Last active
May 17, 2019 20:55
-
-
Save mbarkhau/ff263164cd162ff1fd734c2b0ce23241 to your computer and use it in GitHub Desktop.
Page which includes a statically rendered formula (ie. no javascript).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Test Katex</title> | |
<link rel="stylesheet" | |
href="https://cdn.jsdelivr.net/npm/katex@0.10.2/dist/katex.css" | |
integrity="sha256-SSjvSe9BDSZMUczwnbB1ywCyIk2XaNly9nn6yRm6WJo=" | |
crossorigin="anonymous"> | |
<style type="text/css"> | |
body{background: white; } | |
.katex img { | |
display: block; | |
position: absolute; | |
width: 100%; | |
height: inherit; | |
} | |
</style> | |
</head> | |
<body><h1 id="headline">Headline</h1> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mover accent="true"><mi>f</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mtext> </mtext><msup><mi>e</mi><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>ξ</mi><mi>x</mi></mrow></msup><mtext> </mtext><mi>d</mi><mi>ξ</mi></mrow><annotation encoding="application/x-tex">f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.3720309999999998em;vertical-align:-0.41415100000000005em;"></span><span class="mop"><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0005599999999999772em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8592920000000001em;"><span style="top:-2.34418em;margin-left:-0.19445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.2579000000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.41415100000000005em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.08332999999999999em;">^</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight" style="margin-right:0.04601em;">ξ</span><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><mi mathvariant="normal">∞</mi></msubsup><mover accent="true"><mi>f</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mtext> </mtext><msup><mi>e</mi><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>ξ</mi><mi>x</mi></mrow></msup><mtext> </mtext><mi>d</mi><mi>ξ</mi></mrow><annotation encoding="application/x-tex"> | |
f(x) = \int_{-\infty}^\infty | |
\hat f(\xi)\,e^{2 \pi i \xi x} | |
\,d\xi | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.384573em;vertical-align:-0.970281em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.414292em;"><span style="top:-1.7880500000000001em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.8129000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.970281em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.08332999999999999em;">^</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8991079999999999em;"><span style="top:-3.1130000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight" style="margin-right:0.04601em;">ξ</span><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mo fence="true">(</mo><msqrt><mrow><mi>ϕ</mi><msqrt><mn>5</mn></msqrt></mrow></msqrt><mo>−</mo><mi>ϕ</mi><mo fence="true">)</mo><msup><mi>e</mi><mrow><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>π</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>4</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>6</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mo>⋯</mo></mrow></mfrac></mrow></mfrac></mrow></mfrac></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi} } = 1+\frac{e^{-2\pi}} { 1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} { 1+\frac{e^{-8\pi}}{ 1+\cdots } } } }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.01146em;vertical-align:-1.69002em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.11em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mopen"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.04139em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathdefault">ϕ</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span></span></span><span style="top:-3.0013900000000002em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19860999999999995em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">ϕ</span><span class="mclose"><span class="delimsizing size2">)</span></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.93957em;"><span style="top:-3.3485500000000004em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8443142857142858em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">5</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.38em;"><span class="pstrut" style="height:3.15em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.827em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.69002em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:3.692383em;vertical-align:-2.201275em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.19358em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.91642em;"><span style="top:-2.4519800000000003em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0543142857142858em;"><span style="top:-2.229757142857143em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32544em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="minner mtight">⋯</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.61533em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2097642857142856em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">4</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3948549999999997em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.201275em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mo fence="true">(</mo><msqrt><mrow><mi>ϕ</mi><msqrt><mn>5</mn></msqrt></mrow></msqrt><mo>−</mo><mi>ϕ</mi><mo fence="true">)</mo><msup><mi>e</mi><mrow><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>π</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>4</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>6</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mo>⋯</mo></mrow></mfrac></mrow></mfrac></mrow></mfrac></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex"> | |
\displaystyle | |
\frac{1}{ | |
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi} | |
} = | |
1+\frac{e^{-2\pi}} { | |
1+\frac{e^{-4\pi}} { | |
1+\frac{e^{-6\pi}} { | |
1+\frac{e^{-8\pi}}{ | |
1+\cdots | |
} | |
} | |
} | |
} | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.01146em;vertical-align:-1.69002em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.11em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mopen"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.04139em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathdefault">ϕ</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span></span></span><span style="top:-3.0013900000000002em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19860999999999995em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">ϕ</span><span class="mclose"><span class="delimsizing size2">)</span></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.93957em;"><span style="top:-3.3485500000000004em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8443142857142858em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">5</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.38em;"><span class="pstrut" style="height:3.15em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.827em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.69002em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:3.692383em;vertical-align:-2.201275em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.19358em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.91642em;"><span style="top:-2.4519800000000003em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0543142857142858em;"><span style="top:-2.229757142857143em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32544em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="minner mtight">⋯</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.61533em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2097642857142856em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">4</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3948549999999997em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.201275em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><msup><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>a</mi><mi>k</mi></msub><msub><mi>b</mi><mi>k</mi></msub><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>≤</mo><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>a</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>b</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle \left ( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2561210000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.954008em;"><span style="top:-4.2029000000000005em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.0521130000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex"> | |
\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∭</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.98em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∬</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.472em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">b</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">a</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.7935599999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">h</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover><mover><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏞</mo></mover><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></mover><mo>−</mo><munder><munder><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏟</mo></munder><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></munder></mrow><annotation encoding="application/x-tex">\overbrace{x + \cdots + x}^{n\rm\ times} - \underbrace{x + \cdots + x}_{n\rm\ times}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-0.08333em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.898832em;"><span style="top:-3.23133em;"><span class="pstrut" style="height:3.23133em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.23133em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><img src=""></span><span class="brace-center" style="height:0.548em;"><img src=""></span><span class="brace-right" style="height:0.548em;"><img src=""></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span></span><span style="top:-4.66266em;"><span class="pstrut" style="height:3.23133em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-1.398832em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.5833299999999999em;"><span style="top:-1.601168em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.58333em;"><span class="svg-align" style="top:-2.26867em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><img src=""></span><span class="brace-center" style="height:0.548em;"><img src=""></span><span class="brace-right" style="height:0.548em;"><img src=""></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.73133em;"><span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.398832em;"><span></span></span></span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex"> | |
\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∭</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.98em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∬</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.472em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">b</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">a</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.7935599999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">h</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex">\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.15em;vertical-align:-0.345em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0005000000000000282em;"><span class="vlist-r"><span class="vlist" style="height:0.8049999999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∭</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="overlay" style="height:0.499em;width:1.304em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.306em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0005000000000000282em;"><span class="vlist-r"><span class="vlist" style="height:0.8049999999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∬</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="overlay" style="height:0.499em;width:0.957em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.306em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0005599999999999772em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0925em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7475em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">h</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.446108em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex"> | |
\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∭</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.98em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∬</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.472em;"><img src=""></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">b</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">a</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.7935599999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">h</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi></mrow><mo stretchy="true">⇒</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi><mi>c</mi></mrow><mo stretchy="true">⇀</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">⏠</mo></mover><mo>−</mo><munder accentunder="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>e</mi><mi>f</mi><mi>g</mi><mi>p</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo>−</mo><munder accentunder="true"><munder accentunder="true"><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">ˇ</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">ˇ</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">^</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">^</mo></mover></mrow><annotation encoding="application/x-tex">\Overrightarrow{ABCDE} - \overrightharpoon{abcdec} - \overgroup{ABCDEF} - \undergroup{abcde} - \undergroup{efgp} - \utilde{AB} - \utilde{\utilde{\utilde{AB}}} - \widecheck{AB\widecheck{CD}EF} - \widehat{AB\widehat{CD}EF}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.32666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.24333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.56em;min-width:0.888em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2997699999999999em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.21644em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span><span class="mord mathdefault">c</span></span></span><span class="svg-align" style="top:-3.69444em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.522em;min-width:0.888em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.10866em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.02533em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.03644em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.23088em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8888799999999999em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span><span style="top:-3.19444em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">p</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.08933em;vertical-align:-0.40599999999999997em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><img src=""></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.8493299999999997em;vertical-align:-0.38em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4693299999999998em;"><span class="svg-align" style="top:-2.70933em;"><span class="pstrut" style="height:3.08933em;"></span><span style="height:0.26em;"><img src=""></span></span><span style="top:-3.46933em;"><span class="pstrut" style="height:3.08933em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.08933em;"><span class="svg-align" style="top:-2.62em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><img src=""></span></span><span style="top:-3.406em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><img src=""></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.36666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.28333em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi></mrow><mo stretchy="true">⇒</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi><mi>c</mi></mrow><mo stretchy="true">⇀</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">⏠</mo></mover><mo>−</mo><munder accentunder="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>e</mi><mi>f</mi><mi>g</mi><mi>p</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo>−</mo><munder accentunder="true"><munder accentunder="true"><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">ˇ</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">ˇ</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">^</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">^</mo></mover></mrow><annotation encoding="application/x-tex"> | |
\Overrightarrow{ABCDE} | |
- | |
\overrightharpoon{abcdec} | |
- | |
\overgroup{ABCDEF} | |
- | |
\undergroup{abcde} | |
- | |
\undergroup{efgp} | |
- | |
\utilde{AB} | |
- | |
\utilde{\utilde{\utilde{AB}}} | |
- | |
\widecheck{AB\widecheck{CD}EF} | |
- | |
\widehat{AB\widehat{CD}EF} | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.32666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.24333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.56em;min-width:0.888em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2997699999999999em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.21644em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span><span class="mord mathdefault">c</span></span></span><span class="svg-align" style="top:-3.69444em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.522em;min-width:0.888em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.10866em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.02533em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.03644em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.23088em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8888799999999999em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><img src=""></span><span class="halfarrow-right" style="height:0.342em;"><img src=""></span></span></span><span style="top:-3.19444em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">p</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.08933em;vertical-align:-0.40599999999999997em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><img src=""></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.8493299999999997em;vertical-align:-0.38em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4693299999999998em;"><span class="svg-align" style="top:-2.70933em;"><span class="pstrut" style="height:3.08933em;"></span><span style="height:0.26em;"><img src=""></span></span><span style="top:-3.46933em;"><span class="pstrut" style="height:3.08933em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.08933em;"><span class="svg-align" style="top:-2.62em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><img src=""></span></span><span style="top:-3.406em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><img src=""></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.36666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.28333em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><img src=""></span></span></span></span></span></span></span></span></span></span> | |
</p></body> | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.384573em;vertical-align:-0.970281em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.414292em;"><span style="top:-1.7880500000000001em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">∞</span></span></span></span><span style="top:-3.8129000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.970281em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.08332999999999999em;">^</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8991079999999999em;"><span style="top:-3.1130000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight" style="margin-right:0.04601em;">ξ</span><span class="mord mathdefault mtight">x</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mo fence="true">(</mo><msqrt><mrow><mi>ϕ</mi><msqrt><mn>5</mn></msqrt></mrow></msqrt><mo>−</mo><mi>ϕ</mi><mo fence="true">)</mo><msup><mi>e</mi><mrow><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>π</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>4</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>6</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mo>⋯</mo></mrow></mfrac></mrow></mfrac></mrow></mfrac></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi} } = 1+\frac{e^{-2\pi}} { 1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} { 1+\frac{e^{-8\pi}}{ 1+\cdots } } } }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.01146em;vertical-align:-1.69002em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.11em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mopen"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.04139em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathdefault">ϕ</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5, | |
-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8, | |
-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0, | |
35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5, | |
-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467 | |
s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422 | |
s-65,47,-65,47z M834 80H400000v40H845z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span></span></span><span style="top:-3.0013900000000002em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119c34,79.3,68.167, | |
158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120c340,-704.7,510.7,-1060.3,512,-1067 | |
c4.7,-7.3,11,-11,19,-11H40000v40H1012.3s-271.3,567,-271.3,567c-38.7,80.7,-84, | |
175,-136,283c-52,108,-89.167,185.3,-111.5,232c-22.3,46.7,-33.8,70.3,-34.5,71 | |
c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1s-109,-253,-109,-253c-72.7,-168,-109.3, | |
-252,-110,-252c-10.7,8,-22,16.7,-34,26c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26 | |
s76,-59,76,-59s76,-60,76,-60z M1001 80H40000v40H1012z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19860999999999995em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">ϕ</span><span class="mclose"><span class="delimsizing size2">)</span></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.93957em;"><span style="top:-3.3485500000000004em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8443142857142858em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">5</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.38em;"><span class="pstrut" style="height:3.15em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.827em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.69002em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:3.692383em;vertical-align:-2.201275em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.19358em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.91642em;"><span style="top:-2.4519800000000003em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0543142857142858em;"><span style="top:-2.229757142857143em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32544em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="minner mtight">⋯</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.61533em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2097642857142856em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">4</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3948549999999997em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.201275em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mo fence="true">(</mo><msqrt><mrow><mi>ϕ</mi><msqrt><mn>5</mn></msqrt></mrow></msqrt><mo>−</mo><mi>ϕ</mi><mo fence="true">)</mo><msup><mi>e</mi><mrow><mfrac><mn>2</mn><mn>5</mn></mfrac><mi>π</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>2</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>4</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>6</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mfrac><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn><mi>π</mi></mrow></msup><mrow><mn>1</mn><mo>+</mo><mo>⋯</mo></mrow></mfrac></mrow></mfrac></mrow></mfrac></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex"> | |
\displaystyle | |
\frac{1}{ | |
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi} | |
} = | |
1+\frac{e^{-2\pi}} { | |
1+\frac{e^{-4\pi}} { | |
1+\frac{e^{-6\pi}} { | |
1+\frac{e^{-8\pi}}{ | |
1+\cdots | |
} | |
} | |
} | |
} | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.01146em;vertical-align:-1.69002em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.11em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mopen"><span class="delimsizing size2">(</span></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.04139em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathdefault">ϕ</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">5</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5, | |
-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8, | |
-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0, | |
35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5, | |
-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467 | |
s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422 | |
s-65,47,-65,47z M834 80H400000v40H845z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span></span></span><span style="top:-3.0013900000000002em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119c34,79.3,68.167, | |
158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120c340,-704.7,510.7,-1060.3,512,-1067 | |
c4.7,-7.3,11,-11,19,-11H40000v40H1012.3s-271.3,567,-271.3,567c-38.7,80.7,-84, | |
175,-136,283c-52,108,-89.167,185.3,-111.5,232c-22.3,46.7,-33.8,70.3,-34.5,71 | |
c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1s-109,-253,-109,-253c-72.7,-168,-109.3, | |
-252,-110,-252c-10.7,8,-22,16.7,-34,26c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26 | |
s76,-59,76,-59s76,-60,76,-60z M1001 80H40000v40H1012z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.19860999999999995em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">ϕ</span><span class="mclose"><span class="delimsizing size2">)</span></span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.93957em;"><span style="top:-3.3485500000000004em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8443142857142858em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">5</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.38em;"><span class="pstrut" style="height:3.15em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.827em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.69002em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:3.692383em;vertical-align:-2.201275em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.19358em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.91642em;"><span style="top:-2.4519800000000003em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0543142857142858em;"><span style="top:-2.229757142857143em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32544em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">1</span><span class="mbin mtight">+</span><span class="minner mtight">⋯</span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">8</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.61533em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9384399999999999em;"><span style="top:-2.93844em;margin-right:0.1em;"><span class="pstrut" style="height:2.64444em;"></span><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">6</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2097642857142856em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463142857142857em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">4</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.3948549999999997em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:2.201275em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><msup><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>a</mi><mi>k</mi></msub><msub><mi>b</mi><mi>k</mi></msub><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>≤</mo><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>a</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>b</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle \left ( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2561210000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.954008em;"><span style="top:-4.2029000000000005em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.0521130000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><msup><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>a</mi><mi>k</mi></msub><msub><mi>b</mi><mi>k</mi></msub><mo fence="true">)</mo></mrow><mn>2</mn></msup><mo>≤</mo><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>a</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow><mrow><mo fence="true">(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>b</mi><mi>k</mi><mn>2</mn></msubsup><mo fence="true">)</mo></mrow></mstyle></mrow><annotation encoding="application/x-tex"> | |
\displaystyle | |
\left | |
( \sum_{k=1}^n a_k b_k | |
\right)^2 | |
\leq | |
\left( | |
\sum_{k=1}^n a_k^2 | |
\right) | |
\left( | |
\sum_{k=1}^n b_k^2 | |
\right) | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2561210000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.954008em;"><span style="top:-4.2029000000000005em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.0521130000000003em;vertical-align:-1.302113em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">(</span></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.8478869999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.302113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size4">)</span></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover><mover><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏞</mo></mover><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></mover><mo>−</mo><munder><munder><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏟</mo></munder><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></munder></mrow><annotation encoding="application/x-tex">\overbrace{x + \cdots + x}^{n\rm\ times} - \underbrace{x + \cdots + x}_{n\rm\ times}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-0.08333em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.898832em;"><span style="top:-3.23133em;"><span class="pstrut" style="height:3.23133em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.23133em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117 | |
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7 | |
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334 | |
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14 | |
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7 | |
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11 | |
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l | |
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5 | |
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1 | |
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span></span><span style="top:-4.66266em;"><span class="pstrut" style="height:3.23133em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-1.398832em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.5833299999999999em;"><span style="top:-1.601168em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.58333em;"><span class="svg-align" style="top:-2.26867em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13 | |
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688 | |
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7 | |
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214 | |
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14 | |
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3 | |
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0 | |
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3 | |
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237 | |
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.73133em;"><span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.398832em;"><span></span></span></span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover><mover><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏞</mo></mover><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></mover><mo>−</mo><munder><munder><mrow><mi>x</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>x</mi></mrow><mo stretchy="true">⏟</mo></munder><mrow><mi>n</mi><mrow><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">s</mi></mrow></mrow></munder></mrow><annotation encoding="application/x-tex"> | |
\overbrace{x + \cdots + x}^{n\rm\ times} | |
- | |
\underbrace{x + \cdots + x}_{n\rm\ times} | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-0.08333em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.898832em;"><span style="top:-3.23133em;"><span class="pstrut" style="height:3.23133em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.23133em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117 | |
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7 | |
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334 | |
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14 | |
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7 | |
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11 | |
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l | |
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5 | |
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1 | |
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span></span><span style="top:-4.66266em;"><span class="pstrut" style="height:3.23133em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.08333em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.982162em;vertical-align:-1.398832em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.5833299999999999em;"><span style="top:-1.601168em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mtight"><span class="mspace mtight"><span class="mtight"> </span></span><span class="mord mathrm mtight">t</span><span class="mord mathrm mtight">i</span><span class="mord mathrm mtight">m</span><span class="mord mathrm mtight">e</span><span class="mord mathrm mtight">s</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.58333em;"><span class="svg-align" style="top:-2.26867em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13 | |
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688 | |
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7 | |
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214 | |
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14 | |
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3 | |
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0 | |
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3 | |
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237 | |
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.73133em;"><span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.398832em;"><span></span></span></span></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex">\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.15em;vertical-align:-0.345em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0005000000000000282em;"><span class="vlist-r"><span class="vlist" style="height:0.8049999999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∭</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="overlay" style="height:0.499em;width:1.304em;"><svg width="1.304em" height="0.499em" style="width:1.304em" viewBox="0 0 1304 499" preserveAspectRatio="xMinYMin"><path d="M681.4 71.6c408.9 0 480.5 106.8 480.5 178.2 0 70.8-71.6 177.6 | |
-480.5 177.6S202.1 320.6 202.1 249.8c0-71.4 70.5-178.2 479.3-178.2z | |
m525.8 178.2c0-86.4-86.8-215.4-525.7-215.4-437.9 0-524.7 129-524.7 215.4 0 | |
85.8 86.8 214.8 524.7 214.8 438.9 0 525.7-129 525.7-214.8z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.306em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0005000000000000282em;"><span class="vlist-r"><span class="vlist" style="height:0.8049999999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;">∬</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="overlay" style="height:0.499em;width:0.957em;"><svg width="0.957em" height="0.499em" style="width:0.957em" viewBox="0 0 957 499" preserveAspectRatio="xMinYMin"><path d="M512.6 71.6c272.6 0 320.3 106.8 320.3 178.2 0 70.8-47.7 177.6 | |
-320.3 177.6S193.1 320.6 193.1 249.8c0-71.4 46.9-178.2 319.5-178.2z | |
m368.1 178.2c0-86.4-60.9-215.4-368.1-215.4-306.4 0-367.3 129-367.3 215.4 0 85.8 | |
60.9 214.8 367.3 214.8 307.2 0 368.1-129 368.1-214.8z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.306em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0005599999999999772em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">b</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0925em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7475em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">h</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.446108em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∰</mo><mo>∯</mo><mo>∮</mo><mfrac><mi>a</mi><mi>b</mi></mfrac><mo>+</mo><mstyle scriptlevel="2" displaystyle="false"><mfrac><mi>c</mi><mi>d</mi></mfrac><mo>+</mo><mfrac><mi>e</mi><mi>f</mi></mfrac></mstyle><mo>+</mo><mfrac><mi>g</mi><mi>h</mi></mfrac></mrow><annotation encoding="application/x-tex"> | |
\oiiint \oiint \oint \frac ab + {\scriptscriptstyle \frac cd + \frac ef} + \frac gh | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∭</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.98em;"><svg width="1.98em" height="0.659em" style="width:1.98em" viewBox="0 0 1980 659" preserveAspectRatio="xMinYMin"><path d="M1021.2 53c603.6 0 707.8 165.8 707.8 277.2 0 110-104.2 275.8 | |
-707.8 275.8-606 0-710.2-165.8-710.2-275.8C311 218.8 415.2 53 1021.2 53z | |
m770.4 277.1c0-131.2-126.4-327.6-770.5-327.6S248.4 198.9 248.4 330.1 | |
c0 130 128.8 326.4 772.7 326.4s770.5-196.4 770.5-326.4z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop vlist-t vlist-t2" style="position:relative;top:-0.0010000000000000564em;"><span class="vlist-r"><span class="vlist" style="height:1.3599999999999999em;"><span style="top:-3.3600000000000003em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;">∬</span></span><span style="top:-3.2800000000000002em;"><span class="pstrut" style="height:3.3600000000000003em;"></span><span class="overlay" style="height:0.659em;width:1.472em;"><svg width="1.472em" height="0.659em" style="width:1.472em" viewBox="0 0 1472 659" preserveAspectRatio="xMinYMin"><path d="M757.8 100.1c384.7 0 451.1 137.6 451.1 230 0 91.3-66.4 228.8 | |
-451.1 228.8-386.3 0-452.7-137.5-452.7-228.8 0-92.4 66.4-230 452.7-230z | |
m502.4 230c0-111.2-82.4-277.2-502.4-277.2s-504 166-504 277.2 | |
c0 110 84 276 504 276s502.4-166 502.4-276z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.862em;"><span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">b</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">a</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.94655em;vertical-align:-0.36322em;"></span><span class="mord"><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">d</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">c</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mbin mtight sizing reset-size6 size1">+</span><span class="mord mtight sizing reset-size6 size1"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8175600000000001em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight" style="margin-right:0.10764em;">f</span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault mtight">e</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.72644em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.7935599999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault">h</span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span> | |
</p> | |
<p>Inline: <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi></mrow><mo stretchy="true">⇒</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi><mi>c</mi></mrow><mo stretchy="true">⇀</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">⏠</mo></mover><mo>−</mo><munder accentunder="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>e</mi><mi>f</mi><mi>g</mi><mi>p</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo>−</mo><munder accentunder="true"><munder accentunder="true"><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">ˇ</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">ˇ</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">^</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">^</mo></mover></mrow><annotation encoding="application/x-tex">\Overrightarrow{ABCDE} - \overrightharpoon{abcdec} - \overgroup{ABCDEF} - \undergroup{abcde} - \undergroup{efgp} - \utilde{AB} - \utilde{\utilde{\utilde{AB}}} - \widecheck{AB\widecheck{CD}EF} - \widehat{AB\widehat{CD}EF}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.32666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.24333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.56em;min-width:0.888em;"><svg width="400em" height="0.56em" viewBox="0 0 400000 560" preserveAspectRatio="xMaxYMin slice"><path d="M399738 392l | |
-10 10c-34 36-62.7 77-86 123-3.3 8-5 13.3-5 16 0 5.3 6.7 8 20 8 7.3 0 12.2-.5 | |
14.5-1.5 2.3-1 4.8-4.5 7.5-10.5 49.3-97.3 121.7-169.3 217-216 28-14 57.3-25 88 | |
-33 6.7-2 11-3.8 13-5.5 2-1.7 3-4.2 3-7.5s-1-5.8-3-7.5c-2-1.7-6.3-3.5-13-5.5-68 | |
-17.3-128.2-47.8-180.5-91.5-52.3-43.7-93.8-96.2-124.5-157.5-9.3-8-15.3-12.3-18 | |
-13h-6c-12 .7-18 4-18 10 0 2 1.7 7 5 15 23.3 46 52 87 86 123l10 10H0v40h399782 | |
c-328 0 0 0 0 0l10 8c26.7 20 65.7 43 117 69-2.7 2-6 3.7-10 5-36.7 16-72.3 37.3 | |
-107 64l-10 8H0v40zM0 157v40h399730v-40zm0 194v40h399730v-40z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2997699999999999em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.21644em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span><span class="mord mathdefault">c</span></span></span><span class="svg-align" style="top:-3.69444em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.522em;min-width:0.888em;"><svg width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399993c4.7-4.7 7-9.3 7-14 0-9.3 | |
-3.7-15.3-11-18-92.7-56.7-159-133.7-199-231-3.3-9.3-6-14.7-8-16-2-1.3-7-2-15-2 | |
-10.7 0-16.7 2-18 6-2 2.7-1 9.7 3 21 15.3 42 36.7 81.8 64 119.5 27.3 37.7 58 | |
69.2 92 94.5zm0 0v40h399900v-40z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.10866em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.02533em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 80 | |
H435C64 80 168.3 229.4 21 260c-5.9 1.2-18 0-18 0-2 0-3-1-3-3v-38C76 61 257 0 | |
435 0h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 80h399565c371 0 266.7 149.4 414 180 5.9 1.2 18 0 18 0 2 0 | |
3-1 3-3v-38c-76-158-257-219-435-219H0z"></path></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.03644em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 262 | |
H435C64 262 168.3 112.6 21 82c-5.9-1.2-18 0-18 0-2 0-3 1-3 3v38c76 158 257 219 | |
435 219h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 262h399565c371 0 266.7-149.4 414-180 5.9-1.2 18 0 18 | |
0 2 0 3 1 3 3v38c-76 158-257 219-435 219H0z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.23088em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8888799999999999em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 262 | |
H435C64 262 168.3 112.6 21 82c-5.9-1.2-18 0-18 0-2 0-3 1-3 3v38c76 158 257 219 | |
435 219h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 262h399565c371 0 266.7-149.4 414-180 5.9-1.2 18 0 18 | |
0 2 0 3 1 3 3v38c-76 158-257 219-435 219H0z"></path></svg></span></span></span><span style="top:-3.19444em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">p</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.08933em;vertical-align:-0.40599999999999997em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><svg width="100%" height="0.286em" viewBox="0 0 1033 286" preserveAspectRatio="none"><path d="M344 55.266c-142 0-300.638 81.316-311.5 86.418 | |
-8.01 3.762-22.5 10.91-23.5 5.562L1 120c-1-2-1-3-1-4 0-5 3-9 8-10l18.4-9C160.9 | |
31.9 283 0 358 0c148 0 188 122 331 122s314-97 326-97c4 0 8 2 10 7l7 21.114 | |
c1 2.14 1 3.21 1 4.28 0 5.347-3 9.626-7 10.696l-22.3 12.622C852.6 158.372 751 | |
181.476 676 181.476c-149 0-189-126.21-332-126.21z"></path></svg></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.8493299999999997em;vertical-align:-0.38em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4693299999999998em;"><span class="svg-align" style="top:-2.70933em;"><span class="pstrut" style="height:3.08933em;"></span><span style="height:0.26em;"><svg width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 | |
-2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 | |
114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 | |
4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 | |
-68.267.847-113-73.952-191-73.952z"></path></svg></span></span><span style="top:-3.46933em;"><span class="pstrut" style="height:3.08933em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.08933em;"><span class="svg-align" style="top:-2.62em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 | |
-2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 | |
114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 | |
4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 | |
-68.267.847-113-73.952-191-73.952z"></path></svg></span></span><span style="top:-3.406em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><svg width="100%" height="0.286em" viewBox="0 0 1033 286" preserveAspectRatio="none"><path d="M344 55.266c-142 0-300.638 81.316-311.5 86.418 | |
-8.01 3.762-22.5 10.91-23.5 5.562L1 120c-1-2-1-3-1-4 0-5 3-9 8-10l18.4-9C160.9 | |
31.9 283 0 358 0c148 0 188 122 331 122s314-97 326-97c4 0 8 2 10 7l7 21.114 | |
c1 2.14 1 3.21 1 4.28 0 5.347-3 9.626-7 10.696l-22.3 12.622C852.6 158.372 751 | |
181.476 676 181.476c-149 0-189-126.21-332-126.21z"></path></svg></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.36666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 300" preserveAspectRatio="none"><path d="M1181,220h2l1171,-176c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10, | |
-11,-10h-1l-1168,153l-1167,-153h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z"></path></svg></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 360" preserveAspectRatio="none"><path d="M1181,280h2l1171,-236c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10, | |
-11,-10h-1l-1168,213l-1167,-213h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.28333em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 300" preserveAspectRatio="none"><path d="M1181 0h2l1171 176c6 0 10 5 10 11l-2 23c-1 6-5 10 | |
-11 10h-1L1182 67 15 220h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z"></path></svg></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 360" preserveAspectRatio="none"><path d="M1181 0h2l1171 236c6 0 10 5 10 11l-2 23c-1 6-5 10 | |
-11 10h-1L1182 67 15 280h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z"></path></svg></span></span></span></span></span></span></span></span></span> | |
</p> | |
<hr> | |
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi></mrow><mo stretchy="true">⇒</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi><mi>c</mi></mrow><mo stretchy="true">⇀</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">⏠</mo></mover><mo>−</mo><munder accentunder="true"><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi><mi>e</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>e</mi><mi>f</mi><mi>g</mi><mi>p</mi></mrow><mo stretchy="true">⏡</mo></munder><mo>−</mo><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo>−</mo><munder accentunder="true"><munder accentunder="true"><munder accentunder="true"><mrow><mi>A</mi><mi>B</mi></mrow><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo stretchy="true">~</mo></munder><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">ˇ</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">ˇ</mo></mover><mo>−</mo><mover accent="true"><mrow><mi>A</mi><mi>B</mi><mover accent="true"><mrow><mi>C</mi><mi>D</mi></mrow><mo stretchy="true">^</mo></mover><mi>E</mi><mi>F</mi></mrow><mo stretchy="true">^</mo></mover></mrow><annotation encoding="application/x-tex"> | |
\Overrightarrow{ABCDE} | |
- | |
\overrightharpoon{abcdec} | |
- | |
\overgroup{ABCDEF} | |
- | |
\undergroup{abcde} | |
- | |
\undergroup{efgp} | |
- | |
\utilde{AB} | |
- | |
\utilde{\utilde{\utilde{AB}}} | |
- | |
\widecheck{AB\widecheck{CD}EF} | |
- | |
\widehat{AB\widehat{CD}EF} | |
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.32666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.24333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.56em;min-width:0.888em;"><svg width="400em" height="0.56em" viewBox="0 0 400000 560" preserveAspectRatio="xMaxYMin slice"><path d="M399738 392l | |
-10 10c-34 36-62.7 77-86 123-3.3 8-5 13.3-5 16 0 5.3 6.7 8 20 8 7.3 0 12.2-.5 | |
14.5-1.5 2.3-1 4.8-4.5 7.5-10.5 49.3-97.3 121.7-169.3 217-216 28-14 57.3-25 88 | |
-33 6.7-2 11-3.8 13-5.5 2-1.7 3-4.2 3-7.5s-1-5.8-3-7.5c-2-1.7-6.3-3.5-13-5.5-68 | |
-17.3-128.2-47.8-180.5-91.5-52.3-43.7-93.8-96.2-124.5-157.5-9.3-8-15.3-12.3-18 | |
-13h-6c-12 .7-18 4-18 10 0 2 1.7 7 5 15 23.3 46 52 87 86 123l10 10H0v40h399782 | |
c-328 0 0 0 0 0l10 8c26.7 20 65.7 43 117 69-2.7 2-6 3.7-10 5-36.7 16-72.3 37.3 | |
-107 64l-10 8H0v40zM0 157v40h399730v-40zm0 194v40h399730v-40z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2997699999999999em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.21644em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span><span class="mord mathdefault">c</span></span></span><span class="svg-align" style="top:-3.69444em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="height:0.522em;min-width:0.888em;"><svg width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399993c4.7-4.7 7-9.3 7-14 0-9.3 | |
-3.7-15.3-11-18-92.7-56.7-159-133.7-199-231-3.3-9.3-6-14.7-8-16-2-1.3-7-2-15-2 | |
-10.7 0-16.7 2-18 6-2 2.7-1 9.7 3 21 15.3 42 36.7 81.8 64 119.5 27.3 37.7 58 | |
69.2 92 94.5zm0 0v40h399900v-40z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.10866em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.02533em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 80 | |
H435C64 80 168.3 229.4 21 260c-5.9 1.2-18 0-18 0-2 0-3-1-3-3v-38C76 61 257 0 | |
435 0h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 80h399565c371 0 266.7 149.4 414 180 5.9 1.2 18 0 18 0 2 0 | |
3-1 3-3v-38c-76-158-257-219-435-219H0z"></path></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.03644em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 262 | |
H435C64 262 168.3 112.6 21 82c-5.9-1.2-18 0-18 0-2 0-3 1-3 3v38c76 158 257 219 | |
435 219h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 262h399565c371 0 266.7-149.4 414-180 5.9-1.2 18 0 18 | |
0 2 0 3 1 3 3v38c-76 158-257 219-435 219H0z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mord mathdefault">d</span><span class="mord mathdefault">e</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.23088em;vertical-align:-0.342em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8888799999999999em;"><span class="svg-align" style="top:-2.658em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.342em;min-width:0.888em;"><span class="halfarrow-left" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMinYMin slice"><path d="M400000 262 | |
H435C64 262 168.3 112.6 21 82c-5.9-1.2-18 0-18 0-2 0-3 1-3 3v38c76 158 257 219 | |
435 219h399565z"></path></svg></span><span class="halfarrow-right" style="height:0.342em;"><svg width="400em" height="0.342em" viewBox="0 0 400000 342" preserveAspectRatio="xMaxYMin slice"><path d="M0 262h399565c371 0 266.7-149.4 414-180 5.9-1.2 18 0 18 | |
0 2 0 3 1 3 3v38c-76 158-257 219-435 219H0z"></path></svg></span></span></span><span style="top:-3.19444em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">e</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">p</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.342em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.08933em;vertical-align:-0.40599999999999997em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><svg width="100%" height="0.286em" viewBox="0 0 1033 286" preserveAspectRatio="none"><path d="M344 55.266c-142 0-300.638 81.316-311.5 86.418 | |
-8.01 3.762-22.5 10.91-23.5 5.562L1 120c-1-2-1-3-1-4 0-5 3-9 8-10l18.4-9C160.9 | |
31.9 283 0 358 0c148 0 188 122 331 122s314-97 326-97c4 0 8 2 10 7l7 21.114 | |
c1 2.14 1 3.21 1 4.28 0 5.347-3 9.626-7 10.696l-22.3 12.622C852.6 158.372 751 | |
181.476 676 181.476c-149 0-189-126.21-332-126.21z"></path></svg></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.8493299999999997em;vertical-align:-0.38em;"></span><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4693299999999998em;"><span class="svg-align" style="top:-2.70933em;"><span class="pstrut" style="height:3.08933em;"></span><span style="height:0.26em;"><svg width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 | |
-2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 | |
114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 | |
4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 | |
-68.267.847-113-73.952-191-73.952z"></path></svg></span></span><span style="top:-3.46933em;"><span class="pstrut" style="height:3.08933em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.08933em;"><span class="svg-align" style="top:-2.62em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.26em;"><svg width="100%" height="0.26em" viewBox="0 0 600 260" preserveAspectRatio="none"><path d="M200 55.538c-77 0-168 73.953-177 73.953-3 0-7 | |
-2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0 | |
114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0 | |
4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128 | |
-68.267.847-113-73.952-191-73.952z"></path></svg></span></span><span style="top:-3.406em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accentunder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.68333em;"><span class="svg-align" style="top:-2.594em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.286em;"><svg width="100%" height="0.286em" viewBox="0 0 1033 286" preserveAspectRatio="none"><path d="M344 55.266c-142 0-300.638 81.316-311.5 86.418 | |
-8.01 3.762-22.5 10.91-23.5 5.562L1 120c-1-2-1-3-1-4 0-5 3-9 8-10l18.4-9C160.9 | |
31.9 283 0 358 0c148 0 188 122 331 122s314-97 326-97c4 0 8 2 10 7l7 21.114 | |
c1 2.14 1 3.21 1 4.28 0 5.347-3 9.626-7 10.696l-22.3 12.622C852.6 158.372 751 | |
181.476 676 181.476c-149 0-189-126.21-332-126.21z"></path></svg></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.40599999999999997em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.38em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.36666em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 300" preserveAspectRatio="none"><path d="M1181,220h2l1171,-176c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10, | |
-11,-10h-1l-1168,153l-1167,-153h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z"></path></svg></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 360" preserveAspectRatio="none"><path d="M1181,280h2l1171,-236c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10, | |
-11,-10h-1l-1168,213l-1167,-213h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z"></path></svg></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.28333em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.28333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.98333em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span><span class="svg-align" style="top:-3.6833299999999998em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 300" preserveAspectRatio="none"><path d="M1181 0h2l1171 176c6 0 10 5 10 11l-2 23c-1 6-5 10 | |
-11 10h-1L1182 67 15 220h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z"></path></svg></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.05764em;">E</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span></span></span><span class="svg-align" style="top:-3.98333em;"><span class="pstrut" style="height:3em;"></span><span style="height:0.3em;"><svg width="100%" height="0.3em" viewBox="0 0 2364 360" preserveAspectRatio="none"><path d="M1181 0h2l1171 236c6 0 10 5 10 11l-2 23c-1 6-5 10 | |
-11 10h-1L1182 67 15 280h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z"></path></svg></span></span></span></span></span></span></span></span></span></span> | |
</p></body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment