This version uses a Delaunay triangluation; compare to a Voronoi diagram.
Color Mesh II
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<body> | |
<script src="//d3js.org/d3.v3.min.js"></script> | |
<script> | |
var width = 960, | |
height = 500, | |
radius = 30; | |
var sampler = poissonDiscSampler(width + radius * 2, height + radius * 2, radius), | |
samples = [], | |
sample; | |
while (sample = sampler()) samples.push([sample[0] - radius, sample[1] - radius]); | |
var voronoi = d3.geom.voronoi() | |
.clipExtent([[-1, -1], [width + 1, height + 1]]); | |
var svg = d3.select("body").append("svg") | |
.attr("width", width) | |
.attr("height", height); | |
svg.selectAll("path") | |
.data(voronoi.triangles(samples).map(d3.geom.polygon)) | |
.enter().append("path") | |
.attr("d", function(d) { return "M" + d.join("L") + "Z"; }) | |
.style("fill", function(d) { return color(d.centroid()); }) | |
.style("stroke", function(d) { return color(d.centroid()); }); | |
function color(d) { | |
var dx = d[0] - width / 2, | |
dy = d[1] - height / 2; | |
return d3.lab(100 - (dx * dx + dy * dy) / 5000, dx / 10, dy / 10); | |
} | |
// Based on https://www.jasondavies.com/poisson-disc/ | |
function poissonDiscSampler(width, height, radius) { | |
var k = 30, // maximum number of samples before rejection | |
radius2 = radius * radius, | |
R = 3 * radius2, | |
cellSize = radius * Math.SQRT1_2, | |
gridWidth = Math.ceil(width / cellSize), | |
gridHeight = Math.ceil(height / cellSize), | |
grid = new Array(gridWidth * gridHeight), | |
queue = [], | |
queueSize = 0, | |
sampleSize = 0; | |
return function() { | |
if (!sampleSize) return sample(Math.random() * width, Math.random() * height); | |
// Pick a random existing sample and remove it from the queue. | |
while (queueSize) { | |
var i = Math.random() * queueSize | 0, | |
s = queue[i]; | |
// Make a new candidate between [radius, 2 * radius] from the existing sample. | |
for (var j = 0; j < k; ++j) { | |
var a = 2 * Math.PI * Math.random(), | |
r = Math.sqrt(Math.random() * R + radius2), | |
x = s[0] + r * Math.cos(a), | |
y = s[1] + r * Math.sin(a); | |
// Reject candidates that are outside the allowed extent, | |
// or closer than 2 * radius to any existing sample. | |
if (0 <= x && x < width && 0 <= y && y < height && far(x, y)) return sample(x, y); | |
} | |
queue[i] = queue[--queueSize]; | |
queue.length = queueSize; | |
} | |
}; | |
function far(x, y) { | |
var i = x / cellSize | 0, | |
j = y / cellSize | 0, | |
i0 = Math.max(i - 2, 0), | |
j0 = Math.max(j - 2, 0), | |
i1 = Math.min(i + 3, gridWidth), | |
j1 = Math.min(j + 3, gridHeight); | |
for (j = j0; j < j1; ++j) { | |
var o = j * gridWidth; | |
for (i = i0; i < i1; ++i) { | |
if (s = grid[o + i]) { | |
var s, | |
dx = s[0] - x, | |
dy = s[1] - y; | |
if (dx * dx + dy * dy < radius2) return false; | |
} | |
} | |
} | |
return true; | |
} | |
function sample(x, y) { | |
var s = [x, y]; | |
queue.push(s); | |
grid[gridWidth * (y / cellSize | 0) + (x / cellSize | 0)] = s; | |
++sampleSize; | |
++queueSize; | |
return s; | |
} | |
} | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment