For continuous data such as time series, a streamgraph can be used in place of stacked bars. This example also demonstrates path transitions to interpolate between different layouts. Streamgraph algorithm, colors, and data generation inspired by Byron and Wattenberg.
Last active
September 15, 2023 11:14
-
-
Save mbostock/4060954 to your computer and use it in GitHub Desktop.
Streamgraph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
license: gpl-3.0 | |
redirect: https://beta.observablehq.com/@mbostock/streamgraph-transitions |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<title>Streamgraph</title> | |
<style> | |
button { | |
position: absolute; | |
left: 10px; | |
top: 10px; | |
} | |
</style> | |
<button onclick="transition()">Update</button> | |
<svg width="960" height="500"></svg> | |
<script src="https://d3js.org/d3.v4.min.js"></script> | |
<script> | |
var n = 20, // number of layers | |
m = 200, // number of samples per layer | |
k = 10; // number of bumps per layer | |
var stack = d3.stack().keys(d3.range(n)).offset(d3.stackOffsetWiggle), | |
layers0 = stack(d3.transpose(d3.range(n).map(function() { return bumps(m, k); }))), | |
layers1 = stack(d3.transpose(d3.range(n).map(function() { return bumps(m, k); }))), | |
layers = layers0.concat(layers1); | |
var svg = d3.select("svg"), | |
width = +svg.attr("width"), | |
height = +svg.attr("height"); | |
var x = d3.scaleLinear() | |
.domain([0, m - 1]) | |
.range([0, width]); | |
var y = d3.scaleLinear() | |
.domain([d3.min(layers, stackMin), d3.max(layers, stackMax)]) | |
.range([height, 0]); | |
var z = d3.interpolateCool; | |
var area = d3.area() | |
.x(function(d, i) { return x(i); }) | |
.y0(function(d) { return y(d[0]); }) | |
.y1(function(d) { return y(d[1]); }); | |
svg.selectAll("path") | |
.data(layers0) | |
.enter().append("path") | |
.attr("d", area) | |
.attr("fill", function() { return z(Math.random()); }); | |
function stackMax(layer) { | |
return d3.max(layer, function(d) { return d[1]; }); | |
} | |
function stackMin(layer) { | |
return d3.min(layer, function(d) { return d[0]; }); | |
} | |
function transition() { | |
var t; | |
d3.selectAll("path") | |
.data((t = layers1, layers1 = layers0, layers0 = t)) | |
.transition() | |
.duration(2500) | |
.attr("d", area); | |
} | |
// Inspired by Lee Byron’s test data generator. | |
function bumps(n, m) { | |
var a = [], i; | |
for (i = 0; i < n; ++i) a[i] = 0; | |
for (i = 0; i < m; ++i) bump(a, n); | |
return a; | |
} | |
function bump(a, n) { | |
var x = 1 / (0.1 + Math.random()), | |
y = 2 * Math.random() - 0.5, | |
z = 10 / (0.1 + Math.random()); | |
for (var i = 0; i < n; i++) { | |
var w = (i / n - y) * z; | |
a[i] += x * Math.exp(-w * w); | |
} | |
} | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment