\endrst
*/
template <typename Range>
auto join(Range&& range, string_view sep)
-> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
return join(std::begin(range), std::end(range), sep);
}
/**
\rst
Converts *value* to ``std::string`` using the default format for type *T*.
**Example**::
#include <fmt/format.h>
std::string answer = fmt::to_string(42);
\endrst
*/
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline auto to_string(const T& value) -> std::string {
auto result = std::string();
detail::write<char>(std::back_inserter(result), value);
return result;
}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline auto to_string(T value) -> std::string {
// The buffer should be large enough to store the number including the sign
// or "false" for bool.
constexpr int max_size = detail::digits10<T>() + 2;
char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
char* begin = buffer;
return std::string(begin, detail::write<char>(begin, value));
}
template <typename Char, size_t SIZE>
auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
-> std::basic_string<Char> {
auto size = buf.size();
detail::assume(size < std::basic_string<Char>().max_size());
return std::basic_string<Char>(buf.data(), size);
}
FMT_BEGIN_DETAIL_NAMESPACE
template <typename Char>
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
basic_format_args<buffer_context<type_identity_t<Char>>> args,
locale_ref loc) {
// workaround for msvc bug regarding name-lookup in module
// link names into function scope
using detail::arg_formatter;
using detail::buffer_appender;
using detail::custom_formatter;
using detail::default_arg_formatter;
using detail::get_arg;
using detail::locale_ref;
using detail::parse_format_specs;
using detail::specs_checker;
using detail::specs_handler;
using detail::to_unsigned;
using detail::type;
using detail::write;
auto out = buffer_appender<Char>(buf);
if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
auto arg = args.get(0);
if (!arg) error_handler().on_error("argument not found");
visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
return;
}
struct format_handler : error_handler {
basic_format_parse_context<Char> parse_context;
buffer_context<Char> context;
format_handler(buffer_appender<Char> out, basic_string_view<Char> str,
basic_format_args<buffer_context<Char>> args, locale_ref loc)
: parse_context(str), context(out, args, loc) {}
void on_text(const Char* begin, const Char* end) {
auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
context.advance_to(write<Char>(context.out(), text));
}
FMT_CONSTEXPR auto on_arg_id() -> int {
return parse_context.next_arg_id();
}
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
return parse_context.check_arg_id(id), id;
}
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
int arg_id = context.arg_id(id);
if (arg_id < 0) on_error("argument not found");
return arg_id;
}
FMT_INLINE void on_replacement_field(int id, const Char*) {
auto arg = get_arg(context, id);
context.advance_to(visit_format_arg(
default_arg_formatter<Char>{context.out(), context.args(),
context.locale()},
arg));
}
auto on_format_specs(int id, const Char* begin, const Char* end)
-> const Char* {
auto arg = get_arg(context, id);
if (arg.type() == type::custom_type) {
parse_context.advance_to(parse_context.begin() +
(begin - &*parse_context.begin()));
visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
return parse_context.begin();
}
auto specs = basic_format_specs<Char>();
specs_checker<specs_handler<Char>> handler(
specs_handler<Char>(specs, parse_context, context), arg.type());
begin = parse_format_specs(begin, end, handler);
if (begin == end || *begin != '}')
on_error("missing '}' in format string");
auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
context.advance_to(visit_format_arg(f, arg));
return begin;
}
};
detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
}
#ifndef FMT_HEADER_ONLY
extern template void vformat_to(detail::buffer<char>&, string_view,
basic_format_args<format_context>,
detail::locale_ref);
extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
-> thousands_sep_result<char>;
extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
-> thousands_sep_result<wchar_t>;
extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
extern template auto format_float<double>(double value, int precision,
float_specs specs, buffer<char>& buf)
-> int;
extern template auto format_float<long double>(long double value, int precision,
float_specs specs,
buffer<char>& buf) -> int;
void snprintf_float(float, int, float_specs, buffer<char>&) = delete;
extern template auto snprintf_float<double>(double value, int precision,
float_specs specs,
buffer<char>& buf) -> int;
extern template auto snprintf_float<long double>(long double value,
int precision,
float_specs specs,
buffer<char>& buf) -> int;
#endif // FMT_HEADER_ONLY
FMT_END_DETAIL_NAMESPACE
inline namespace literals {
/**
\rst
User-defined literal equivalent of :func:`fmt::arg`.
**Example**::
using namespace fmt::literals;
fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
\endrst
*/
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <detail_exported::fixed_string Str>
constexpr auto operator""_a()
-> detail::udl_arg<remove_cvref_t<decltype(Str.data[0])>,
sizeof(Str.data) / sizeof(decltype(Str.data[0])), Str> {
return {};
}
#else
constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
return {s};
}
#endif
/**
\rst
User-defined literal equivalent of :func:`fmt::format`.
**Example**::
using namespace fmt::literals;
std::string message = "The answer is {}"_format(42);
\endrst
*/
constexpr auto operator"" _format(const char* s, size_t n)
-> detail::udl_formatter<char> {
return {{s, n}};
}
} // namespace literals
template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto vformat(const Locale& loc, string_view fmt, format_args args)
-> std::string {
return detail::vformat(loc, fmt, args);
}
template <typename Locale, typename... T,
FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
-> std::string {
return vformat(loc, string_view(fmt), fmt::make_format_args(args...));
}
template <typename... T, size_t SIZE, typename Allocator>
FMT_DEPRECATED auto format_to(basic_memory_buffer<char, SIZE, Allocator>& buf,
format_string<T...> fmt, T&&... args)
-> appender {
detail::vformat_to(buf, string_view(fmt), fmt::make_format_args(args...));
return appender(buf);
}
template <typename OutputIt, typename Locale,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
detail::is_locale<Locale>::value)>
auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
format_args args) -> OutputIt {
using detail::get_buffer;
auto&& buf = get_buffer<char>(out);
detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
return detail::get_iterator(buf);
}
template <typename OutputIt, typename Locale, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
detail::is_locale<Locale>::value)>
FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
format_string<T...> fmt, T&&... args) -> OutputIt {
return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
}
FMT_MODULE_EXPORT_END
FMT_END_NAMESPACE
#ifdef FMT_DEPRECATED_INCLUDE_XCHAR
# include "xchar.h"
#endif
#ifdef FMT_HEADER_ONLY
# define FMT_FUNC inline
/*---------------------------------------------------------------------------
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
START # include "format-inl.h"
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
--------------------------------------------------------------------------*/
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
#include <algorithm>
#include <cctype>
#include <cerrno> // errno
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring> // std::memmove
#include <cwchar>
#include <exception>
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
# include <locale>
#endif
#ifdef _WIN32
# include <io.h> // _isatty
#endif
// #include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
// Use unchecked std::fprintf to avoid triggering another assertion when
// writing to stderr fails
std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
// Chosen instead of std::abort to satisfy Clang in CUDA mode during device
// code pass.
std::terminate();
}
#ifndef _MSC_VER
# define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
# define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.try_resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
if (detail::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
auto it = buffer_appender<char>(out);
if (message.size() <= inline_buffer_size - error_code_size)
format_to(it, FMT_STRING("{}{}"), message, SEP);
format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
FMT_ASSERT(out.size() <= inline_buffer_size, "");
}
FMT_FUNC void report_error(format_func func, int error_code,
const char* message) FMT_NOEXCEPT {
memory_buffer full_message;
func(full_message, error_code, message);
// Don't use fwrite_fully because the latter may throw.
if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0)
std::fputc('\n', stderr);
}
// A wrapper around fwrite that throws on error.
inline void fwrite_fully(const void* ptr, size_t size, size_t count,
FILE* stream) {
size_t written = std::fwrite(ptr, size, count, stream);
if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
}
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
template <typename Locale>
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
static_assert(std::is_same<Locale, std::locale>::value, "");
}
template <typename Locale> Locale locale_ref::get() const {
static_assert(std::is_same<Locale, std::locale>::value, "");
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}
template <typename Char>
FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char> {
auto& facet = std::use_facet<std::numpunct<Char>>(loc.get<std::locale>());
auto grouping = facet.grouping();
auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep();
return {std::move(grouping), thousands_sep};
}
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
.decimal_point();
}
#else
template <typename Char>
FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result<Char> {
return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR};
}
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) {
return '.';
}
#endif
} // namespace detail
#if !FMT_MSC_VER
FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
#endif
FMT_FUNC std::system_error vsystem_error(int error_code, string_view format_str,
format_args args) {
auto ec = std::error_code(error_code, std::generic_category());
return std::system_error(ec, vformat(format_str, args));
}
namespace detail {
template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
// fallback_uintptr is always stored in little endian.
int i = static_cast<int>(sizeof(void*)) - 1;
while (i > 0 && n.value[i] == 0) --i;
auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
}
#if __cplusplus < 201703L
template <typename T> constexpr const char basic_data<T>::digits[][2];
template <typename T> constexpr const char basic_data<T>::hex_digits[];
template <typename T> constexpr const char basic_data<T>::signs[];
template <typename T> constexpr const unsigned basic_data<T>::prefixes[];
template <typename T> constexpr const char basic_data<T>::left_padding_shifts[];
template <typename T>
constexpr const char basic_data<T>::right_padding_shifts[];
#endif
template <typename T> struct bits {
static FMT_CONSTEXPR_DECL const int value =
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
};
class fp;
template <int SHIFT = 0> fp normalize(fp value);
// Lower (upper) boundary is a value half way between a floating-point value
// and its predecessor (successor). Boundaries have the same exponent as the
// value so only significands are stored.
struct boundaries {
uint64_t lower;
uint64_t upper;
};
// A handmade floating-point number f * pow(2, e).
class fp {
private:
using significand_type = uint64_t;
template <typename Float>
using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) ||
sizeof(Float) == sizeof(uint32_t)>;
public:
significand_type f;
int e;
// All sizes are in bits.
// Subtract 1 to account for an implicit most significant bit in the
// normalized form.
static FMT_CONSTEXPR_DECL const int double_significand_size =
std::numeric_limits<double>::digits - 1;
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
1ULL << double_significand_size;
static FMT_CONSTEXPR_DECL const int significand_size =
bits<significand_type>::value;
fp() : f(0), e(0) {}
fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
// Constructs fp from an IEEE754 double. It is a template to prevent compile
// errors on platforms where double is not IEEE754.
template <typename Double> explicit fp(Double d) { assign(d); }
// Assigns d to this and return true iff predecessor is closer than successor.
template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)>
bool assign(Float d) {
// Assume float is in the format [sign][exponent][significand].
using limits = std::numeric_limits<Float>;
const int float_significand_size = limits::digits - 1;
const int exponent_size =
bits<Float>::value - float_significand_size - 1; // -1 for sign
const uint64_t float_implicit_bit = 1ULL << float_significand_size;
const uint64_t significand_mask = float_implicit_bit - 1;
const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
constexpr bool is_double = sizeof(Float) == sizeof(uint64_t);
auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d);
f = u & significand_mask;
int biased_e =
static_cast<int>((u & exponent_mask) >> float_significand_size);
// Predecessor is closer if d is a normalized power of 2 (f == 0) other than
// the smallest normalized number (biased_e > 1).
bool is_predecessor_closer = f == 0 && biased_e > 1;
if (biased_e != 0)
f += float_implicit_bit;
else
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
e = biased_e - exponent_bias - float_significand_size;
return is_predecessor_closer;
}
template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)>
bool assign(Float) {
*this = fp();
return false;
}
};
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT> fp normalize(fp value) {
// Handle subnormals.
const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
while ((value.f & shifted_implicit_bit) == 0) {
value.f <<= 1;
--value.e;
}
// Subtract 1 to account for hidden bit.
const auto offset =
fp::significand_size - fp::double_significand_size - SHIFT - 1;
value.f <<= offset;
value.e -= offset;
return value;
}
inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
#if FMT_USE_INT128
auto product = static_cast<__uint128_t>(lhs) * rhs;
auto f = static_cast<uint64_t>(product >> 64);
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = lhs >> 32, b = lhs & mask;
uint64_t c = rhs >> 32, d = rhs & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}
inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
static constexpr const uint64_t pow10_significands[] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
static constexpr const int16_t pow10_exponents[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
const int shift = 32;
const auto significand = static_cast<int64_t>(data::log10_2_significand);
int index = static_cast<int>(
((min_exponent + fp::significand_size - 1) * (significand >> shift) +
((int64_t(1) << shift) - 1)) // ceil
>> 32 // arithmetic shift
);
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return {pow10_significands[index], pow10_exponents[index]};
}
// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
// is not available.
struct accumulator {
uint64_t lower;
uint64_t upper;
accumulator() : lower(0), upper(0) {}
explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }
void operator+=(uint64_t n) {
lower += n;
if (lower < n) ++upper;
}
void operator>>=(int shift) {
FMT_ASSERT(shift == 32, "");
(void)shift;
lower = (upper << 32) | (lower >> 32);
upper >>= 32;
}
};
class bigint {
private:
// A bigint is stored as an array of bigits (big digits), with bigit at index
// 0 being the least significant one.
using bigit = uint32_t;
using double_bigit = uint64_t;
enum { bigits_capacity = 32 };
basic_memory_buffer<bigit, bigits_capacity> bigits_;
int exp_;
bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }
static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
friend struct formatter<bigint>;
void subtract_bigits(int index, bigit other, bigit& borrow) {
auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
(*this)[index] = static_cast<bigit>(result);
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
}
void remove_leading_zeros() {
int num_bigits = static_cast<int>(bigits_.size()) - 1;
while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
bigits_.resize(to_unsigned(num_bigits + 1));
}
// Computes *this -= other assuming aligned bigints and *this >= other.
void subtract_aligned(const bigint& other) {
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
FMT_ASSERT(compare(*this, other) >= 0, "");
bigit borrow = 0;
int i = other.exp_ - exp_;
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
subtract_bigits(i, other.bigits_[j], borrow);
while (borrow > 0) subtract_bigits(i, 0, borrow);
remove_leading_zeros();
}
void multiply(uint32_t value) {
const double_bigit wide_value = value;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
double_bigit result = bigits_[i] * wide_value + carry;
bigits_[i] = static_cast<bigit>(result);
carry = static_cast<bigit>(result >> bigit_bits);
}
if (carry != 0) bigits_.push_back(carry);
}
void multiply(uint64_t value) {
const bigit mask = ~bigit(0);
const double_bigit lower = value & mask;
const double_bigit upper = value >> bigit_bits;
double_bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
double_bigit result = bigits_[i] * lower + (carry & mask);
carry =
bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
bigits_[i] = static_cast<bigit>(result);
}
while (carry != 0) {
bigits_.push_back(carry & mask);
carry >>= bigit_bits;
}
}
public:
bigint() : exp_(0) {}
explicit bigint(uint64_t n) { assign(n); }
~bigint() { FMT_ASSERT(bigits_.capacity() <= bigits_capacity, ""); }
bigint(const bigint&) = delete;
void operator=(const bigint&) = delete;
void assign(const bigint& other) {
auto size = other.bigits_.size();
bigits_.resize(size);
auto data = other.bigits_.data();
std::copy(data, data + size, make_checked(bigits_.data(), size));
exp_ = other.exp_;
}
void assign(uint64_t n) {
size_t num_bigits = 0;
do {
bigits_[num_bigits++] = n & ~bigit(0);
n >>= bigit_bits;
} while (n != 0);
bigits_.resize(num_bigits);
exp_ = 0;
}
int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
FMT_NOINLINE bigint& operator<<=(int shift) {
FMT_ASSERT(shift >= 0, "");
exp_ += shift / bigit_bits;
shift %= bigit_bits;
if (shift == 0) return *this;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
bigit c = bigits_[i] >> (bigit_bits - shift);
bigits_[i] = (bigits_[i] << shift) + carry;
carry = c;
}
if (carry != 0) bigits_.push_back(carry);
return *this;
}
template <typename Int> bigint& operator*=(Int value) {
FMT_ASSERT(value > 0, "");
multiply(uint32_or_64_or_128_t<Int>(value));
return *this;
}
friend int compare(const bigint& lhs, const bigint& rhs) {
int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
if (num_lhs_bigits != num_rhs_bigits)
return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
int i = static_cast<int>(lhs.bigits_.size()) - 1;
int j = static_cast<int>(rhs.bigits_.size()) - 1;
int end = i - j;
if (end < 0) end = 0;
for (; i >= end; --i, --j) {
bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
}
if (i != j) return i > j ? 1 : -1;
return 0;
}
// Returns compare(lhs1 + lhs2, rhs).
friend int add_compare(const bigint& lhs1, const bigint& lhs2,
const bigint& rhs) {
int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
int num_rhs_bigits = rhs.num_bigits();
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
if (max_lhs_bigits > num_rhs_bigits) return 1;
auto get_bigit = [](const bigint& n, int i) -> bigit {
return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
};
double_bigit borrow = 0;
int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
double_bigit sum =
static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
bigit rhs_bigit = get_bigit(rhs, i);
if (sum > rhs_bigit + borrow) return 1;
borrow = rhs_bigit + borrow - sum;
if (borrow > 1) return -1;
borrow <<= bigit_bits;
}
return borrow != 0 ? -1 : 0;
}
// Assigns pow(10, exp) to this bigint.
void assign_pow10(int exp) {
FMT_ASSERT(exp >= 0, "");
if (exp == 0) return assign(1);
// Find the top bit.
int bitmask = 1;
while (exp >= bitmask) bitmask <<= 1;
bitmask >>= 1;
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
// repeated squaring and multiplication.
assign(5);
bitmask >>= 1;
while (bitmask != 0) {
square();
if ((exp & bitmask) != 0) *this *= 5;
bitmask >>= 1;
}
*this <<= exp; // Multiply by pow(2, exp) by shifting.
}
void square() {
int num_bigits = static_cast<int>(bigits_.size());
int num_result_bigits = 2 * num_bigits;
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
bigits_.resize(to_unsigned(num_result_bigits));
using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
auto sum = accumulator_t();
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
// Compute bigit at position bigit_index of the result by adding
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
// Most terms are multiplied twice which can be optimized in the future.
sum += static_cast<double_bigit>(n[i]) * n[j];
}
(*this)[bigit_index] = static_cast<bigit>(sum);
sum >>= bits<bigit>::value; // Compute the carry.
}
// Do the same for the top half.
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
++bigit_index) {
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
sum += static_cast<double_bigit>(n[i++]) * n[j--];
(*this)[bigit_index] = static_cast<bigit>(sum);
sum >>= bits<bigit>::value;
}
--num_result_bigits;
remove_leading_zeros();
exp_ *= 2;
}
// If this bigint has a bigger exponent than other, adds trailing zero to make
// exponents equal. This simplifies some operations such as subtraction.
void align(const bigint& other) {
int exp_difference = exp_ - other.exp_;
if (exp_difference <= 0) return;
int num_bigits = static_cast<int>(bigits_.size());
bigits_.resize(to_unsigned(num_bigits + exp_difference));
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
bigits_[j] = bigits_[i];
std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
exp_ -= exp_difference;
}
// Divides this bignum by divisor, assigning the remainder to this and
// returning the quotient.
int divmod_assign(const bigint& divisor) {
FMT_ASSERT(this != &divisor, "");
if (compare(*this, divisor) < 0) return 0;
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
align(divisor);
int quotient = 0;
do {
subtract_aligned(divisor);
++quotient;
} while (compare(*this, divisor) >= 0);
return quotient;
}
};
enum class round_direction { unknown, up, down };
// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
uint64_t error) {
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
// Round down if (remainder + error) * 2 <= divisor.
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
return round_direction::down;
// Round up if (remainder - error) * 2 >= divisor.
if (remainder >= error &&
remainder - error >= divisor - (remainder - error)) {
return round_direction::up;
}
return round_direction::unknown;
}
namespace digits {
enum result {
more, // Generate more digits.
done, // Done generating digits.
error // Digit generation cancelled due to an error.
};
}
inline uint64_t power_of_10_64(int exp) {
static constexpr const uint64_t data[] = {1, FMT_POWERS_OF_10(1),
FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
return data[exp];
}
// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
template <typename Handler>
FMT_INLINE digits::result grisu_gen_digits(fp value, uint64_t error, int& exp,
Handler& handler) {
const fp one(1ULL << -value.e, value.e);
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
// zero because it contains a product of two 64-bit numbers with MSB set (due
// to normalization) - 1, shifted right by at most 60 bits.
auto integral = static_cast<uint32_t>(value.f >> -one.e);
FMT_ASSERT(integral != 0, "");
FMT_ASSERT(integral == value.f >> -one.e, "");
// The fractional part of scaled value (p2 in Grisu) c = value % one.
uint64_t fractional = value.f & (one.f - 1);
exp = count_digits(integral); // kappa in Grisu.
// Divide by 10 to prevent overflow.
auto result = handler.on_start(power_of_10_64(exp - 1) << -one.e,
value.f / 10, error * 10, exp);
if (result != digits::more) return result;
// Generate digits for the integral part. This can produce up to 10 digits.
do {
uint32_t digit = 0;
auto divmod_integral = [&](uint32_t divisor) {
digit = integral / divisor;
integral %= divisor;
};
// This optimization by Milo Yip reduces the number of integer divisions by
// one per iteration.
switch (exp) {
case 10:
divmod_integral(1000000000);
break;
case 9:
divmod_integral(100000000);
break;
case 8:
divmod_integral(10000000);
break;
case 7:
divmod_integral(1000000);
break;
case 6:
divmod_integral(100000);
break;
case 5:
divmod_integral(10000);
break;
case 4:
divmod_integral(1000);
break;
case 3:
divmod_integral(100);
break;
case 2:
divmod_integral(10);
break;
case 1:
digit = integral;
integral = 0;
break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
--exp;
auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
result = handler.on_digit(static_cast<char>('0' + digit),
power_of_10_64(exp) << -one.e, remainder, error,
exp, true);
if (result != digits::more) return result;
} while (exp > 0);
// Generate digits for the fractional part.
for (;;) {
fractional *= 10;
error *= 10;
char digit = static_cast<char>('0' + (fractional >> -one.e));
fractional &= one.f - 1;
--exp;
result = handler.on_digit(digit, one.f, fractional, error, exp, false);
if (result != digits::more) return result;
}
}
// The fixed precision digit handler.
struct fixed_handler {
char* buf;
int size;
int precision;
int exp10;
bool fixed;
digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
int& exp) {
// Non-fixed formats require at least one digit and no precision adjustment.
if (!fixed) return digits::more;
// Adjust fixed precision by exponent because it is relative to decimal
// point.
precision += exp + exp10;
// Check if precision is satisfied just by leading zeros, e.g.
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
if (precision > 0) return digits::more;
if (precision < 0) return digits::done;
auto dir = get_round_direction(divisor, remainder, error);
if (dir == round_direction::unknown) return digits::error;
buf[size++] = dir == round_direction::up ? '1' : '0';
return digits::done;
}
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
uint64_t error, int, bool integral) {
FMT_ASSERT(remainder < divisor, "");
buf[size++] = digit;
if (!integral && error >= remainder) return digits::error;
if (size < precision) return digits::more;
if (!integral) {
// Check if error * 2 < divisor with overflow prevention.
// The check is not needed for the integral part because error = 1
// and divisor > (1 << 32) there.
if (error >= divisor || error >= divisor - error) return digits::error;
} else {
FMT_ASSERT(error == 1 && divisor > 2, "");
}
auto dir = get_round_direction(divisor, remainder, error);
if (dir != round_direction::up)
return dir == round_direction::down ? digits::done : digits::error;
++buf[size - 1];
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] > '9') {
buf[0] = '1';
if (fixed)
buf[size++] = '0';
else
++exp10;
}
return digits::done;
}
};
// A 128-bit integer type used internally,
struct uint128_wrapper {
uint128_wrapper() = default;
#if FMT_USE_INT128
uint128_t internal_;
constexpr uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT
: internal_{static_cast<uint128_t>(low) |
(static_cast<uint128_t>(high) << 64)} {}
constexpr uint128_wrapper(uint128_t u) : internal_{u} {}
constexpr uint64_t high() const FMT_NOEXCEPT {
return uint64_t(internal_ >> 64);
}
constexpr uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); }
uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
internal_ += n;
return *this;
}
#else
uint64_t high_;
uint64_t low_;
constexpr uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT
: high_{high},
low_{low} {}
constexpr uint64_t high() const FMT_NOEXCEPT { return high_; }
constexpr uint64_t low() const FMT_NOEXCEPT { return low_; }
uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT {
# if defined(_MSC_VER) && defined(_M_X64)
unsigned char carry = _addcarry_u64(0, low_, n, &low_);
_addcarry_u64(carry, high_, 0, &high_);
return *this;
# else
uint64_t sum = low_ + n;
high_ += (sum < low_ ? 1 : 0);
low_ = sum;
return *this;
# endif
}
#endif
};
// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
namespace dragonbox {
// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
inline uint128_wrapper umul128(uint64_t x, uint64_t y) FMT_NOEXCEPT {
#if FMT_USE_INT128
return static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
#elif defined(_MSC_VER) && defined(_M_X64)
uint128_wrapper result;
result.low_ = _umul128(x, y, &result.high_);
return result;
#else
const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1);
uint64_t a = x >> 32;
uint64_t b = x & mask;
uint64_t c = y >> 32;
uint64_t d = y & mask;
uint64_t ac = a * c;
uint64_t bc = b * c;
uint64_t ad = a * d;
uint64_t bd = b * d;
uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
(intermediate << 32) + (bd & mask)};
#endif
}
// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
inline uint64_t umul128_upper64(uint64_t x, uint64_t y) FMT_NOEXCEPT {
#if FMT_USE_INT128
auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y);
return static_cast<uint64_t>(p >> 64);
#elif defined(_MSC_VER) && defined(_M_X64)
return __umulh(x, y);
#else
return umul128(x, y).high();
#endif
}
// Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
uint128_wrapper g0 = umul128(x, y.high());
g0 += umul128_upper64(x, y.low());
return g0.high();
}
// Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
return static_cast<uint32_t>(umul128_upper64(x, y));
}
// Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
// 128-bit unsigned integer.
inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
uint64_t g01 = x * y.high();
uint64_t g10 = umul128_upper64(x, y.low());
return g01 + g10;
}
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
// 64-bit unsigned integer.
inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
return x * y;
}
// Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from
// https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4.
inline int floor_log10_pow2(int e) FMT_NOEXCEPT {
FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
const int shift = 22;
return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >>
shift;
}
// Various fast log computations.
inline int floor_log2_pow10(int e) FMT_NOEXCEPT {
FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
const uint64_t log2_10_integer_part = 3;
const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9;
const int shift_amount = 19;
return (e * static_cast<int>(
(log2_10_integer_part << shift_amount) |
(log2_10_fractional_digits >> (64 - shift_amount)))) >>
shift_amount;
}
inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT {
FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent");
const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375;
const int shift_amount = 22;
return (e * static_cast<int>(data::log10_2_significand >>
(64 - shift_amount)) -
static_cast<int>(log10_4_over_3_fractional_digits >>
(64 - shift_amount))) >>
shift_amount;
}
// Returns true iff x is divisible by pow(2, exp).
inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT {
FMT_ASSERT(exp >= 1, "");
FMT_ASSERT(x != 0, "");
#ifdef FMT_BUILTIN_CTZ
return FMT_BUILTIN_CTZ(x) >= exp;
#else
return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp);
#endif
}
inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT {
FMT_ASSERT(exp >= 1, "");
FMT_ASSERT(x != 0, "");
#ifdef FMT_BUILTIN_CTZLL
return FMT_BUILTIN_CTZLL(x) >= exp;
#else
return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp);
#endif
}
// Table entry type for divisibility test.
template <typename T> struct divtest_table_entry {
T mod_inv;
T max_quotient;
};
// Returns true iff x is divisible by pow(5, exp).
inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT {
FMT_ASSERT(exp <= 10, "too large exponent");
static constexpr const divtest_table_entry<uint32_t> divtest_table[] = {
{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333},
{0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba},
{0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5},
{0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf},
{0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897},
{0x3ed61f49, 0x000001b7}};
return x * divtest_table[exp].mod_inv <= divtest_table[exp].max_quotient;
}
inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
FMT_ASSERT(exp <= 23, "too large exponent");
static constexpr const divtest_table_entry<uint64_t> divtest_table[] = {
{0x0000000000000001, 0xffffffffffffffff},
{0xcccccccccccccccd, 0x3333333333333333},
{0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70},
{0x1cac083126e978d5, 0x020c49ba5e353f7c},
{0xd288ce703afb7e91, 0x0068db8bac710cb2},
{0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0},
{0x790fb65668c26139, 0x000431bde82d7b63},
{0xe5032477ae8d46a5, 0x0000d6bf94d5e57a},
{0xc767074b22e90e21, 0x00002af31dc46118},
{0x8e47ce423a2e9c6d, 0x0000089705f4136b},
{0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b},
{0x0fee64690c913975, 0x00000057f5ff85e5},
{0x3662e0e1cf503eb1, 0x000000119799812d},
{0xa47a2cf9f6433fbd, 0x0000000384b84d09},
{0x54186f653140a659, 0x00000000b424dc35},
{0x7738164770402145, 0x0000000024075f3d},
{0xe4a4d1417cd9a041, 0x000000000734aca5},
{0xc75429d9e5c5200d, 0x000000000170ef54},
{0xc1773b91fac10669, 0x000000000049c977},
{0x26b172506559ce15, 0x00000000000ec1e4},
{0xd489e3a9addec2d1, 0x000000000002f394},
{0x90e860bb892c8d5d, 0x000000000000971d},
{0x502e79bf1b6f4f79, 0x0000000000001e39},
{0xdcd618596be30fe5, 0x000000000000060b}};
return x * divtest_table[exp].mod_inv <= divtest_table[exp].max_quotient;
}
// Replaces n by floor(n / pow(5, N)) returning true if and only if n is
// divisible by pow(5, N).
// Precondition: n <= 2 * pow(5, N + 1).
template <int N>
bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT {
static constexpr struct {
uint32_t magic_number;
int bits_for_comparison;
uint32_t threshold;
int shift_amount;
} infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}};
constexpr auto info = infos[N - 1];
n *= info.magic_number;
const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1;
bool result = (n & comparison_mask) <= info.threshold;
n >>= info.shift_amount;
return result;
}
// Computes floor(n / pow(10, N)) for small n and N.
// Precondition: n <= pow(10, N + 1).
template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT {
static constexpr struct {
uint32_t magic_number;
int shift_amount;
uint32_t divisor_times_10;
} infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}};
constexpr auto info = infos[N - 1];
FMT_ASSERT(n <= info.divisor_times_10, "n is too large");
return n * info.magic_number >> info.shift_amount;
}
// Computes floor(n / 10^(kappa + 1)) (float)
inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT {
return n / float_info<float>::big_divisor;
}
// Computes floor(n / 10^(kappa + 1)) (double)
inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT {
return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9;
}
// Various subroutines using pow10 cache
template <class T> struct cache_accessor;
template <> struct cache_accessor<float> {
using carrier_uint = float_info<float>::carrier_uint;
using cache_entry_type = uint64_t;
static uint64_t get_cached_power(int k) FMT_NOEXCEPT {
FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
"k is out of range");
constexpr const uint64_t pow10_significands[] = {
0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296,
0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6,
0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719,
0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e};
return pow10_significands[k - float_info<float>::min_k];
}
static carrier_uint compute_mul(carrier_uint u,
const cache_entry_type& cache) FMT_NOEXCEPT {
return umul96_upper32(u, cache);
}
static uint32_t compute_delta(const cache_entry_type& cache,
int beta_minus_1) FMT_NOEXCEPT {
return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
}
static bool compute_mul_parity(carrier_uint two_f,
const cache_entry_type& cache,
int beta_minus_1) FMT_NOEXCEPT {
FMT_ASSERT(beta_minus_1 >= 1, "");
FMT_ASSERT(beta_minus_1 < 64, "");
return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
}
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return static_cast<carrier_uint>(
(cache - (cache >> (float_info<float>::significand_bits + 2))) >>
(64 - float_info<float>::significand_bits - 1 - beta_minus_1));
}
static carrier_uint compute_right_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return static_cast<carrier_uint>(
(cache + (cache >> (float_info<float>::significand_bits + 1))) >>
(64 - float_info<float>::significand_bits - 1 - beta_minus_1));
}
static carrier_uint compute_round_up_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return (static_cast<carrier_uint>(
cache >>
(64 - float_info<float>::significand_bits - 2 - beta_minus_1)) +
1) /
2;
}
};
template <> struct cache_accessor<double> {
using carrier_uint = float_info<double>::carrier_uint;
using cache_entry_type = uint128_wrapper;
static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT {
FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
"k is out of range");
static constexpr const uint128_wrapper pow10_significands[] = {
#if FMT_USE_FULL_CACHE_DRAGONBOX
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
{0x9faacf3df73609b1, 0x77b191618c54e9ad},
{0xc795830d75038c1d, 0xd59df5b9ef6a2418},
{0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
{0x9becce62836ac577, 0x4ee367f9430aec33},
{0xc2e801fb244576d5, 0x229c41f793cda740},
{0xf3a20279ed56d48a, 0x6b43527578c11110},
{0x9845418c345644d6, 0x830a13896b78aaaa},
{0xbe5691ef416bd60c, 0x23cc986bc656d554},
{0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
{0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
{0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
{0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
{0x91376c36d99995be, 0x23100809b9c21fa2},
{0xb58547448ffffb2d, 0xabd40a0c2832a78b},
{0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
{0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
{0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
{0xdd95317f31c7fa1d, 0x40405643d711d584},
{0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
{0xad1c8eab5ee43b66, 0xda3243650005eed0},
{0xd863b256369d4a40, 0x90bed43e40076a83},
{0x873e4f75e2224e68, 0x5a7744a6e804a292},
{0xa90de3535aaae202, 0x711515d0a205cb37},
{0xd3515c2831559a83, 0x0d5a5b44ca873e04},
{0x8412d9991ed58091, 0xe858790afe9486c3},
{0xa5178fff668ae0b6, 0x626e974dbe39a873},
{0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
{0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
{0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
{0xc987434744ac874e, 0xa327ffb266b56221},
{0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
{0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
{0xc4ce17b399107c22, 0xcb550fb4384d21d4},
{0xf6019da07f549b2b, 0x7e2a53a146606a49},
{0x99c102844f94e0fb, 0x2eda7444cbfc426e},
{0xc0314325637a1939, 0xfa911155fefb5309},
{0xf03d93eebc589f88, 0x793555ab7eba27cb},
{0x96267c7535b763b5, 0x4bc1558b2f3458df},
{0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
{0xea9c227723ee8bcb, 0x465e15a979c1cadd},
{0x92a1958a7675175f, 0x0bfacd89ec191eca},
{0xb749faed14125d36, 0xcef980ec671f667c},
{0xe51c79a85916f484, 0x82b7e12780e7401b},
{0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
{0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
{0xdfbdcece67006ac9, 0x67a791e093e1d49b},
{0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
{0xaecc49914078536d, 0x58fae9f773886e19},
{0xda7f5bf590966848, 0xaf39a475506a899f},
{0x888f99797a5e012d, 0x6d8406c952429604},
{0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
{0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
{0x855c3be0a17fcd26, 0x5cf2eea09a550680},
{0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
{0xd0601d8efc57b08b, 0xf13b94daf124da27},
{0x823c12795db6ce57, 0x76c53d08d6b70859},
{0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
{0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
{0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
{0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
{0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
{0xf867241c8cc6d4c0, 0xc30163d203c94b63},
{0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
{0xc21094364dfb5636, 0x985915fc12f542e5},
{0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
{0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
{0xbd8430bd08277231, 0x50c6ff782a838354},
{0xece53cec4a314ebd, 0xa4f8bf5635246429},
{0x940f4613ae5ed136, 0x871b7795e136be9a},
{0xb913179899f68584, 0x28e2557b59846e40},
{0xe757dd7ec07426e5, 0x331aeada2fe589d0},
{0x9096ea6f3848984f, 0x3ff0d2c85def7622},
{0xb4bca50b065abe63, 0x0fed077a756b53aa},
{0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
{0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
{0xb080392cc4349dec, 0xbd8d794d96aacfb4},
{0xdca04777f541c567, 0xecf0d7a0fc5583a1},
{0x89e42caaf9491b60, 0xf41686c49db57245},
{0xac5d37d5b79b6239, 0x311c2875c522ced6},
{0xd77485cb25823ac7, 0x7d633293366b828c},
{0x86a8d39ef77164bc, 0xae5dff9c02033198},
{0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
{0xd267caa862a12d66, 0xd072df63c324fd7c},
{0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
{0xa46116538d0deb78, 0x52d9be85f074e609},
{0xcd795be870516656, 0x67902e276c921f8c},
{0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
{0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
{0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
{0xfad2a4b13d1b5d6c, 0x796b805720085f82},
{0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
{0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
{0xf4f1b4d515acb93b, 0xee92fb5515482d45},
{0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
{0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
{0xef340a98172aace4, 0x86fb897116c87c35},
{0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
{0xbae0a846d2195712, 0x8974836059cca10a},
{0xe998d258869facd7, 0x2bd1a438703fc94c},
{0x91ff83775423cc06, 0x7b6306a34627ddd0},
{0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
{0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
{0x8e938662882af53e, 0x547eb47b7282ee9d},
{0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
{0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
{0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
{0xae0b158b4738705e, 0x9624ab50b148d446},
{0xd98ddaee19068c76, 0x3badd624dd9b0958},
{0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
{0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
{0xd47487cc8470652b, 0x7647c32000696720},
{0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
{0xa5fb0a17c777cf09, 0xf468107100525891},
{0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
{0x81ac1fe293d599bf, 0xc6f14cd848405531},
{0xa21727db38cb002f, 0xb8ada00e5a506a7d},
{0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
{0xfd442e4688bd304a, 0x908f4a166d1da664},
{0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
{0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
{0xf7549530e188c128, 0xd12bee59e68ef47d},
{0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
{0xc13a148e3032d6e7, 0xe36a52363c1faf02},
{0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
{0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
{0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
{0xebdf661791d60f56, 0x111b495b3464ad22},
{0x936b9fcebb25c995, 0xcab10dd900beec35},
{0xb84687c269ef3bfb, 0x3d5d514f40eea743},
{0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
{0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
{0xb3f4e093db73a093, 0x59ed216765690f57},
{0xe0f218b8d25088b8, 0x306869c13ec3532d},
{0x8c974f7383725573, 0x1e414218c73a13fc},
{0xafbd2350644eeacf, 0xe5d1929ef90898fb},
{0xdbac6c247d62a583, 0xdf45f746b74abf3a},
{0x894bc396ce5da772, 0x6b8bba8c328eb784},
{0xab9eb47c81f5114f, 0x066ea92f3f326565},
{0xd686619ba27255a2, 0xc80a537b0efefebe},
{0x8613fd0145877585, 0xbd06742ce95f5f37},
{0xa798fc4196e952e7, 0x2c48113823b73705},
{0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
{0x82ef85133de648c4, 0x9a984d73dbe722fc},
{0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
{0xcc963fee10b7d1b3, 0x318df905079926a9},
{0xffbbcfe994e5c61f, 0xfdf17746497f7053},
{0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
{0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
{0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
{0x9c1661a651213e2d, 0x06bea10ca65c084f},
{0xc31bfa0fe5698db8, 0x486e494fcff30a63},
{0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
{0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
{0xbe89523386091465, 0xf6bbb397f1135824},
{0xee2ba6c0678b597f, 0x746aa07ded582e2d},
{0x94db483840b717ef, 0xa8c2a44eb4571cdd},
{0xba121a4650e4ddeb, 0x92f34d62616ce414},
{0xe896a0d7e51e1566, 0x77b020baf9c81d18},
{0x915e2486ef32cd60, 0x0ace1474dc1d122f},
{0xb5b5ada8aaff80b8, 0x0d819992132456bb},
{0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
{0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
{0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
{0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
{0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
{0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
{0xd89d64d57a607744, 0xe871c7bf077ba8b8},
{0x87625f056c7c4a8b, 0x11471cd764ad4973},
{0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
{0xd389b47879823479, 0x4aff1d108d4ec2c4},
{0x843610cb4bf160cb, 0xcedf722a585139bb},
{0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
{0xce947a3da6a9273e, 0x733d226229feea33},
{0x811ccc668829b887, 0x0806357d5a3f5260},
{0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
{0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
{0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
{0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
{0xc5029163f384a931, 0x0a9e795e65d4df12},
{0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
{0x99ea0196163fa42e, 0x504bced1bf8e4e46},
{0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
{0xf07da27a82c37088, 0x5d767327bb4e5a4d},
{0x964e858c91ba2655, 0x3a6a07f8d510f870},
{0xbbe226efb628afea, 0x890489f70a55368c},
{0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
{0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
{0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
{0xe55990879ddcaabd, 0xcc420a6a101d0516},
{0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
{0xb32df8e9f3546564, 0x47939822dc96abfa},
{0xdff9772470297ebd, 0x59787e2b93bc56f8},
{0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
{0xaefae51477a06b03, 0xede622920b6b23f2},
{0xdab99e59958885c4, 0xe95fab368e45ecee},
{0x88b402f7fd75539b, 0x11dbcb0218ebb415},
{0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
{0xd59944a37c0752a2, 0x4be76d3346f04960},
{0x857fcae62d8493a5, 0x6f70a4400c562ddc},
{0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
{0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
{0x825ecc24c873782f, 0x8ed400668c0c28c9},
{0xa2f67f2dfa90563b, 0x728900802f0f32fb},
{0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
{0xfea126b7d78186bc, 0xe2f610c84987bfa9},
{0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
{0xc6ede63fa05d3143, 0x91503d1c79720dbc},
{0xf8a95fcf88747d94, 0x75a44c6397ce912b},
{0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
{0xc24452da229b021b, 0xfbe85badce996169},
{0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
{0x97c560ba6b0919a5, 0xdccd879fc967d41b},
{0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
{0xed246723473e3813, 0x290123e9aab23b69},
{0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
{0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
{0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
{0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
{0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
{0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
{0x8d590723948a535f, 0x579c487e5a38ad0f},
{0xb0af48ec79ace837, 0x2d835a9df0c6d852},
{0xdcdb1b2798182244, 0xf8e431456cf88e66},
{0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
{0xac8b2d36eed2dac5, 0xe272467e3d222f40},
{0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
{0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
{0xa87fea27a539e9a5, 0x3f2398d747b36225},
{0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
{0x83a3eeeef9153e89, 0x1953cf68300424ad},
{0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
{0xcdb02555653131b6, 0x3792f412cb06794e},
{0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
{0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
{0xc8de047564d20a8b, 0xf245825a5a445276},
{0xfb158592be068d2e, 0xeed6e2f0f0d56713},
{0x9ced737bb6c4183d, 0x55464dd69685606c},
{0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
{0xf53304714d9265df, 0xd53dd99f4b3066a9},
{0x993fe2c6d07b7fab, 0xe546a8038efe402a},
{0xbf8fdb78849a5f96, 0xde98520472bdd034},
{0xef73d256a5c0f77c, 0x963e66858f6d4441},
{0x95a8637627989aad, 0xdde7001379a44aa9},
{0xbb127c53b17ec159, 0x5560c018580d5d53},
{0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
{0x9226712162ab070d, 0xcab3961304ca70e9},
{0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
{0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
{0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
{0xb267ed1940f1c61c, 0x55f038b237591ed4},
{0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
{0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
{0xae397d8aa96c1b77, 0xabec975e0a0d081b},
{0xd9c7dced53c72255, 0x96e7bd358c904a22},
{0x881cea14545c7575, 0x7e50d64177da2e55},
{0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
{0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
{0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
{0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
{0xcfb11ead453994ba, 0x67de18eda5814af3},
{0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
{0xa2425ff75e14fc31, 0xa1258379a94d028e},
{0xcad2f7f5359a3b3e, 0x096ee45813a04331},
{0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
{0x9e74d1b791e07e48, 0x775ea264cf55347e},
{0xc612062576589dda, 0x95364afe032a819e},
{0xf79687aed3eec551, 0x3a83ddbd83f52205},
{0x9abe14cd44753b52, 0xc4926a9672793543},
{0xc16d9a0095928a27, 0x75b7053c0f178294},
{0xf1c90080baf72cb1, 0x5324c68b12dd6339},
{0x971da05074da7bee, 0xd3f6fc16ebca5e04},
{0xbce5086492111aea, 0x88f4bb1ca6bcf585},
{0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
{0x9392ee8e921d5d07, 0x3aff322e62439fd0},
{0xb877aa3236a4b449, 0x09befeb9fad487c3},
{0xe69594bec44de15b, 0x4c2ebe687989a9b4},
{0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
{0xb424dc35095cd80f, 0x538484c19ef38c95},
{0xe12e13424bb40e13, 0x2865a5f206b06fba},
{0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
{0xafebff0bcb24aafe, 0xf78f69a51539d749},
{0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
{0x89705f4136b4a597, 0x31680a88f8953031},
{0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
{0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
{0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
{0xa7c5ac471b478423, 0x0fcf80dc33721d54},
{0xd1b71758e219652b, 0xd3c36113404ea4a9},
{0x83126e978d4fdf3b, 0x645a1cac083126ea},
{0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
{0xcccccccccccccccc, 0xcccccccccccccccd},
{0x8000000000000000, 0x0000000000000000},
{0xa000000000000000, 0x0000000000000000},
{0xc800000000000000, 0x0000000000000000},
{0xfa00000000000000, 0x0000000000000000},
{0x9c40000000000000, 0x0000000000000000},
{0xc350000000000000, 0x0000000000000000},
{0xf424000000000000, 0x0000000000000000},
{0x9896800000000000, 0x0000000000000000},
{0xbebc200000000000, 0x0000000000000000},
{0xee6b280000000000, 0x0000000000000000},
{0x9502f90000000000, 0x0000000000000000},
{0xba43b74000000000, 0x0000000000000000},
{0xe8d4a51000000000, 0x0000000000000000},
{0x9184e72a00000000, 0x0000000000000000},
{0xb5e620f480000000, 0x0000000000000000},
{0xe35fa931a0000000, 0x0000000000000000},
{0x8e1bc9bf04000000, 0x0000000000000000},
{0xb1a2bc2ec5000000, 0x0000000000000000},
{0xde0b6b3a76400000, 0x0000000000000000},
{0x8ac7230489e80000, 0x0000000000000000},
{0xad78ebc5ac620000, 0x0000000000000000},
{0xd8d726b7177a8000, 0x0000000000000000},
{0x878678326eac9000, 0x0000000000000000},
{0xa968163f0a57b400, 0x0000000000000000},
{0xd3c21bcecceda100, 0x0000000000000000},
{0x84595161401484a0, 0x0000000000000000},
{0xa56fa5b99019a5c8, 0x0000000000000000},
{0xcecb8f27f4200f3a, 0x0000000000000000},
{0x813f3978f8940984, 0x4000000000000000},
{0xa18f07d736b90be5, 0x5000000000000000},
{0xc9f2c9cd04674ede, 0xa400000000000000},
{0xfc6f7c4045812296, 0x4d00000000000000},
{0x9dc5ada82b70b59d, 0xf020000000000000},
{0xc5371912364ce305, 0x6c28000000000000},
{0xf684df56c3e01bc6, 0xc732000000000000},
{0x9a130b963a6c115c, 0x3c7f400000000000},
{0xc097ce7bc90715b3, 0x4b9f100000000000},
{0xf0bdc21abb48db20, 0x1e86d40000000000},
{0x96769950b50d88f4, 0x1314448000000000},
{0xbc143fa4e250eb31, 0x17d955a000000000},
{0xeb194f8e1ae525fd, 0x5dcfab0800000000},
{0x92efd1b8d0cf37be, 0x5aa1cae500000000},
{0xb7abc627050305ad, 0xf14a3d9e40000000},
{0xe596b7b0c643c719, 0x6d9ccd05d0000000},
{0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
{0xb35dbf821ae4f38b, 0xdda2802c8a800000},
{0xe0352f62a19e306e, 0xd50b2037ad200000},
{0x8c213d9da502de45, 0x4526f422cc340000},
{0xaf298d050e4395d6, 0x9670b12b7f410000},
{0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
{0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
{0xab0e93b6efee0053, 0x8eea0d047a457a00},
{0xd5d238a4abe98068, 0x72a4904598d6d880},
{0x85a36366eb71f041, 0x47a6da2b7f864750},
{0xa70c3c40a64e6c51, 0x999090b65f67d924},
{0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
{0x82818f1281ed449f, 0xbff8f10e7a8921a4},
{0xa321f2d7226895c7, 0xaff72d52192b6a0d},
{0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490},
{0xfee50b7025c36a08, 0x02f236d04753d5b4},
{0x9f4f2726179a2245, 0x01d762422c946590},
{0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5},
{0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2},
{0x9b934c3b330c8577, 0x63cc55f49f88eb2f},
{0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb},
{0xf316271c7fc3908a, 0x8bef464e3945ef7a},
{0x97edd871cfda3a56, 0x97758bf0e3cbb5ac},
{0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317},
{0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd},
{0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a},
{0xb975d6b6ee39e436, 0xb3e2fd538e122b44},
{0xe7d34c64a9c85d44, 0x60dbbca87196b616},
{0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd},
{0xb51d13aea4a488dd, 0x6babab6398bdbe41},
{0xe264589a4dcdab14, 0xc696963c7eed2dd1},
{0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2},
{0xb0de65388cc8ada8, 0x3b25a55f43294bcb},
{0xdd15fe86affad912, 0x49ef0eb713f39ebe},
{0x8a2dbf142dfcc7ab, 0x6e3569326c784337},
{0xacb92ed9397bf996, 0x49c2c37f07965404},
{0xd7e77a8f87daf7fb, 0xdc33745ec97be906},
{0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3},
{0xa8acd7c0222311bc, 0xc40832ea0d68ce0c},
{0xd2d80db02aabd62b, 0xf50a3fa490c30190},
{0x83c7088e1aab65db, 0x792667c6da79e0fa},
{0xa4b8cab1a1563f52, 0x577001b891185938},
{0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
{0x80b05e5ac60b6178, 0x544f8158315b05b4},
{0xa0dc75f1778e39d6, 0x696361ae3db1c721},
{0xc913936dd571c84c, 0x03bc3a19cd1e38e9},
{0xfb5878494ace3a5f, 0x04ab48a04065c723},
{0x9d174b2dcec0e47b, 0x62eb0d64283f9c76},
{0xc45d1df942711d9a, 0x3ba5d0bd324f8394},
{0xf5746577930d6500, 0xca8f44ec7ee36479},
{0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb},
{0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e},
{0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e},
{0x95d04aee3b80ece5, 0xbba1f1d158724a12},
{0xbb445da9ca61281f, 0x2a8a6e45ae8edc97},
{0xea1575143cf97226, 0xf52d09d71a3293bd},
{0x924d692ca61be758, 0x593c2626705f9c56},
{0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c},
{0xe498f455c38b997a, 0x0b6dfb9c0f956447},
{0x8edf98b59a373fec, 0x4724bd4189bd5eac},
{0xb2977ee300c50fe7, 0x58edec91ec2cb657},
{0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed},
{0x8b865b215899f46c, 0xbd79e0d20082ee74},
{0xae67f1e9aec07187, 0xecd8590680a3aa11},
{0xda01ee641a708de9, 0xe80e6f4820cc9495},
{0x884134fe908658b2, 0x3109058d147fdcdd},
{0xaa51823e34a7eede, 0xbd4b46f0599fd415},
{0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a},
{0x850fadc09923329e, 0x03e2cf6bc604ddb0},
{0xa6539930bf6bff45, 0x84db8346b786151c},
{0xcfe87f7cef46ff16, 0xe612641865679a63},
{0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e},
{0xa26da3999aef7749, 0xe3be5e330f38f09d},
{0xcb090c8001ab551c, 0x5cadf5bfd3072cc5},
{0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6},
{0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa},
{0xc646d63501a1511d, 0xb281e1fd541501b8},
{0xf7d88bc24209a565, 0x1f225a7ca91a4226},
{0x9ae757596946075f, 0x3375788de9b06958},
{0xc1a12d2fc3978937, 0x0052d6b1641c83ae},
{0xf209787bb47d6b84, 0xc0678c5dbd23a49a},
{0x9745eb4d50ce6332, 0xf840b7ba963646e0},
{0xbd176620a501fbff, 0xb650e5a93bc3d898},
{0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe},
{0x93ba47c980e98cdf, 0xc66f336c36b10137},
{0xb8a8d9bbe123f017, 0xb80b0047445d4184},
{0xe6d3102ad96cec1d, 0xa60dc059157491e5},
{0x9043ea1ac7e41392, 0x87c89837ad68db2f},
{0xb454e4a179dd1877, 0x29babe4598c311fb},
{0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a},
{0x8ce2529e2734bb1d, 0x1899e4a65f58660c},
{0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f},
{0xdc21a1171d42645d, 0x76707543f4fa1f73},
{0x899504ae72497eba, 0x6a06494a791c53a8},
{0xabfa45da0edbde69, 0x0487db9d17636892},
{0xd6f8d7509292d603, 0x45a9d2845d3c42b6},
{0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
{0xa7f26836f282b732, 0x8e6cac7768d7141e},
{0xd1ef0244af2364ff, 0x3207d795430cd926},
{0x8335616aed761f1f, 0x7f44e6bd49e807b8},
{0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6},
{0xcd036837130890a1, 0x36dba887c37a8c0f},
{0x802221226be55a64, 0xc2494954da2c9789},
{0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c},
{0xc83553c5c8965d3d, 0x6f92829494e5acc7},
{0xfa42a8b73abbf48c, 0xcb772339ba1f17f9},
{0x9c69a97284b578d7, 0xff2a760414536efb},
{0xc38413cf25e2d70d, 0xfef5138519684aba},
{0xf46518c2ef5b8cd1, 0x7eb258665fc25d69},
{0x98bf2f79d5993802, 0xef2f773ffbd97a61},
{0xbeeefb584aff8603, 0xaafb550ffacfd8fa},
{0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38},
{0x952ab45cfa97a0b2, 0xdd945a747bf26183},
{0xba756174393d88df, 0x94f971119aeef9e4},
{0xe912b9d1478ceb17, 0x7a37cd5601aab85d},
{0x91abb422ccb812ee, 0xac62e055c10ab33a},
{0xb616a12b7fe617aa, 0x577b986b314d6009},
{0xe39c49765fdf9d94, 0xed5a7e85fda0b80b},
{0x8e41ade9fbebc27d, 0x14588f13be847307},
{0xb1d219647ae6b31c, 0x596eb2d8ae258fc8},
{0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb},
{0x8aec23d680043bee, 0x25de7bb9480d5854},
{0xada72ccc20054ae9, 0xaf561aa79a10ae6a},
{0xd910f7ff28069da4, 0x1b2ba1518094da04},
{0x87aa9aff79042286, 0x90fb44d2f05d0842},
{0xa99541bf57452b28, 0x353a1607ac744a53},
{0xd3fa922f2d1675f2, 0x42889b8997915ce8},
{0x847c9b5d7c2e09b7, 0x69956135febada11},
{0xa59bc234db398c25, 0x43fab9837e699095},
{0xcf02b2c21207ef2e, 0x94f967e45e03f4bb},
{0x8161afb94b44f57d, 0x1d1be0eebac278f5},
{0xa1ba1ba79e1632dc, 0x6462d92a69731732},
{0xca28a291859bbf93, 0x7d7b8f7503cfdcfe},
{0xfcb2cb35e702af78, 0x5cda735244c3d43e},
{0x9defbf01b061adab, 0x3a0888136afa64a7},
{0xc56baec21c7a1916, 0x088aaa1845b8fdd0},
{0xf6c69a72a3989f5b, 0x8aad549e57273d45},
{0x9a3c2087a63f6399, 0x36ac54e2f678864b},
{0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd},
{0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5},
{0x969eb7c47859e743, 0x9f644ae5a4b1b325},
{0xbc4665b596706114, 0x873d5d9f0dde1fee},
{0xeb57ff22fc0c7959, 0xa90cb506d155a7ea},
{0x9316ff75dd87cbd8, 0x09a7f12442d588f2},
{0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f},
{0xe5d3ef282a242e81, 0x8f1668c8a86da5fa},
{0x8fa475791a569d10, 0xf96e017d694487bc},
{0xb38d92d760ec4455, 0x37c981dcc395a9ac},
{0xe070f78d3927556a, 0x85bbe253f47b1417},
{0x8c469ab843b89562, 0x93956d7478ccec8e},
{0xaf58416654a6babb, 0x387ac8d1970027b2},
{0xdb2e51bfe9d0696a, 0x06997b05fcc0319e},
{0x88fcf317f22241e2, 0x441fece3bdf81f03},
{0xab3c2fddeeaad25a, 0xd527e81cad7626c3},
{0xd60b3bd56a5586f1, 0x8a71e223d8d3b074},
{0x85c7056562757456, 0xf6872d5667844e49},
{0xa738c6bebb12d16c, 0xb428f8ac016561db},
{0xd106f86e69d785c7, 0xe13336d701beba52},
{0x82a45b450226b39c, 0xecc0024661173473},
{0xa34d721642b06084, 0x27f002d7f95d0190},
{0xcc20ce9bd35c78a5, 0x31ec038df7b441f4},
{0xff290242c83396ce, 0x7e67047175a15271},
{0x9f79a169bd203e41, 0x0f0062c6e984d386},
{0xc75809c42c684dd1, 0x52c07b78a3e60868},
{0xf92e0c3537826145, 0xa7709a56ccdf8a82},
{0x9bbcc7a142b17ccb, 0x88a66076400bb691},
{0xc2abf989935ddbfe, 0x6acff893d00ea435},
{0xf356f7ebf83552fe, 0x0583f6b8c4124d43},
{0x98165af37b2153de, 0xc3727a337a8b704a},
{0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c},
{0xeda2ee1c7064130c, 0x1162def06f79df73},
{0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8},
{0xb9a74a0637ce2ee1, 0x6d953e2bd7173692},
{0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437},
{0x910ab1d4db9914a0, 0x1d9c9892400a22a2},
{0xb54d5e4a127f59c8, 0x2503beb6d00cab4b},
{0xe2a0b5dc971f303a, 0x2e44ae64840fd61d},
{0x8da471a9de737e24, 0x5ceaecfed289e5d2},
{0xb10d8e1456105dad, 0x7425a83e872c5f47},
{0xdd50f1996b947518, 0xd12f124e28f77719},
{0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f},
{0xace73cbfdc0bfb7b, 0x636cc64d1001550b},
{0xd8210befd30efa5a, 0x3c47f7e05401aa4e},
{0x8714a775e3e95c78, 0x65acfaec34810a71},
{0xa8d9d1535ce3b396, 0x7f1839a741a14d0d},
{0xd31045a8341ca07c, 0x1ede48111209a050},
{0x83ea2b892091e44d, 0x934aed0aab460432},
{0xa4e4b66b68b65d60, 0xf81da84d5617853f},
{0xce1de40642e3f4b9, 0x36251260ab9d668e},
{0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019},
{0xa1075a24e4421730, 0xb24cf65b8612f81f},
{0xc94930ae1d529cfc, 0xdee033f26797b627},
{0xfb9b7cd9a4a7443c, 0x169840ef017da3b1},
{0x9d412e0806e88aa5, 0x8e1f289560ee864e},
{0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2},
{0xf5b5d7ec8acb58a2, 0xae10af696774b1db},
{0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29},
{0xbff610b0cc6edd3f, 0x17fd090a58d32af3},
{0xeff394dcff8a948e, 0xddfc4b4cef07f5b0},
{0x95f83d0a1fb69cd9, 0x4abdaf101564f98e},
{0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1},
{0xea53df5fd18d5513, 0x84c86189216dc5ed},
{0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4},
{0xb7118682dbb66a77, 0x3fbc8c33221dc2a1},
{0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
{0x8f05b1163ba6832d, 0x29cb4d87f2a7400e},
{0xb2c71d5bca9023f8, 0x743e20e9ef511012},
{0xdf78e4b2bd342cf6, 0x914da9246b255416},
{0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e},
{0xae9672aba3d0c320, 0xa184ac2473b529b1},
{0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e},
{0x8865899617fb1871, 0x7e2fa67c7a658892},
{0xaa7eebfb9df9de8d, 0xddbb901b98feeab7},
{0xd51ea6fa85785631, 0x552a74227f3ea565},
{0x8533285c936b35de, 0xd53a88958f87275f},
{0xa67ff273b8460356, 0x8a892abaf368f137},
{0xd01fef10a657842c, 0x2d2b7569b0432d85},
{0x8213f56a67f6b29b, 0x9c3b29620e29fc73},
{0xa298f2c501f45f42, 0x8349f3ba91b47b8f},
{0xcb3f2f7642717713, 0x241c70a936219a73},
{0xfe0efb53d30dd4d7, 0xed238cd383aa0110},
{0x9ec95d1463e8a506, 0xf4363804324a40aa},
{0xc67bb4597ce2ce48, 0xb143c6053edcd0d5},
{0xf81aa16fdc1b81da, 0xdd94b7868e94050a},
{0x9b10a4e5e9913128, 0xca7cf2b4191c8326},
{0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0},
{0xf24a01a73cf2dccf, 0xbc633b39673c8cec},
{0x976e41088617ca01, 0xd5be0503e085d813},
{0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18},
{0xec9c459d51852ba2, 0xddf8e7d60ed1219e},
{0x93e1ab8252f33b45, 0xcabb90e5c942b503},
{0xb8da1662e7b00a17, 0x3d6a751f3b936243},
{0xe7109bfba19c0c9d, 0x0cc512670a783ad4},
{0x906a617d450187e2, 0x27fb2b80668b24c5},
{0xb484f9dc9641e9da, 0xb1f9f660802dedf6},
{0xe1a63853bbd26451, 0x5e7873f8a0396973},
{0x8d07e33455637eb2, 0xdb0b487b6423e1e8},
{0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62},
{0xdc5c5301c56b75f7, 0x7641a140cc7810fb},
{0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d},
{0xac2820d9623bf429, 0x546345fa9fbdcd44},
{0xd732290fbacaf133, 0xa97c177947ad4095},
{0x867f59a9d4bed6c0, 0x49ed8eabcccc485d},
{0xa81f301449ee8c70, 0x5c68f256bfff5a74},
{0xd226fc195c6a2f8c, 0x73832eec6fff3111},
{0x83585d8fd9c25db7, 0xc831fd53c5ff7eab},
{0xa42e74f3d032f525, 0xba3e7ca8b77f5e55},
{0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb},
{0x80444b5e7aa7cf85, 0x7980d163cf5b81b3},
{0xa0555e361951c366, 0xd7e105bcc332621f},
{0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7},
{0xfa856334878fc150, 0xb14f98f6f0feb951},
{0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3},
{0xc3b8358109e84f07, 0x0a862f80ec4700c8},
{0xf4a642e14c6262c8, 0xcd27bb612758c0fa},
{0x98e7e9cccfbd7dbd, 0x8038d51cb897789c},
{0xbf21e44003acdd2c, 0xe0470a63e6bd56c3},
{0xeeea5d5004981478, 0x1858ccfce06cac74},
{0x95527a5202df0ccb, 0x0f37801e0c43ebc8},
{0xbaa718e68396cffd, 0xd30560258f54e6ba},
{0xe950df20247c83fd, 0x47c6b82ef32a2069},
{0x91d28b7416cdd27e, 0x4cdc331d57fa5441},
{0xb6472e511c81471d, 0xe0133fe4adf8e952},
{0xe3d8f9e563a198e5, 0x58180fddd97723a6},
{0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648},
{0xb201833b35d63f73, 0x2cd2cc6551e513da},
{0xde81e40a034bcf4f, 0xf8077f7ea65e58d1},
{0x8b112e86420f6191, 0xfb04afaf27faf782},
{0xadd57a27d29339f6, 0x79c5db9af1f9b563},
{0xd94ad8b1c7380874, 0x18375281ae7822bc},
{0x87cec76f1c830548, 0x8f2293910d0b15b5},
{0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22},
{0xd433179d9c8cb841, 0x5fa60692a46151eb},
{0x849feec281d7f328, 0xdbc7c41ba6bcd333},
{0xa5c7ea73224deff3, 0x12b9b522906c0800},
{0xcf39e50feae16bef, 0xd768226b34870a00},
{0x81842f29f2cce375, 0xe6a1158300d46640},
{0xa1e53af46f801c53, 0x60495ae3c1097fd0},
{0xca5e89b18b602368, 0x385bb19cb14bdfc4},
{0xfcf62c1dee382c42, 0x46729e03dd9ed7b5},
{0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1},
{0xc5a05277621be293, 0xc7098b7305241885},
{ 0xf70867153aa2db38,
0xb8cbee4fc66d1ea7 }
#else
{0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
{0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
{0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
{0x86a8d39ef77164bc, 0xae5dff9c02033198},
{0xd98ddaee19068c76, 0x3badd624dd9b0958},
{0xafbd2350644eeacf, 0xe5d1929ef90898fb},
{0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
{0xe55990879ddcaabd, 0xcc420a6a101d0516},
{0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
{0x95a8637627989aad, 0xdde7001379a44aa9},
{0xf1c90080baf72cb1, 0x5324c68b12dd6339},
{0xc350000000000000, 0x0000000000000000},
{0x9dc5ada82b70b59d, 0xf020000000000000},
{0xfee50b7025c36a08, 0x02f236d04753d5b4},
{0xcde6fd5e09abcf26, 0xed4c0226b55e6f86},
{0xa6539930bf6bff45, 0x84db8346b786151c},
{0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2},
{0xd910f7ff28069da4, 0x1b2ba1518094da04},
{0xaf58416654a6babb, 0x387ac8d1970027b2},
{0x8da471a9de737e24, 0x5ceaecfed289e5d2},
{0xe4d5e82392a40515, 0x0fabaf3feaa5334a},
{0xb8da1662e7b00a17, 0x3d6a751f3b936243},
{ 0x95527a5202df0ccb,
0x0f37801e0c43ebc8 }
#endif
};
#if FMT_USE_FULL_CACHE_DRAGONBOX
return pow10_significands[k - float_info<double>::min_k];
#else
static constexpr const uint64_t powers_of_5_64[] = {
0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
static constexpr const uint32_t pow10_recovery_errors[] = {
0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001,
0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555,
0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110,
0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454,
0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014,
0x69514555, 0x05151109, 0x00155555};
static const int compression_ratio = 27;
// Compute base index.
int cache_index = (k - float_info<double>::min_k) / compression_ratio;
int kb = cache_index * compression_ratio + float_info<double>::min_k;
int offset = k - kb;
// Get base cache.
uint128_wrapper base_cache = pow10_significands[cache_index];
if (offset == 0) return base_cache;
// Compute the required amount of bit-shift.
int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
// Try to recover the real cache.
uint64_t pow5 = powers_of_5_64[offset];
uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5);
uint128_wrapper middle_low =
umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5);
recovered_cache += middle_low.high();
uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
recovered_cache =
uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle,
((middle_low.low() >> alpha) | middle_to_low)};
if (kb < 0) recovered_cache += 1;
// Get error.
int error_idx = (k - float_info<double>::min_k) / 16;
uint32_t error = (pow10_recovery_errors[error_idx] >>
((k - float_info<double>::min_k) % 16) * 2) &
0x3;
// Add the error back.
FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), "");
return {recovered_cache.high(), recovered_cache.low() + error};
#endif
}
static carrier_uint compute_mul(carrier_uint u,
const cache_entry_type& cache) FMT_NOEXCEPT {
return umul192_upper64(u, cache);
}
static uint32_t compute_delta(cache_entry_type const& cache,
int beta_minus_1) FMT_NOEXCEPT {
return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
}
static bool compute_mul_parity(carrier_uint two_f,
const cache_entry_type& cache,
int beta_minus_1) FMT_NOEXCEPT {
FMT_ASSERT(beta_minus_1 >= 1, "");
FMT_ASSERT(beta_minus_1 < 64, "");
return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
}
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return (cache.high() -
(cache.high() >> (float_info<double>::significand_bits + 2))) >>
(64 - float_info<double>::significand_bits - 1 - beta_minus_1);
}
static carrier_uint compute_right_endpoint_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return (cache.high() +
(cache.high() >> (float_info<double>::significand_bits + 1))) >>
(64 - float_info<double>::significand_bits - 1 - beta_minus_1);
}
static carrier_uint compute_round_up_for_shorter_interval_case(
const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT {
return ((cache.high() >>
(64 - float_info<double>::significand_bits - 2 - beta_minus_1)) +
1) /
2;
}
};
// Various integer checks
template <class T>
bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT {
return exponent >=
float_info<
T>::case_shorter_interval_left_endpoint_lower_threshold &&
exponent <=
float_info<T>::case_shorter_interval_left_endpoint_upper_threshold;
}
template <class T>
bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f,
int exponent, int minus_k) FMT_NOEXCEPT {
if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false;
// For k >= 0.
if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true;
// For k < 0.
if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
return divisible_by_power_of_5(two_f, minus_k);
}
template <class T>
bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent,
int minus_k) FMT_NOEXCEPT {
// Exponent for 5 is negative.
if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false;
if (exponent > float_info<T>::case_fc_upper_threshold)
return divisible_by_power_of_5(two_f, minus_k);
// Both exponents are nonnegative.
if (exponent >= float_info<T>::case_fc_lower_threshold) return true;
// Exponent for 2 is negative.
return divisible_by_power_of_2(two_f, minus_k - exponent + 1);
}
// Remove trailing zeros from n and return the number of zeros removed (float)
FMT_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT {
#ifdef FMT_BUILTIN_CTZ
int t = FMT_BUILTIN_CTZ(n);
#else
int t = ctz(n);
#endif
if (t > float_info<float>::max_trailing_zeros)
t = float_info<float>::max_trailing_zeros;
const uint32_t mod_inv1 = 0xcccccccd;
const uint32_t max_quotient1 = 0x33333333;
const uint32_t mod_inv2 = 0xc28f5c29;
const uint32_t max_quotient2 = 0x0a3d70a3;
int s = 0;
for (; s < t - 1; s += 2) {
if (n * mod_inv2 > max_quotient2) break;
n *= mod_inv2;
}
if (s < t && n * mod_inv1 <= max_quotient1) {
n *= mod_inv1;
++s;
}
n >>= s;
return s;
}
// Removes trailing zeros and returns the number of zeros removed (double)
FMT_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT {
#ifdef FMT_BUILTIN_CTZLL
int t = FMT_BUILTIN_CTZLL(n);
#else
int t = ctzll(n);
#endif
if (t > float_info<double>::max_trailing_zeros)
t = float_info<double>::max_trailing_zeros;
// Divide by 10^8 and reduce to 32-bits
// Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17,
// both of the quotient and the r should fit in 32-bits
const uint32_t mod_inv1 = 0xcccccccd;
const uint32_t max_quotient1 = 0x33333333;
const uint64_t mod_inv8 = 0xc767074b22e90e21;
const uint64_t max_quotient8 = 0x00002af31dc46118;
// If the number is divisible by 1'0000'0000, work with the quotient
if (t >= 8) {
auto quotient_candidate = n * mod_inv8;
if (quotient_candidate <= max_quotient8) {
auto quotient = static_cast<uint32_t>(quotient_candidate >> 8);
int s = 8;
for (; s < t; ++s) {
if (quotient * mod_inv1 > max_quotient1) break;
quotient *= mod_inv1;
}
quotient >>= (s - 8);
n = quotient;
return s;
}
}
// Otherwise, work with the remainder
auto quotient = static_cast<uint32_t>(n / 100000000);
auto remainder = static_cast<uint32_t>(n - 100000000 * quotient);
if (t == 0 || remainder * mod_inv1 > max_quotient1) {
return 0;
}
remainder *= mod_inv1;
if (t == 1 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 1) + quotient * 10000000ull;
return 1;
}
remainder *= mod_inv1;
if (t == 2 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 2) + quotient * 1000000ull;
return 2;
}
remainder *= mod_inv1;
if (t == 3 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 3) + quotient * 100000ull;
return 3;
}
remainder *= mod_inv1;
if (t == 4 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 4) + quotient * 10000ull;
return 4;
}
remainder *= mod_inv1;
if (t == 5 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 5) + quotient * 1000ull;
return 5;
}
remainder *= mod_inv1;
if (t == 6 || remainder * mod_inv1 > max_quotient1) {
n = (remainder >> 6) + quotient * 100ull;
return 6;
}
remainder *= mod_inv1;
n = (remainder >> 7) + quotient * 10ull;
return 7;
}
// The main algorithm for shorter interval case
template <class T>
FMT_INLINE decimal_fp<T> shorter_interval_case(int exponent) FMT_NOEXCEPT {
decimal_fp<T> ret_value;
// Compute k and beta
const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
// Compute xi and zi
using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
cache, beta_minus_1);
auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
cache, beta_minus_1);
// If the left endpoint is not an integer, increase it
if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
// Try bigger divisor
ret_value.significand = zi / 10;
// If succeed, remove trailing zeros if necessary and return
if (ret_value.significand * 10 >= xi) {
ret_value.exponent = minus_k + 1;
ret_value.exponent += remove_trailing_zeros(ret_value.significand);
return ret_value;
}
// Otherwise, compute the round-up of y
ret_value.significand =
cache_accessor<T>::compute_round_up_for_shorter_interval_case(
cache, beta_minus_1);
ret_value.exponent = minus_k;
// When tie occurs, choose one of them according to the rule
if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
ret_value.significand = ret_value.significand % 2 == 0
? ret_value.significand
: ret_value.significand - 1;
} else if (ret_value.significand < xi) {
++ret_value.significand;
}
return ret_value;
}
template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
// Step 1: integer promotion & Schubfach multiplier calculation.
using carrier_uint = typename float_info<T>::carrier_uint;
using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
auto br = bit_cast<carrier_uint>(x);
// Extract significand bits and exponent bits.
const carrier_uint significand_mask =
(static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1;
carrier_uint significand = (br & significand_mask);
int exponent = static_cast<int>((br & exponent_mask<T>()) >>
float_info<T>::significand_bits);
if (exponent != 0) { // Check if normal.
exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits;
// Shorter interval case; proceed like Schubfach.
if (significand == 0) return shorter_interval_case<T>(exponent);
significand |=
(static_cast<carrier_uint>(1) << float_info<T>::significand_bits);
} else {
// Subnormal case; the interval is always regular.
if (significand == 0) return {0, 0};
exponent = float_info<T>::min_exponent - float_info<T>::significand_bits;
}
const bool include_left_endpoint = (significand % 2 == 0);
const bool include_right_endpoint = include_left_endpoint;
// Compute k and beta.
const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
// Compute zi and deltai
// 10^kappa <= deltai < 10^(kappa + 1)
const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
const carrier_uint two_fc = significand << 1;
const carrier_uint two_fr = two_fc | 1;
const carrier_uint zi =
cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);
// Step 2: Try larger divisor; remove trailing zeros if necessary
// Using an upper bound on zi, we might be able to optimize the division
// better than the compiler; we are computing zi / big_divisor here
decimal_fp<T> ret_value;
ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
ret_value.significand);
if (r > deltai) {
goto small_divisor_case_label;
} else if (r < deltai) {
// Exclude the right endpoint if necessary
if (r == 0 && !include_right_endpoint &&
is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
--ret_value.significand;
r = float_info<T>::big_divisor;
goto small_divisor_case_label;
}
} else {
// r == deltai; compare fractional parts
// Check conditions in the order different from the paper
// to take advantage of short-circuiting
const carrier_uint two_fl = two_fc - 1;
if ((!include_left_endpoint ||
!is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
!cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
goto small_divisor_case_label;
}
}
ret_value.exponent = minus_k + float_info<T>::kappa + 1;
// We may need to remove trailing zeros
ret_value.exponent += remove_trailing_zeros(ret_value.significand);
return ret_value;
// Step 3: Find the significand with the smaller divisor
small_divisor_case_label:
ret_value.significand *= 10;
ret_value.exponent = minus_k + float_info<T>::kappa;
const uint32_t mask = (1u << float_info<T>::kappa) - 1;
auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
// Is dist divisible by 2^kappa?
if ((dist & mask) == 0) {
const bool approx_y_parity =
((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
dist >>= float_info<T>::kappa;
// Is dist divisible by 5^kappa?
if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) {
ret_value.significand += dist;
// Check z^(f) >= epsilon^(f)
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number
if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
approx_y_parity) {
--ret_value.significand;
} else {
// If z^(f) >= epsilon^(f), we might have a tie
// when z^(f) == epsilon^(f), or equivalently, when y is an integer
if (is_center_integer<T>(two_fc, exponent, minus_k)) {
ret_value.significand = ret_value.significand % 2 == 0
? ret_value.significand
: ret_value.significand - 1;
}
}
}
// Is dist not divisible by 5^kappa?
else {
ret_value.significand += dist;
}
}
// Is dist not divisible by 2^kappa?
else {
// Since we know dist is small, we might be able to optimize the division
// better than the compiler; we are computing dist / small_divisor here
ret_value.significand +=
small_division_by_pow10<float_info<T>::kappa>(dist);
}
return ret_value;
}
} // namespace dragonbox
// Formats value using a variation of the Fixed-Precision Positive
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/papers/p372-steele.pdf.
template <typename Double>
void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf,
int& exp10) {
bigint numerator; // 2 * R in (FPP)^2.
bigint denominator; // 2 * S in (FPP)^2.
// lower and upper are differences between value and corresponding boundaries.
bigint lower; // (M^- in (FPP)^2).
bigint upper_store; // upper's value if different from lower.
bigint* upper = nullptr; // (M^+ in (FPP)^2).
fp value;
// Shift numerator and denominator by an extra bit or two (if lower boundary
// is closer) to make lower and upper integers. This eliminates multiplication
// by 2 during later computations.
const bool is_predecessor_closer =
binary32 ? value.assign(static_cast<float>(d)) : value.assign(d);
int shift = is_predecessor_closer ? 2 : 1;
uint64_t significand = value.f << shift;
if (value.e >= 0) {
numerator.assign(significand);
numerator <<= value.e;
lower.assign(1);
lower <<= value.e;
if (shift != 1) {
upper_store.assign(1);
upper_store <<= value.e + 1;
upper = &upper_store;
}
denominator.assign_pow10(exp10);
denominator <<= shift;
} else if (exp10 < 0) {
numerator.assign_pow10(-exp10);
lower.assign(numerator);
if (shift != 1) {
upper_store.assign(numerator);
upper_store <<= 1;
upper = &upper_store;
}
numerator *= significand;
denominator.assign(1);
denominator <<= shift - value.e;
} else {
numerator.assign(significand);
denominator.assign_pow10(exp10);
denominator <<= shift - value.e;
lower.assign(1);
if (shift != 1) {
upper_store.assign(1ULL << 1);
upper = &upper_store;
}
}
// Invariant: value == (numerator / denominator) * pow(10, exp10).
if (num_digits < 0) {
// Generate the shortest representation.
if (!upper) upper = &lower;
bool even = (value.f & 1) == 0;
num_digits = 0;
char* data = buf.data();
for (;;) {
int digit = numerator.divmod_assign(denominator);
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
// numerator + upper >[=] pow10:
bool high = add_compare(numerator, *upper, denominator) + even > 0;
data[num_digits++] = static_cast<char>('0' + digit);
if (low || high) {
if (!low) {
++data[num_digits - 1];
} else if (high) {
int result = add_compare(numerator, numerator, denominator);
// Round half to even.
if (result > 0 || (result == 0 && (digit % 2) != 0))
++data[num_digits - 1];
}
buf.try_resize(to_unsigned(num_digits));
exp10 -= num_digits - 1;
return;
}
numerator *= 10;
lower *= 10;
if (upper != &lower) *upper *= 10;
}
}
// Generate the given number of digits.
exp10 -= num_digits - 1;
if (num_digits == 0) {
buf.try_resize(1);
denominator *= 10;
buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
return;
}
buf.try_resize(to_unsigned(num_digits));
for (int i = 0; i < num_digits - 1; ++i) {
int digit = numerator.divmod_assign(denominator);
buf[i] = static_cast<char>('0' + digit);
numerator *= 10;
}
int digit = numerator.divmod_assign(denominator);
auto result = add_compare(numerator, numerator, denominator);
if (result > 0 || (result == 0 && (digit % 2) != 0)) {
if (digit == 9) {
const auto overflow = '0' + 10;
buf[num_digits - 1] = overflow;
// Propagate the carry.
for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] == overflow) {
buf[0] = '1';
++exp10;
}
return;
}
++digit;
}
buf[num_digits - 1] = static_cast<char>('0' + digit);
}
template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
static_assert(!std::is_same<T, float>::value, "");
FMT_ASSERT(value >= 0, "value is negative");
const bool fixed = specs.format == float_format::fixed;
if (value <= 0) { // <= instead of == to silence a warning.
if (precision <= 0 || !fixed) {
buf.push_back('0');
return 0;
}
buf.try_resize(to_unsigned(precision));
std::uninitialized_fill_n(buf.data(), precision, '0');
return -precision;
}
if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);
if (precision < 0) {
// Use Dragonbox for the shortest format.
if (specs.binary32) {
auto dec = dragonbox::to_decimal(static_cast<float>(value));
write<char>(buffer_appender<char>(buf), dec.significand);
return dec.exponent;
}
auto dec = dragonbox::to_decimal(static_cast<double>(value));
write<char>(buffer_appender<char>(buf), dec.significand);
return dec.exponent;
}
// Use Grisu + Dragon4 for the given precision:
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
int exp = 0;
const int min_exp = -60; // alpha in Grisu.
int cached_exp10 = 0; // K in Grisu.
fp normalized = normalize(fp(value));
const auto cached_pow = get_cached_power(
min_exp - (normalized.e + fp::significand_size), cached_exp10);
normalized = normalized * cached_pow;
// Limit precision to the maximum possible number of significant digits in an
// IEEE754 double because we don't need to generate zeros.
const int max_double_digits = 767;
if (precision > max_double_digits) precision = max_double_digits;
fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) {
exp += handler.size - cached_exp10 - 1;
fallback_format(value, handler.precision, specs.binary32, buf, exp);
} else {
exp += handler.exp10;
buf.try_resize(to_unsigned(handler.size));
}
if (!fixed && !specs.showpoint) {
// Remove trailing zeros.
auto num_digits = buf.size();
while (num_digits > 0 && buf[num_digits - 1] == '0') {
--num_digits;
++exp;
}
buf.try_resize(num_digits);
}
return exp;
} // namespace detail
template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
buffer<char>& buf) {
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
static_assert(!std::is_same<T, float>::value, "");
// Subtract 1 to account for the difference in precision since we use %e for
// both general and exponent format.
if (specs.format == float_format::general ||
specs.format == float_format::exp)
precision = (precision >= 0 ? precision : 6) - 1;
// Build the format string.
enum { max_format_size = 7 }; // The longest format is "%#.*Le".
char format[max_format_size];
char* format_ptr = format;
*format_ptr++ = '%';
if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
if (precision >= 0) {
*format_ptr++ = '.';
*format_ptr++ = '*';
}
if (std::is_same<T, long double>()) *format_ptr++ = 'L';
*format_ptr++ = specs.format != float_format::hex
? (specs.format == float_format::fixed ? 'f' : 'e')
: (specs.upper ? 'A' : 'a');
*format_ptr = '\0';
// Format using snprintf.
auto offset = buf.size();
for (;;) {
auto begin = buf.data() + offset;
auto capacity = buf.capacity() - offset;
#ifdef FMT_FUZZ
if (precision > 100000)
throw std::runtime_error(
"fuzz mode - avoid large allocation inside snprintf");
#endif
// Suppress the warning about a nonliteral format string.
// Cannot use auto because of a bug in MinGW (#1532).
int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
int result = precision >= 0
? snprintf_ptr(begin, capacity, format, precision, value)
: snprintf_ptr(begin, capacity, format, value);
if (result < 0) {
// The buffer will grow exponentially.
buf.try_reserve(buf.capacity() + 1);
continue;
}
auto size = to_unsigned(result);
// Size equal to capacity means that the last character was truncated.
if (size >= capacity) {
buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'.
continue;
}
auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
if (specs.format == float_format::fixed) {
if (precision == 0) {
buf.try_resize(size);
return 0;
}
// Find and remove the decimal point.
auto end = begin + size, p = end;
do {
--p;
} while (is_digit(*p));
int fraction_size = static_cast<int>(end - p - 1);
std::memmove(p, p + 1, to_unsigned(fraction_size));
buf.try_resize(size - 1);
return -fraction_size;
}
if (specs.format == float_format::hex) {
buf.try_resize(size + offset);
return 0;
}
// Find and parse the exponent.
auto end = begin + size, exp_pos = end;
do {
--exp_pos;
} while (*exp_pos != 'e');
char sign = exp_pos[1];
FMT_ASSERT(sign == '+' || sign == '-', "");
int exp = 0;
auto p = exp_pos + 2; // Skip 'e' and sign.
do {
FMT_ASSERT(is_digit(*p), "");
exp = exp * 10 + (*p++ - '0');
} while (p != end);
if (sign == '-') exp = -exp;
int fraction_size = 0;
if (exp_pos != begin + 1) {
// Remove trailing zeros.
auto fraction_end = exp_pos - 1;
while (*fraction_end == '0') --fraction_end;
// Move the fractional part left to get rid of the decimal point.
fraction_size = static_cast<int>(fraction_end - begin - 1);
std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
}
buf.try_resize(to_unsigned(fraction_size) + offset + 1);
return exp - fraction_size;
}
}
} // namespace detail
template <> struct formatter<detail::bigint> {
FMT_CONSTEXPR format_parse_context::iterator parse(
format_parse_context& ctx) {
return ctx.begin();
}
format_context::iterator format(const detail::bigint& n,
format_context& ctx) {
auto out = ctx.out();
bool first = true;
for (auto i = n.bigits_.size(); i > 0; --i) {
auto value = n.bigits_[i - 1u];
if (first) {
out = format_to(out, FMT_STRING("{:x}"), value);
first = false;
continue;
}
out = format_to(out, FMT_STRING("{:08x}"), value);
}
if (n.exp_ > 0)
out = format_to(out, FMT_STRING("p{}"),
n.exp_ * detail::bigint::bigit_bits);
return out;
}
};
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
for_each_codepoint(s, [this](uint32_t cp, int error) {
if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
if (cp <= 0xFFFF) {
buffer_.push_back(static_cast<wchar_t>(cp));
} else {
cp -= 0x10000;
buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
}
});
buffer_.push_back(0);
}
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
const char* message) FMT_NOEXCEPT {
FMT_TRY {
auto ec = std::error_code(error_code, std::generic_category());
write(std::back_inserter(out), std::system_error(ec, message).what());
return;
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
FMT_FUNC void detail::error_handler::on_error(const char* message) {
FMT_THROW(format_error(message));
}
FMT_FUNC void report_system_error(int error_code,
const char* message) FMT_NOEXCEPT {
report_error(format_system_error, error_code, message);
}
FMT_FUNC std::string vformat(string_view fmt, format_args args) {
// Don't optimize the "{}" case to keep the binary size small and because it
// can be better optimized in fmt::format anyway.
auto buffer = memory_buffer();
detail::vformat_to(buffer, fmt, args);
return to_string(buffer);
}
#ifdef _WIN32
namespace detail {
using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( //
void*, const void*, dword, dword*, void*);
} // namespace detail
#endif
namespace detail {
FMT_FUNC void print(std::FILE* f, string_view text) {
#ifdef _WIN32
auto fd = _fileno(f);
if (_isatty(fd)) {
detail::utf8_to_utf16 u16(string_view(text.data(), text.size()));
auto written = detail::dword();
if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)),
u16.c_str(), static_cast<uint32_t>(u16.size()),
&written, nullptr)) {
return;
}
// Fallback to fwrite on failure. It can happen if the output has been
// redirected to NUL.
}
#endif
detail::fwrite_fully(text.data(), 1, text.size(), f);
}
} // namespace detail
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str, args);
detail::print(f, {buffer.data(), buffer.size()});
}
#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str,
basic_format_args<buffer_context<char>>(args));
fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#endif
FMT_FUNC void vprint(string_view format_str, format_args args) {
vprint(stdout, format_str, args);
}
FMT_END_NAMESPACE
#endif // FMT_FORMAT_INL_H_
/*---------------------------------------------------------------------------
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
END # include "format-inl.h"
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
****************************************************************************
--------------------------------------------------------------------------*/
#else
# define FMT_FUNC
#endif
#endif // FMT_FORMAT_H_
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment