Last active
September 6, 2017 18:34
-
-
Save mc51/543caa382f7176d8114d1e3566e1418a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import fiona | |
import numpy as np | |
from bokeh.io import show, output_file | |
from bokeh.models import ColumnDataSource, HoverTool, LogColorMapper | |
from bokeh.plotting import figure, save | |
from shapely.geometry import Polygon, Point, MultiPoint, MultiPolygon | |
from shapely.prepared import prep | |
""" from: https://www.offenedaten-koeln.de/dataset/59a8a033-5ac8-4240-ab06-608a7f542472/resource/a677cd63-d887-4f0f-95cf-25781641e576 | |
converted with http://www.gdal.org/ogr2ogr.html: | |
ogr2ogr -lco ENCODING=UTF-8 -t_srs EPSG:4326 Stadtteil_WGS84.shp Stadtteil.shp """ | |
SHAPEFILE="~/maps/offene/Stadtteil_WGS84.shp" | |
def read_data(filename): | |
colnames =["scrape_date","scrape_time","scrape_weekday","u_id","bike_id","lat","lon","bike_name"] | |
with open(filename,"r") as f: | |
data = pd.read_csv(filename, names=colnames,nrows=1000 ) | |
data = data[data.bike_name.str.contains("BIKE")].reset_index() | |
data.scrape_date = pd.to_datetime(data.scrape_date) # Convert to datetime object | |
data.scrape_time = pd.to_datetime(data.scrape_time, format="%H-%M-%S") | |
return data | |
def calc_points_per_poly(poly, points): # Returns number of points contained | |
poly = prep(poly) | |
return int(len(list(filter(poly.contains, points)))) | |
# bike data scraped: https://data-dive.com/cologne-bike-rentals-getting-data | |
data = read_data("~/kvb/data/2017-03-01.csv") # Read bike location data | |
map_points = [Point(x,y) for x,y in zip(data.lon, data.lat)] # Convert Points to Shapely Points | |
all_points = MultiPoint(map_points) # all bike points | |
shp = fiona.open(SHAPEFILE) | |
# Extract features from shapefile | |
district_name = [ feat["properties"]["STT_NAME"] for feat in shp] | |
district_area = [ feat["properties"]["SHAPE_AREA"] for feat in shp] | |
district_x = [ [x[0] for x in feat["geometry"]["coordinates"][0]] for feat in shp] | |
district_y = [ [y[1] for y in feat["geometry"]["coordinates"][0]] for feat in shp] | |
district_xy = [ [ xy for xy in feat["geometry"]["coordinates"][0]] for feat in shp] | |
district_poly = [ Polygon(xy) for xy in district_xy] # coords to Polygon | |
num_bikes = [ calc_points_per_poly(x, all_points) for x in district_poly] | |
bikes_per_area = [ x/y*10000 for x,y in zip(num_bikes, district_area) ] | |
# prepare plotting with bokeh | |
custom_colors = ['#f2f2f2', '#fee5d9', '#fcbba1', '#fc9272', '#fb6a4a', '#de2d26'] | |
color_mapper = LogColorMapper(palette=custom_colors) | |
source = ColumnDataSource(data=dict( | |
x=district_x, y=district_y, | |
name=district_name, rate=bikes_per_area, | |
)) | |
TOOLS = "pan,wheel_zoom,reset,hover,save" | |
p = figure( | |
title="KVB bike density per district, Mar. 2017", tools=TOOLS, | |
x_axis_location=None, y_axis_location=None | |
) | |
p.grid.grid_line_color = None | |
p.patches('x', 'y', source=source, | |
fill_color={'field': 'rate', 'transform': color_mapper}, | |
fill_alpha=0.8, line_color="black", line_width=0.3) | |
hover = p.select_one(HoverTool) | |
hover.point_policy = "follow_mouse" | |
hover.tooltips = [("District", "@name"),("Bikes per km²", "@rate"),("(Long, Lat)", "($x, $y)")] | |
output_file("kvb_interactive.html") | |
show(p) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment