Created
August 1, 2019 11:57
-
-
Save mdietze/6c9312969f002fb82292486214b4ae56 to your computer and use it in GitHub Desktop.
NEFI2019 Course: Monte Carlo credible and predictive interval simulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## linear.R -- to accompany Module 4 of | |
## Methods of Regression | |
## | |
## by Leah R Johnson, Stats, VT | |
## load the ex.mc2 function | |
source("sampling2.R") | |
## set inputs (covariates) | |
x <- seq(-3,2,length=30) | |
## set regression coefficients alpha=beta0, beta=beta1, quad one is hard coded | |
alpha <- 10; beta <- 0.1 | |
plot(x, alpha+beta*x-1*x^2, type="l") | |
## monte-carlo linear fits | |
ex.mc2(x, alpha, beta, sampf=quadf) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Code provided by: | |
## Leah R Johnson 30 July 2019 | |
## adapted from code by Robert B Gramacy | |
## Virginia Tech Department of Statistics | |
## | |
## | |
## see e.g., linear.R for examples of how to use the functions | |
## contained in this file | |
## linf: | |
## | |
## generate from a standard linear model with covariate | |
## x, intercept alpha and slope beta -- then fit a linear | |
## model (ML) to the result. return the sample, the | |
## fit and a descriptive name, n is a vector of ones to be | |
## compatible with logitf | |
linf <- function(x, alpha, beta) | |
{ | |
epsilon <- rnorm(length(x)) | |
y <- alpha + beta*x + epsilon | |
fit <- lm(y ~ x) | |
return(list(y=y, fit=fit, n=rep(1,length(y)), name="linear")) | |
} | |
## loginf: | |
## | |
## generate from a log-linear model with covariate | |
## x, intercept alpha and slope beta -- then fit a linear | |
## model (ML) to the result. return the sample, the | |
## fit and a descriptive name, n is a vector of ones to be | |
## compatible with logitf | |
loglinf <- function(x, alpha, beta) | |
{ | |
mu <- exp(alpha + beta*x) | |
y <- rpois(length(mu), mu) | |
fit <- glm(y ~ x, family="poisson") | |
return(list(y=y, fit=fit, n=rep(1,length(y)), name="log-linear")) | |
} | |
## logit: | |
## | |
## generate from a binomial-logit model with covariate | |
## x, intercept alpha and slope beta -- then fit a linear | |
## model (ML) to the result. return the sample, the | |
## fit, the total counts, and a descriptive name | |
logitf <- function(x, alpha, beta) | |
{ | |
n <- rpois(length(x), lambda=2)+1 | |
p <- exp(alpha + beta*x)/(1+exp(alpha + beta*x)) | |
y <- rbinom(length(n), n, prob=p) | |
fit <- glm(y/n ~ x, family="binomial", weights=n) | |
return(list(y=y, fit=fit, n=n, name="logit")) | |
} | |
## three.ex: | |
## | |
## sample (plot) data from a standard linear model, a log-linear | |
## model and a binomial-logit model, with options to add the | |
## MLE regression line to the plot (and regression coeffs) | |
three.ex <- function(x, alpha, beta, infer=FALSE) { | |
## for plotting on a 2x2 grid | |
par(mfrow=c(2,2), cex.main=2, cex.lab=2, cex.axis=2) | |
## simple linear model | |
lin <- linf(x, alpha, beta) | |
plot(x,lin$y, ylab="y", cex=2) | |
## plot ML inference for the linear model | |
if(infer) { | |
p.lin <- predict(lin$fit, se.fit=TRUE) | |
lines(x, p.lin$fit, lwd=2) | |
lines(x, p.lin$fit+2*p.lin$se.fit, col=2, lty=2, lwd=2) | |
lines(x, p.lin$fit-2*p.lin$se.fit, col=2, lty=2, lwd=2) | |
title(paste(lin$name, ": m = a + b*x, (a,b)=(", | |
signif(coef(lin$fit)[1],2), ",", signif(coef(lin$fit)[2],2), | |
")", sep="")) | |
} else title(lin$name) | |
## simple log-linear model | |
loglin <- loglinf(x, alpha, beta) | |
plot(x, loglin$y, ylab="y", cex=2) | |
## ML inference for the log-linear model | |
if(infer) { | |
p.lin <- predict(loglin$fit, type="response", se.fit=TRUE) | |
lines(x, p.lin$fit, lwd=2) | |
lines(x, p.lin$fit+2*p.lin$se.fit, col=2, lty=2, lwd=2) | |
lines(x, p.lin$fit-2*p.lin$se.fit, col=2, lty=2, lwd=2) | |
title(paste(loglin$name, ": log(m) = a + b*x, (a,b)=(", | |
signif(coef(loglin$fit)[1],2), ",", | |
signif(coef(loglin$fit)[2],2), ")", sep="")) | |
} else title(loglin$name) | |
## simple logit model | |
logit <- logitf(x, alpha, beta) | |
plot(x, logit$y/logit$n, type="n", ylab="y") | |
text(x, logit$y/logit$n, logit$n, cex=2) | |
## ML inference for the logit model | |
if(infer) { | |
p.logit <- predict(logit$fit, type="response", se.fit=TRUE) | |
lines(x, p.logit$fit, lwd=2) | |
lines(x, p.logit$fit+2*p.logit$se.fit, col=2, lty=2, lwd=2) | |
lines(x, p.logit$fit-2*p.logit$se.fit, col=2, lty=2, lwd=2) | |
title(paste(logit$name, ": log(m/(1-m)) = a + b*x, (a,b)=(", | |
signif(coef(logit$fit)[1],2), ",", | |
signif(coef(logit$fit)[2],2), ")", sep="")) | |
} else title("logit") | |
} | |
## ex2.mc: | |
## | |
## monte-carlo sampling from the provided sampling function | |
## (one of the three GLM functions above) with ML fits, | |
## and finally summarize the estimates with means and | |
## errorbars | |
ex.mc <- function(x, alpha, beta, sampf=linf) { | |
## initialization | |
i <- 0 | |
par(mfrow=c(1,1), cex.main=1.5, cex.lab=1.5, cex.axis=1.5) | |
l <- ab <- NULL | |
## while the user wishes to continue | |
while(TRUE) { | |
## sample with the sampling function sampf | |
i <- i+1 | |
samp <- sampf(x, alpha, beta) | |
l <- cbind(l, predict(samp$fit, type="response")) | |
## plot the points | |
if(any(samp$n != 1)) { | |
plot(x, samp$y/samp$n, cex=2, ylim=range(as.vector(l)), type="n", ylab="y") | |
text(x, samp$y/samp$n, samp$n, cex=2, col=i) | |
} else { | |
plot(x, samp$y/samp$n, cex=2, col=i, ylim=range(as.vector(l)), ylab="y") | |
} | |
## plot the accumulated regression lines | |
matplot(x, l, lwd=2, col=1:i, type="l", lty=1, add=TRUE, ylab="y") | |
ab <- rbind(ab, coef(samp$fit)) | |
title(paste(samp$name, ": m = a + b*x, average (a,b)=(", | |
signif(mean(ab[,1]),2), ",", | |
signif(mean(ab[,2]),2), ")", sep="")) | |
## continue sampling? | |
if(readline("press RETURN to continue, q to stop: ") == "q") break | |
} | |
## plot the resulting mean regression line and quantiles | |
m <- apply(l, 1, mean); | |
plot(x, m, type="l", lwd=2, ylab="y") | |
title(paste(samp$name, ": predictive mean and interval", sep="")) | |
q1 <- apply(l, 1, quantile, 0.05) | |
lines(x, q1, lwd=2, col=2) | |
q2 <- apply(l, 1, quantile, 0.95) | |
lines(x, q2, lwd=2, col=2) | |
} | |
## ex.mc: | |
## | |
## monte-carlo sampling from the provided sampling function | |
## (one of the three GLM functions above) with ML fits, | |
## and finally summarize the estimates with means and | |
## errorbars | |
## linf: | |
## | |
## generate from a standard linear model with covariate | |
## x, intercept alpha and slope beta -- then fit a linear | |
## model (ML) to the result. return the sample, the | |
## fit and a descriptive name, n is a vector of ones to be | |
## compatible with logitf | |
quadf <- function(x, alpha, beta){ | |
epsilon <- rnorm(length(x)) | |
x2<-x^2 | |
y <- alpha + beta*x - x2 + epsilon | |
fit <- lm(y ~ x+x2) | |
return(list(y=y, fit=fit, n=rep(1,length(y)), name="quadratic")) | |
} | |
ex.mc2 <- function(x, alpha, beta, sampf=linf) { | |
## initialization | |
i <- 0 | |
par(mfrow=c(1,1), cex.main=1.5, cex.lab=1.5, cex.axis=1.5) | |
l <- ab <- ys <- NULL | |
## while the user wishes to continue | |
while(TRUE) { | |
## sample with the sampling function sampf | |
i <- i+1 | |
samp <- sampf(x, alpha, beta) | |
l <- cbind(l, predict(samp$fit, type="response")) | |
ys<- cbind(ys, samp$y/samp$n) | |
## plot the points | |
if(any(samp$n != 1)) { | |
plot(x, samp$y/samp$n, cex=2, ylim=range(as.vector(ys)), type="n", ylab="y") | |
text(x, samp$y/samp$n, samp$n, cex=2, col=i) | |
} else { | |
plot(x, samp$y/samp$n, cex=2, col=i, ylim=range(as.vector(ys)), ylab="y") | |
} | |
## plot the accumulated regression lines | |
matplot(x, l, lwd=2, col=1:i, type="l", lty=1, add=TRUE, ylab="y") | |
matplot(x, ys, col=1:i, pch=20, add=TRUE) | |
ab <- rbind(ab, coef(samp$fit)) | |
#title(paste(samp$name, ": m = a + b*x, (a,b)=(", | |
# signif((ab[i,1]),2), ",", | |
# signif((ab[i,2]),2), ")", sep="")) | |
## continue sampling? | |
if(readline("press RETURN to continue, q to stop: ") == "q") break | |
} | |
## plot the resulting mean regression line and quantiles | |
m <- apply(l, 1, mean); | |
plot(x, m, type="l", lwd=2, ylab="y", ylim=range(as.vector(ys))) | |
title(paste(samp$name, ": predictive mean, CI, and interval", sep="")) | |
q1 <- apply(l, 1, quantile, 0.025) | |
lines(x, q1, lwd=2, col=2) | |
q2 <- apply(l, 1, quantile, 0.975) | |
lines(x, q2, lwd=2, col=2) | |
qp1 <- apply(ys, 1, quantile, 0.025) | |
qp2 <- apply(ys, 1, quantile, 0.975) | |
lines(x, qp2, lwd=2, col=2, lty=2) | |
lines(x, qp1, lwd=2, col=2, lty=2) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment