Skip to content

Instantly share code, notes, and snippets.

@mblondel
Last active January 4, 2024 11:45
  • Star 80 You must be signed in to star a gist
  • Fork 26 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save mblondel/6230787 to your computer and use it in GitHub Desktop.
Kernel K-means.
"""Kernel K-means"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
import numpy as np
from sklearn.base import BaseEstimator, ClusterMixin
from sklearn.metrics.pairwise import pairwise_kernels
from sklearn.utils import check_random_state
class KernelKMeans(BaseEstimator, ClusterMixin):
"""
Kernel K-means
Reference
---------
Kernel k-means, Spectral Clustering and Normalized Cuts.
Inderjit S. Dhillon, Yuqiang Guan, Brian Kulis.
KDD 2004.
"""
def __init__(self, n_clusters=3, max_iter=50, tol=1e-3, random_state=None,
kernel="linear", gamma=None, degree=3, coef0=1,
kernel_params=None, verbose=0):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.tol = tol
self.random_state = random_state
self.kernel = kernel
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.kernel_params = kernel_params
self.verbose = verbose
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self.kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, **params)
def fit(self, X, y=None, sample_weight=None):
n_samples = X.shape[0]
K = self._get_kernel(X)
sw = sample_weight if sample_weight else np.ones(n_samples)
self.sample_weight_ = sw
rs = check_random_state(self.random_state)
self.labels_ = rs.randint(self.n_clusters, size=n_samples)
dist = np.zeros((n_samples, self.n_clusters))
self.within_distances_ = np.zeros(self.n_clusters)
for it in xrange(self.max_iter):
dist.fill(0)
self._compute_dist(K, dist, self.within_distances_,
update_within=True)
labels_old = self.labels_
self.labels_ = dist.argmin(axis=1)
# Compute the number of samples whose cluster did not change
# since last iteration.
n_same = np.sum((self.labels_ - labels_old) == 0)
if 1 - float(n_same) / n_samples < self.tol:
if self.verbose:
print "Converged at iteration", it + 1
break
self.X_fit_ = X
return self
def _compute_dist(self, K, dist, within_distances, update_within):
"""Compute a n_samples x n_clusters distance matrix using the
kernel trick."""
sw = self.sample_weight_
for j in xrange(self.n_clusters):
mask = self.labels_ == j
if np.sum(mask) == 0:
raise ValueError("Empty cluster found, try smaller n_cluster.")
denom = sw[mask].sum()
denomsq = denom * denom
if update_within:
KK = K[mask][:, mask] # K[mask, mask] does not work.
dist_j = np.sum(np.outer(sw[mask], sw[mask]) * KK / denomsq)
within_distances[j] = dist_j
dist[:, j] += dist_j
else:
dist[:, j] += within_distances[j]
dist[:, j] -= 2 * np.sum(sw[mask] * K[:, mask], axis=1) / denom
def predict(self, X):
K = self._get_kernel(X, self.X_fit_)
n_samples = X.shape[0]
dist = np.zeros((n_samples, self.n_clusters))
self._compute_dist(K, dist, self.within_distances_,
update_within=False)
return dist.argmin(axis=1)
if __name__ == '__main__':
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=1000, centers=5, random_state=0)
km = KernelKMeans(n_clusters=5, max_iter=100, random_state=0, verbose=1)
print km.fit_predict(X)[:10]
print km.predict(X[:10])
@ravi2k1
Copy link

ravi2k1 commented Nov 15, 2019

How can I use kmeans++ using the same code?

@lonevetad
Copy link

Important not for everyone:
If You are looking for "gaussian kernel" just pass 'rbf' as "metric".
Sometimes I forget it.

@arnab-007
Copy link

Any advice on how to extend this to multi-kernel k-means?

@mblondel
Copy link
Author

The code was written for Python 2 and you're using Python 3. Replace xrange by range and print ... by print(...).

@nancychenxizhong
Copy link

@amueller Sorry for late reply (why no notifcations in gists?!). I haven't compared it to other algorithms but I am open to inclusion in scikit-learn if someone wants to work on it.

@mblondel I am happy to work on it. Are you still open to inclusion of this gist to scikit-learn?

@mblondel
Copy link
Author

Sure, go ahead!

@saqib-sarwar
Copy link

saqib-sarwar commented Oct 29, 2023

How to get the cluster centers, any idea?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment