Last active
July 2, 2024 08:55
-
-
Save mblondel/c99e575a5207c76a99d714e8c6e08e89 to your computer and use it in GitHub Desktop.
Vectorized projection onto the simplex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Author: Mathieu Blondel | |
# License: BSD 3 clause | |
import numpy as np | |
def projection_simplex(V, z=1, axis=None): | |
""" | |
Projection of x onto the simplex, scaled by z: | |
P(x; z) = argmin_{y >= 0, sum(y) = z} ||y - x||^2 | |
z: float or array | |
If array, len(z) must be compatible with V | |
axis: None or int | |
axis=None: project V by P(V.ravel(); z) | |
axis=1: project each V[i] by P(V[i]; z[i]) | |
axis=0: project each V[:, j] by P(V[:, j]; z[j]) | |
""" | |
if axis == 1: | |
n_features = V.shape[1] | |
U = np.sort(V, axis=1)[:, ::-1] | |
z = np.ones(len(V)) * z | |
cssv = np.cumsum(U, axis=1) - z[:, np.newaxis] | |
ind = np.arange(n_features) + 1 | |
cond = U - cssv / ind > 0 | |
rho = np.count_nonzero(cond, axis=1) | |
theta = cssv[np.arange(len(V)), rho - 1] / rho | |
return np.maximum(V - theta[:, np.newaxis], 0) | |
elif axis == 0: | |
return projection_simplex(V.T, z, axis=1).T | |
else: | |
V = V.ravel().reshape(1, -1) | |
return projection_simplex(V, z, axis=1).ravel() | |
def _projection_simplex(v, z=1): | |
""" | |
Old implementation for test and benchmark purposes. | |
The arguments v and z should be a vector and a scalar, respectively. | |
""" | |
n_features = v.shape[0] | |
u = np.sort(v)[::-1] | |
cssv = np.cumsum(u) - z | |
ind = np.arange(n_features) + 1 | |
cond = u - cssv / ind > 0 | |
rho = ind[cond][-1] | |
theta = cssv[cond][-1] / float(rho) | |
w = np.maximum(v - theta, 0) | |
return w | |
def test(): | |
from sklearn.utils.testing import assert_array_almost_equal | |
rng = np.random.RandomState(0) | |
V = rng.rand(100, 10) | |
# Axis = None case. | |
w = projection_simplex(V[0], z=1, axis=None) | |
w2 = _projection_simplex(V[0], z=1) | |
assert_array_almost_equal(w, w2) | |
w = projection_simplex(V, z=1, axis=None) | |
w2 = _projection_simplex(V.ravel(), z=1) | |
assert_array_almost_equal(w, w2) | |
# Axis = 1 case. | |
W = projection_simplex(V, axis=1) | |
# Check same as with for loop. | |
W2 = np.array([_projection_simplex(V[i]) for i in range(V.shape[0])]) | |
assert_array_almost_equal(W, W2) | |
# Check works with vector z. | |
W3 = projection_simplex(V, np.ones(V.shape[0]), axis=1) | |
assert_array_almost_equal(W, W3) | |
# Axis = 0 case. | |
W = projection_simplex(V, axis=0) | |
# Check same as with for loop. | |
W2 = np.array([_projection_simplex(V[:, i]) for i in range(V.shape[1])]).T | |
assert_array_almost_equal(W, W2) | |
# Check works with vector z. | |
W3 = projection_simplex(V, np.ones(V.shape[1]), axis=0) | |
assert_array_almost_equal(W, W3) | |
def benchmark(): | |
import time | |
n_features = 100 | |
n_repeats = 5 | |
sizes = (10, 100, 1000, 10000) | |
rng = np.random.RandomState(0) | |
vectorized = np.zeros(len(sizes)) | |
loop = np.zeros(len(sizes)) | |
for i, n_samples in enumerate(sizes): | |
for _ in range(n_repeats): | |
V = rng.rand(n_samples, 10) | |
start = time.clock() | |
projection_simplex(V, axis=0) | |
vectorized[i] += time.clock() - start | |
start = time.clock() | |
[_projection_simplex(V[i]) for i in range(V.shape[0])] | |
loop[i] += time.clock() - start | |
vectorized[i] /= n_repeats | |
loop[i] /= n_repeats | |
import matplotlib.pylab as plt | |
plt.figure() | |
plt.plot(sizes, loop / vectorized, linewidth=3) | |
plt.title("Vectorized projection onto the simplex") | |
plt.xscale("log") | |
plt.xlabel("Number of vectors to project") | |
plt.ylabel("Speedup compared to using a for loop") | |
plt.show() | |
if __name__ == '__main__': | |
test() | |
benchmark() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
For the record, I did run (and patch and rerun) Pythran on the original vectorized form in serge-sans-paille/pythran#758. Not much gain.
The time is dominated by the np.sort call, so ISTM one needs to parallelize it to get better perf.