Skip to content

Instantly share code, notes, and snippets.

@mbjoseph
Last active June 24, 2020 07:03
Show Gist options
  • Save mbjoseph/2eb323610ea10e848a5b1d41377b141b to your computer and use it in GitHub Desktop.
Save mbjoseph/2eb323610ea10e848a5b1d41377b141b to your computer and use it in GitHub Desktop.
Distance sampling in Stan
# Distance sampling model with data augmentation.
# Based on section 8.3.1 of the Applied Hierarchical Modeling book by Royle and Kery
library(rstan)
B <- 50
# note that I'm dividing by 10 and adding 1e-6 to put this on a manageable
# scale and prevent values == 0
d_obs <- c(71.93, 26.05, 58.47, 92.35, 163.83, 84.52, 163.83, 157.33,
22.27, 72.11, 86.99, 50.8, 0, 73.14, 0, 128.56, 163.83, 71.85,
30.47, 71.07, 150.96, 68.83, 90, 64.98, 165.69, 38.01, 378.21,
78.15, 42.13, 0, 400, 175.39, 30.47, 35.07, 86.04, 31.69, 200,
271.89, 26.05, 76.6, 41.04, 200, 86.04, 0, 93.97, 55.13, 10.46,
84.52, 0, 77.65, 0, 96.42, 0, 64.28, 187.94, 0, 160.7, 150.45,
63.6, 193.19, 106.07, 114.91, 143.39, 128.56, 245.75, 123.13,
123.13, 153.21, 143.39, 34.2, 96.42, 259.81, 8.72) / 10 + 1e-6
n_aug <- 200
n_obs <- length(d_obs)
M <- n_obs + n_aug
y <- c(rep(1, n_obs), rep(0, n_aug))
hist(d_obs)
stan_d <- list(M = M,
n_obs = n_obs,
d_obs = d_obs,
B = B,
y = y)
m_init <- stan_model("dist.stan")
m_fit <- sampling(m_init, data = stan_d, cores = 4)
traceplot(m_fit)
data {
int<lower = 1> M;
int<lower = 0, upper = 1> y[M];
int n_obs;
real B;
vector<lower = 0, upper = B>[n_obs] d_obs;
}
transformed data {
int n_aug = M - n_obs;
}
parameters {
real<lower = 0> sigma;
real<lower = 0, upper = 1> psi;
vector<lower = 0, upper = B>[n_aug] d_aug;
}
transformed parameters {
vector[M] logit_p;
vector[M] log_lik;
{
vector[M] logp;
vector[M] lp_if_present;
vector[M] distances;
real denom = 2*sigma^2;
for (i in 1:n_obs) {
distances[i] = d_obs[i];
}
for (i in 1:n_aug) {
distances[n_obs + i] = d_aug[i];
}
for (i in 1:M) {
logp[i] = - distances[i]^2 / denom;
logit_p[i] = logp[i] - log1m_exp(logp[i]);
lp_if_present[i] = bernoulli_lpmf(1 | psi)
+ bernoulli_logit_lpmf(y[i] | logit_p[i]);
if (y[i]) {
log_lik[i] = lp_if_present[i];
} else {
log_lik[i] = log_sum_exp(lp_if_present[i], bernoulli_lpmf(0 | psi));
}
}
}
}
model {
// priors
sigma ~ normal(0, 5);
// likelihood
target += sum(log_lik);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment