Skip to content

Instantly share code, notes, and snippets.

@mcdulltii
Created June 10, 2022 14:09
Show Gist options
  • Save mcdulltii/46fc8f93f19e8b6b1719f38a0af29e43 to your computer and use it in GitHub Desktop.
Save mcdulltii/46fc8f93f19e8b6b1719f38a0af29e43 to your computer and use it in GitHub Desktop.
GreyCTF Scripts
import java.util.Random;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;
import java.util.Base64;
import java.nio.charset.StandardCharsets;
class MTRandom extends Random {
/**
* Auto-generated serial version UID. Note that MTRandom does NOT
* support serialisation of its internal state and it may even be
* necessary to implement read/write methods to re-seed it properly.
* This is only here to make Eclipse shut up about it being missing.
*/
private static final long serialVersionUID = -515082678588212038L;
// Constants used in the original C implementation
private final static int UPPER_MASK = 0x80000000;
private final static int LOWER_MASK = 0x7fffffff;
private final static int N = 624;
private final static int M = 397;
private final static int MAGIC[] = { 0x0, 0x9908b0df };
private final static int MAGIC_FACTOR1 = 1812433253;
private final static int MAGIC_FACTOR2 = 1664525;
private final static int MAGIC_FACTOR3 = 1566083941;
private final static int MAGIC_MASK1 = 0x9d2c5680;
private final static int MAGIC_MASK2 = 0xefc60000;
private final static int MAGIC_SEED = 19650218;
private final static long DEFAULT_SEED = 5489L;
// Internal state
private transient int[] mt;
private transient int mti;
private transient boolean compat = false;
// Temporary buffer used during setSeed(long)
private transient int[] ibuf;
/**
* The default constructor for an instance of MTRandom. This invokes
* the no-argument constructor for java.util.Random which will result
* in the class being initialised with a seed value obtained by calling
* System.currentTimeMillis().
*/
public MTRandom() { }
/**
* This version of the constructor can be used to implement identical
* behaviour to the original C code version of this algorithm including
* exactly replicating the case where the seed value had not been set
* prior to calling genrand_int32.
* <p>
* If the compatibility flag is set to true, then the algorithm will be
* seeded with the same default value as was used in the original C
* code. Furthermore the setSeed() method, which must take a 64 bit
* long value, will be limited to using only the lower 32 bits of the
* seed to facilitate seamless migration of existing C code into Java
* where identical behaviour is required.
* <p>
* Whilst useful for ensuring backwards compatibility, it is advised
* that this feature not be used unless specifically required, due to
* the reduction in strength of the seed value.
*
* @param compatible Compatibility flag for replicating original
* behaviour.
*/
public MTRandom(boolean compatible) {
super(0L);
compat = compatible;
setSeed(compat?DEFAULT_SEED:System.currentTimeMillis());
}
/**
* This version of the constructor simply initialises the class with
* the given 64 bit seed value. For a better random number sequence
* this seed value should contain as much entropy as possible.
*
* @param seed The seed value with which to initialise this class.
*/
public MTRandom(long seed) {
super(seed);
}
/**
* This version of the constructor initialises the class with the
* given byte array. All the data will be used to initialise this
* instance.
*
* @param buf The non-empty byte array of seed information.
* @throws NullPointerException if the buffer is null.
* @throws IllegalArgumentException if the buffer has zero length.
*/
public MTRandom(byte[] buf) {
super(0L);
setSeed(buf);
}
/**
* This version of the constructor initialises the class with the
* given integer array. All the data will be used to initialise
* this instance.
*
* @param buf The non-empty integer array of seed information.
* @throws NullPointerException if the buffer is null.
* @throws IllegalArgumentException if the buffer has zero length.
*/
public MTRandom(int[] buf) {
super(0L);
setSeed(buf);
}
// Initializes mt[N] with a simple integer seed. This method is
// required as part of the Mersenne Twister algorithm but need
// not be made public.
private final void setSeed(int seed) {
// Annoying runtime check for initialisation of internal data
// caused by java.util.Random invoking setSeed() during init.
// This is unavoidable because no fields in our instance will
// have been initialised at this point, not even if the code
// were placed at the declaration of the member variable.
if (mt == null) mt = new int[N];
// ---- Begin Mersenne Twister Algorithm ----
mt[0] = seed;
for (mti = 1; mti < N; mti++) {
mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti);
}
// ---- End Mersenne Twister Algorithm ----
}
/**
* This method resets the state of this instance using the 64
* bits of seed data provided. Note that if the same seed data
* is passed to two different instances of MTRandom (both of
* which share the same compatibility state) then the sequence
* of numbers generated by both instances will be identical.
* <p>
* If this instance was initialised in 'compatibility' mode then
* this method will only use the lower 32 bits of any seed value
* passed in and will match the behaviour of the original C code
* exactly with respect to state initialisation.
*
* @param seed The 64 bit value used to initialise the random
* number generator state.
*/
public final synchronized void setSeed(long seed) {
if (compat) {
setSeed((int)seed);
} else {
// Annoying runtime check for initialisation of internal data
// caused by java.util.Random invoking setSeed() during init.
// This is unavoidable because no fields in our instance will
// have been initialised at this point, not even if the code
// were placed at the declaration of the member variable.
if (ibuf == null) ibuf = new int[2];
ibuf[0] = (int)seed;
ibuf[1] = (int)(seed >>> 32);
setSeed(ibuf);
}
}
/**
* This method resets the state of this instance using the byte
* array of seed data provided. Note that calling this method
* is equivalent to calling "setSeed(pack(buf))" and in particular
* will result in a new integer array being generated during the
* call. If you wish to retain this seed data to allow the pseudo
* random sequence to be restarted then it would be more efficient
* to use the "pack()" method to convert it into an integer array
* first and then use that to re-seed the instance. The behaviour
* of the class will be the same in both cases but it will be more
* efficient.
*
* @param buf The non-empty byte array of seed information.
* @throws NullPointerException if the buffer is null.
* @throws IllegalArgumentException if the buffer has zero length.
*/
public final void setSeed(byte[] buf) {
setSeed(pack(buf));
}
/**
* This method resets the state of this instance using the integer
* array of seed data provided. This is the canonical way of
* resetting the pseudo random number sequence.
*
* @param buf The non-empty integer array of seed information.
* @throws NullPointerException if the buffer is null.
* @throws IllegalArgumentException if the buffer has zero length.
*/
public final synchronized void setSeed(int[] buf) {
int length = buf.length;
if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");
// ---- Begin Mersenne Twister Algorithm ----
int i = 1, j = 0, k = (N > length ? N : length);
setSeed(MAGIC_SEED);
for (; k > 0; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
i++; j++;
if (i >= N) { mt[0] = mt[N-1]; i = 1; }
if (j >= length) j = 0;
}
for (k = N-1; k > 0; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR3)) - i;
i++;
if (i >= N) { mt[0] = mt[N-1]; i = 1; }
}
mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
// ---- End Mersenne Twister Algorithm ----
}
/**
* This method forms the basis for generating a pseudo random number
* sequence from this class. If given a value of 32, this method
* behaves identically to the genrand_int32 function in the original
* C code and ensures that using the standard nextInt() function
* (inherited from Random) we are able to replicate behaviour exactly.
* <p>
* Note that where the number of bits requested is not equal to 32
* then bits will simply be masked out from the top of the returned
* integer value. That is to say that:
* <pre>
* mt.setSeed(12345);
* int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>
* will not give the same result as
* <pre>
* mt.setSeed(12345);
* int foo = mt.nextInt(32);</pre>
*
* @param bits The number of significant bits desired in the output.
* @return The next value in the pseudo random sequence with the
* specified number of bits in the lower part of the integer.
*/
protected final synchronized int next(int bits) {
// ---- Begin Mersenne Twister Algorithm ----
int y, kk;
if (mti >= N) { // generate N words at one time
// In the original C implementation, mti is checked here
// to determine if initialisation has occurred; if not
// it initialises this instance with DEFAULT_SEED (5489).
// This is no longer necessary as initialisation of the
// Java instance must result in initialisation occurring
// Use the constructor MTRandom(true) to enable backwards
// compatible behaviour.
for (kk = 0; kk < N-M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
}
for (;kk < N-1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+(M-N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
}
y = (mt[N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N-1] = mt[M-1] ^ (y >>> 1) ^ MAGIC[y & 0x1];
mti = 0;
}
y = mt[mti++];
// Tempering
y ^= (y >>> 11);
y ^= (y << 7) & MAGIC_MASK1;
y ^= (y << 15) & MAGIC_MASK2;
y ^= (y >>> 18);
// ---- End Mersenne Twister Algorithm ----
return (y >>> (32-bits));
}
// This is a fairly obscure little code section to pack a
// byte[] into an int[] in little endian ordering.
