Last active
November 5, 2018 21:08
-
-
Save mdespriee/4b170ebf4dd52df90f30579e3aac510b to your computer and use it in GitHub Desktop.
generated code - from PR https://github.com/apache/incubator-mxnet/pull/13039
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.apache.mxnet | |
import org.apache.mxnet.annotation.Experimental | |
// scalastyle:off | |
abstract class SymbolRandomAPIBase { | |
/** | |
* <pre> | |
Draw random samples from an an approximately log-uniform | |
* or Zipfian distribution without replacement. | |
* | |
* This operation takes a 2-D shape `(batch_size, num_sampled)`, | |
* and randomly generates *num_sampled* samples from the range of integers [0, range_max) | |
* for each instance in the batch. | |
* | |
* The elements in each instance are drawn without replacement from the base distribution. | |
* The base distribution for this operator is an approximately log-uniform or Zipfian distribution: | |
* | |
* P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1) | |
* | |
* Additionaly, it also returns the number of trials used to obtain `num_sampled` samples for | |
* each instance in the batch. | |
* | |
* Example:: | |
* | |
* samples, trials = _sample_unique_zipfian(750000, shape=(4, 8192)) | |
* unique(samples[0]) = 8192 | |
* unique(samples[3]) = 8192 | |
* trials[0] = 16435 | |
* | |
* | |
* | |
* Defined in src/operator/random/unique_sample_op.cc:L66 * </pre> | |
* @param range_max The number of possible classes. | |
* @param shape 2-D shape of the output, where shape[0] is the batch size, and shape[1] is the number of candidates to sample for each batch. | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def unique_zipfian[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (range_max : T, shape : Option[org.apache.mxnet.Shape] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a normal (Gaussian) distribution. | |
* | |
* .. note:: The existing alias ``normal`` is deprecated. | |
* | |
* Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale* (standard deviation). | |
* | |
* Example:: | |
* | |
* normal(loc=0, scale=1, shape=(2,2)) = [[ 1.89171135, -1.16881478], | |
* [-1.23474145, 1.55807114]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L85 * </pre> | |
* @param mu Mean of the distribution. | |
* @param sigma Standard deviation of the distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def normal[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (mu : Option[T] = None, sigma : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a generalized negative binomial distribution. | |
* | |
* Samples are distributed according to a generalized negative binomial distribution parametrized by | |
* *mu* (mean) and *alpha* (dispersion). *alpha* is defined as *1/k* where *k* is the failure limit of the | |
* number of unsuccessful experiments (generalized to real numbers). | |
* Samples will always be returned as a floating point data type. | |
* | |
* Example:: | |
* | |
* generalized_negative_binomial(mu=2.0, alpha=0.3, shape=(2,2)) = [[ 2., 1.], | |
* [ 6., 4.]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L168 * </pre> | |
* @param mu Mean of the negative binomial distribution. | |
* @param alpha Alpha (dispersion) parameter of the negative binomial distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def generalized_negative_binomial[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (mu : Option[T] = None, alpha : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a Poisson distribution. | |
* | |
* Samples are distributed according to a Poisson distribution parametrized by *lambda* (rate). | |
* Samples will always be returned as a floating point data type. | |
* | |
* Example:: | |
* | |
* poisson(lam=4, shape=(2,2)) = [[ 5., 2.], | |
* [ 4., 6.]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L132 * </pre> | |
* @param lam Lambda parameter (rate) of the Poisson distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def poisson[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (lam : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a uniform distribution. | |
* | |
* .. note:: The existing alias ``uniform`` is deprecated. | |
* | |
* Samples are uniformly distributed over the half-open interval *[low, high)* | |
* (includes *low*, but excludes *high*). | |
* | |
* Example:: | |
* | |
* uniform(low=0, high=1, shape=(2,2)) = [[ 0.60276335, 0.85794562], | |
* [ 0.54488319, 0.84725171]] | |
* | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L66 * </pre> | |
* @param low Lower bound of the distribution. | |
* @param high Upper bound of the distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def uniform[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (low : Option[T] = None, high : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a negative binomial distribution. | |
* | |
* Samples are distributed according to a negative binomial distribution parametrized by | |
* *k* (limit of unsuccessful experiments) and *p* (failure probability in each experiment). | |
* Samples will always be returned as a floating point data type. | |
* | |
* Example:: | |
* | |
* negative_binomial(k=3, p=0.4, shape=(2,2)) = [[ 4., 7.], | |
* [ 2., 5.]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L149 * </pre> | |
* @param k Limit of unsuccessful experiments. | |
* @param p Failure probability in each experiment. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def negative_binomial[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (k : Option[T] = None, p : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Concurrent sampling from multiple multinomial distributions. | |
* | |
* *data* is an *n* dimensional array whose last dimension has length *k*, where | |
* *k* is the number of possible outcomes of each multinomial distribution. This | |
* operator will draw *shape* samples from each distribution. If shape is empty | |
* one sample will be drawn from each distribution. | |
* | |
* If *get_prob* is true, a second array containing log likelihood of the drawn | |
* samples will also be returned. This is usually used for reinforcement learning | |
* where you can provide reward as head gradient for this array to estimate | |
* gradient. | |
* | |
* Note that the input distribution must be normalized, i.e. *data* must sum to | |
* 1 along its last axis. | |
* | |
* Examples:: | |
* | |
* probs = [[0, 0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1, 0]] | |
* | |
* // Draw a single sample for each distribution | |
* sample_multinomial(probs) = [3, 0] | |
* | |
* // Draw a vector containing two samples for each distribution | |
* sample_multinomial(probs, shape=(2)) = [[4, 2], | |
* [0, 0]] | |
* | |
* // requests log likelihood | |
* sample_multinomial(probs, get_prob=True) = [2, 1], [0.2, 0.3] * </pre> | |
* @param data Distribution probabilities. Must sum to one on the last axis. | |
* @param shape Shape to be sampled from each random distribution. | |
* @param get_prob Whether to also return the log probability of sampled result. This is usually used for differentiating through stochastic variables, e.g. in reinforcement learning. | |
* @param dtype DType of the output in case this can't be inferred. | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def multinomial[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (data : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, get_prob : Option[Boolean] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from an exponential distribution. | |
* | |
* Samples are distributed according to an exponential distribution parametrized by *lambda* (rate). | |
* | |
* Example:: | |
* | |
* exponential(lam=4, shape=(2,2)) = [[ 0.0097189 , 0.08999364], | |
* [ 0.04146638, 0.31715935]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L115 * </pre> | |
* @param lam Lambda parameter (rate) of the exponential distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def exponential[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (lam : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
/** | |
* <pre> | |
Draw random samples from a gamma distribution. | |
* | |
* Samples are distributed according to a gamma distribution parametrized by *alpha* (shape) and *beta* (scale). | |
* | |
* Example:: | |
* | |
* gamma(alpha=9, beta=0.5, shape=(2,2)) = [[ 7.10486984, 3.37695289], | |
* [ 3.91697288, 3.65933681]] | |
* | |
* | |
* Defined in src/operator/random/sample_op.cc:L100 * </pre> | |
* @param alpha Alpha parameter (shape) of the gamma distribution. | |
* @param beta Beta parameter (scale) of the gamma distribution. | |
* @param shape Shape of the output. | |
* @param ctx Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls. | |
* @param dtype DType of the output in case this can't be inferred. Defaults to float32 if not defined (dtype=None). | |
* @return org.apache.mxnet.Symbol | |
*/ | |
@Experimental | |
def gamma[T: SymbolOrValue : scala.reflect.runtime.universe.TypeTag] (alpha : Option[T] = None, beta : Option[T] = None, shape : Option[org.apache.mxnet.Shape] = None, ctx : Option[String] = None, dtype : Option[String] = None, name : String = null, attr : Map[String, String] = null): org.apache.mxnet.Symbol | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment