Last active
April 2, 2021 06:56
-
-
Save mchirico/bcc376fb336b73f24b29 to your computer and use it in GitHub Desktop.
Tensorflow: working with tensorboard, CSV, and saving results
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import tensorflow as tf | |
import numpy as np | |
from numpy import genfromtxt | |
# Build Example Data is CSV format, but use Iris data | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split | |
import sklearn | |
def buildDataFromIris(): | |
iris = datasets.load_iris() | |
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.33, random_state=42) | |
f=open('cs-training.csv','w') | |
for i,j in enumerate(X_train): | |
k=np.append(np.array(y_train[i]),j ) | |
f.write(",".join([str(s) for s in k]) + '\n') | |
f.close() | |
f=open('cs-testing.csv','w') | |
for i,j in enumerate(X_test): | |
k=np.append(np.array(y_test[i]),j ) | |
f.write(",".join([str(s) for s in k]) + '\n') | |
f.close() | |
# Convert to one hot | |
def convertOneHot(data): | |
y=np.array([int(i[0]) for i in data]) | |
y_onehot=[0]*len(y) | |
for i,j in enumerate(y): | |
y_onehot[i]=[0]*(y.max() + 1) | |
y_onehot[i][j]=1 | |
return (y,y_onehot) | |
buildDataFromIris() | |
data = genfromtxt('cs-training.csv',delimiter=',') # Training data | |
test_data = genfromtxt('cs-testing.csv',delimiter=',') # Test data | |
x_train=np.array([ i[1::] for i in data]) | |
y_train,y_train_onehot = convertOneHot(data) | |
x_test=np.array([ i[1::] for i in test_data]) | |
y_test,y_test_onehot = convertOneHot(test_data) | |
# A number of features, 4 in this example | |
# B = 3 species of Iris (setosa, virginica and versicolor) | |
A=data.shape[1]-1 # Number of features, Note first is y | |
B=len(y_train_onehot[0]) | |
tf_in = tf.placeholder("float", [None, A]) # Features | |
tf_weight = tf.Variable(tf.zeros([A,B])) | |
tf_bias = tf.Variable(tf.zeros([B])) | |
tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias) | |
# Training via backpropagation | |
tf_softmax_correct = tf.placeholder("float", [None,B]) | |
tf_cross_entropy = -tf.reduce_sum(tf_softmax_correct*tf.log(tf_softmax)) | |
# Train using tf.train.GradientDescentOptimizer | |
tf_train_step = tf.train.GradientDescentOptimizer(0.01).minimize(tf_cross_entropy) | |
# Add accuracy checking nodes | |
tf_correct_prediction = tf.equal(tf.argmax(tf_softmax,1), tf.argmax(tf_softmax_correct,1)) | |
tf_accuracy = tf.reduce_mean(tf.cast(tf_correct_prediction, "float")) | |
# Recreate logging dir | |
import shutil, os, sys | |
TMPDir='./tenIrisSave' | |
try: | |
shutil.rmtree(TMPDir) | |
except: | |
print "Tmp Dir did not exist" | |
os.mkdir(TMPDir, 0755 ) | |
# Initialize and run | |
sess = tf.Session() | |
#sess = tf.InteractiveSession() | |
init = tf.initialize_all_variables() | |
sess.run(init) | |
# Build the summary operation based on the TF collection of Summaries. | |
tf.train.write_graph(sess.graph_def, TMPDir + '/logsd','graph.pbtxt') | |
#acc = tf.scalar_summary("Accuracy:", tf_accuracy) | |
tf.scalar_summary("Accuracy:", tf_accuracy) | |
tf.histogram_summary('weights', tf_weight) | |
tf.histogram_summary('bias', tf_bias) | |
tf.histogram_summary('softmax', tf_softmax) | |
tf.histogram_summary('accuracy', tf_accuracy) | |
summary_op = tf.merge_all_summaries() | |
#summary_writer = tf.train.SummaryWriter('./tenIrisSave/logs',graph_def=sess.graph_def) | |
summary_writer = tf.train.SummaryWriter(TMPDir + '/logs',sess.graph_def) | |
# This will not work. You need the full path. | |
# tensorboard --logdir=./tenIrisSave/ # BAD! | |
# tensorboard --logdir=$(pwd)/tenIrisSave/ # Good! | |
# This is for saving all our work | |
saver = tf.train.Saver([tf_weight,tf_bias]) | |
print("...") | |
# Run the training | |
k=[] | |
saved=0 | |
for i in range(100): | |
sess.run(tf_train_step, feed_dict={tf_in: x_train, tf_softmax_correct: y_train_onehot}) | |
# Print accuracy | |
result = sess.run(tf_accuracy, feed_dict={tf_in: x_test, tf_softmax_correct: y_test_onehot}) | |
print "Run {},{}".format(i,result) | |
k.append(result) | |
summary_str = sess.run(summary_op,feed_dict={tf_in: x_test, tf_softmax_correct: y_test_onehot}) | |
summary_writer.add_summary(summary_str, i) | |
if result == 1 and saved == 0: | |
saved=1 | |
print "saving" | |
saver.save(sess,"./tenIrisSave/saveOne") | |
k=np.array(k) | |
print(np.where(k==k.max())) | |
print "Max: {}".format(k.max()) | |
print "\nTo see the output, run the following:" | |
print "tensorboard --logdir=$(pwd)/tenIrisSave" | |
Note...you'll probably want to restore and run the saved value...here's a link to the code that will do that.
Wouldn't
tf_weight = tf.Variable(tf.random_normal([A,B], stddev=0.01))
tf_bias = tf.Variable(tf.random_normal([B], stddev=0.01))
``` be better as it would do random initialization instead of zeros?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Apparently you have to give the full path when running tensorboard
This will give you the following tensorboards