/**
* This simply utility method can be used in cases where a byte
* array of seed data is to be used to repeatedly re-seed the
* random number sequence. By packing the byte array into an
* integer array first, using this method, and then invoking
* setSeed() with that; it removes the need to re-pack the byte
* array each time setSeed() is called.
* <p>
* If the length of the byte array is not a multiple of 4 then
* it is implicitly padded with zeros as necessary. For example:
* <pre> byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
* becomes
* <pre> int[] { 0x04030201, 0x00000605 }</pre>
* <p>
* Note that this method will not complain if the given byte array
* is empty and will produce an empty integer array, but the
* setSeed() method will throw an exception if the empty integer
* array is passed to it.
*
* @param buf The non-null byte array to be packed.
* @return A non-null integer array of the packed bytes.
* @throws NullPointerException if the given byte array is null.
*/
public static int[] pack(byte[] buf) {
int k, blen = buf.length, ilen = ((buf.length+3) >>> 2);
int[] ibuf = new int[ilen];
for (int n = 0; n < ilen; n++) {
int m = (n+1) << 2;
if (m > blen) m = blen;
for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff);
ibuf[n] = k;
}
return ibuf;
}
}
public class Main
{
private static MTRandom rnd;
static {
rnd = new MTRandom(-1966625086L);
}
public static float get() {
return rnd.nextFloat();
}
public static int get(int arg4) {
return (int)Math.floor(rnd.nextDouble() * ((double)arg4));
}
public static int get(int arg4, int arg5) {
return arg4 + ((int)Math.floor(rnd.nextDouble() * ((double)(arg5 - arg4 + 1))));
}
public static boolean nextBoolean() {
return rnd.nextBoolean();
}
public static double nextDouble() {
return rnd.nextDouble();
}
public static double nextGaussian() {
return rnd.nextGaussian();
}
public static int nextInt() {
return rnd.nextInt();
}
public static int nextInt(int arg4) {
return (int)Math.floor(rnd.nextDouble() * ((double)arg4));
}
public static void reSeed() {
rnd = new MTRandom(-1966625086L);
}
public static void main(String[] args) {
SecretKeySpec v12_3 = null;
SecretKeyFactory v2_1 = null;
Cipher v3_2 = null;
try {
v2_1 = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
} catch (NoSuchAlgorithmException v3_1) {
}
try {
v3_2 = Cipher.getInstance("AES/CBC/PKCS5Padding");
} catch (NoSuchAlgorithmException v3_1) {
} catch (NoSuchPaddingException v3_1) {
}
reSeed();
byte[] v6 = new byte[16];
int v7;
for(v7 = 0; v7 < 16; ++v7) {
v6[v7] = (byte)get(0x100);
}
PBEKeySpec v7_1 = new PBEKeySpec("1.01.001007".toCharArray(), v6, 0x10000, 0x100);
SecretKeySpec v6_1 = null;
try {
v6_1 = new SecretKeySpec(v2_1.generateSecret(v7_1).getEncoded(), "AES");
} catch (InvalidKeySpecException v2_2) {
}
v12_3 = v6_1;
byte[] v2_3 = new byte[16];
int v6_2;
for(v6_2 = 0; v6_2 < 16; ++v6_2) {
v2_3[v6_2] = (byte)get(0x100);
}
IvParameterSpec v4 = new IvParameterSpec(v2_3);
try {
v3_2.init(2, v12_3, v4);
} catch(InvalidAlgorithmParameterException v12_5) {
}
catch(InvalidKeyException v12_4) {
}
try {
String flag = new String(v3_2.doFinal(Base64.getDecoder().decode("diDrBf4+uZMtDV+0k/3BCGM4xyTpEyGEuUFYegIaSjQyQcgfIfZRbvGQ9hHMqnuflNCKv4HW/NXq93j4QqLc/Q==".getBytes())), StandardCharsets.UTF_8);
System.out.println(flag);
} catch(IllegalBlockSizeException v12_6) {
} catch(BadPaddingException v12_7) {
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment