Created
July 23, 2010 08:51
-
-
Save mblondel/487187 to your computer and use it in GitHub Desktop.
Solve second order differential equation using the Euler and the Runge-Kutta methods
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
Find the solution for the second order differential equation | |
u'' = -u | |
with u(0) = 10 and u'(0) = -5 | |
using the Euler and the Runge-Kutta methods. | |
This works by splitting the problem into 2 first order differential equations | |
u' = v | |
v' = f(t,u) | |
with u(0) = 10 and v(0) = -5 | |
""" | |
from math import cos, sin | |
def f(t, u): | |
return -u | |
def exact(u0, du0, t): | |
# analytical solution | |
return u0 * cos(t) + du0 * sin(t) | |
def iterate(func, u, v, tmax, n): | |
dt = tmax/(n-1) | |
t = 0.0 | |
for i in range(n): | |
u,v = func(u,v,t,dt) | |
t += dt | |
return u | |
def euler_iter(u, v, t, dt): | |
v_new = v + dt * f(t, u) | |
u_new = u + dt * v | |
return u_new, v_new | |
def rk_iter(u, v, t, dt): | |
k1 = f(t,u) | |
k2 = f(t+dt*0.5,u+k1*0.5*dt) | |
k3 = f(t+dt*0.5,u+k2*0.5*dt) | |
k4 = f(t+dt,u+k3*dt) | |
v += dt * (k1+2*k2+2*k3+k4)/6 | |
# v doesn't explicitly depend on other variables | |
k1 = k2 = k3 = k4 = v | |
u += dt * (k1+2*k2+2*k3+k4)/6 | |
return u,v | |
euler = lambda u, v, tmax, n: iterate(euler_iter, u, v, tmax, n) | |
runge_kutta = lambda u, v, tmax, n: iterate(rk_iter, u, v, tmax, n) | |
def plot_result(u, v, tmax, n): | |
dt = tmax/(n-1) | |
t = 0.0 | |
allt = [] | |
error_euler = [] | |
error_rk = [] | |
r_exact = [] | |
r_euler = [] | |
r_rk = [] | |
u0 = u_euler = u_rk = u | |
v0 = v_euler = v_rk = v | |
for i in range(n): | |
u = exact(u0, v0, t) | |
u_euler, v_euler = euler_iter(u_euler, v_euler, t, dt) | |
u_rk, v_rk = rk_iter(u_rk, v_rk, t, dt) | |
allt.append(t) | |
error_euler.append(abs(u_euler-u)) | |
error_rk.append(abs(u_rk-u)) | |
r_exact.append(u) | |
r_euler.append(u_euler) | |
r_rk.append(u_rk) | |
t += dt | |
_plot("error.png", "Error", "time t", "error e", allt, error_euler, error_rk) | |
#_plot("result.png", "Result", "time t", "u(t)", allt, r_euler, r_rk, r_exact) | |
def _plot(out, title, xlabel, ylabel, allt, euler, rk, exact=None): | |
import matplotlib.pyplot as plt | |
plt.title(title) | |
plt.ylabel(ylabel) | |
plt.xlabel(xlabel) | |
plt.plot(allt, euler, 'b-', label="Euler") | |
plt.plot(allt, rk, 'r--', label="Runge-Kutta") | |
if exact: | |
plt.plot(allt, exact, 'g.', label='Exact') | |
plt.legend(loc=4) | |
plt.grid(True) | |
plt.savefig(out, dpi=None, facecolor='w', edgecolor='w', | |
orientation='portrait', papertype=None, format=None, | |
transparent=False) | |
u0 = 10 | |
du0 = v0 = -5 | |
tmax = 10.0 | |
n = 2000 | |
print "t=", tmax | |
print "euler =", euler(u0, v0, tmax, n) | |
print "runge_kutta=", runge_kutta(u0, v0, tmax, n) | |
print "exact=", exact(u0, v0, tmax) | |
plot_result(u0, v0, tmax*2, n*2) |
Suggestion: replace lines 59 and 60 with:
euler = functools.partial(iterate, euler_iter)
runge_kutta = functools.partial(iterate, rk_iter)
You would also need to import functools
.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for this inspiring script.
Your elegant usage of the function "iterate" is sweet and I really didn't see that kind of functional programming in numerical codes before.
Is this kind of programming trick quite common in Python's numerical calculation??