Created
March 18, 2020 08:30
-
-
Save menandro/cd5f4b5309f16f1a0f1987fcb2baf057 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%% Generate vector field from fisheye stereo from faro | |
close all | |
clear all | |
% Change this file (calibFile) | |
calibFile = fopen('im203.xml'); | |
calibrationFilename = 'calibrationField.flo'; | |
translationFilename = 'trajectoryField.flo'; | |
focal = 800.0/(2*pi/3); % Specific for the dataset | |
cx = 400; | |
cy = 400; | |
K0 = [focal 0 cx; 0 focal cy; 0 0 1]; | |
K1 = K0; | |
for g=1:14 | |
tline = fgetl(calibFile); | |
end | |
[rr, ~] = fscanf(calibFile, '%f'); | |
for g=1:6 | |
tline = fgetl(calibFile); | |
end | |
[tt, ~] = fscanf(calibFile, '%f'); | |
R = [rr(1) rr(2) rr(3); rr(4) rr(5) rr(6); rr(7) rr(8) rr(9)]; | |
t = [tt(1) tt(2) tt(3)]'; | |
fclose(calibFile); | |
scaling = 1.0; | |
height = (800/scaling); | |
width = (800/scaling); | |
u0 = repmat(1:width, height, 1); | |
v0 = repmat((1:height)', 1, width); | |
xprime0 = (u0 - K0(1,3));%/K0(1,1); | |
yprime0 = (v0 - K0(2,3));%/K0(2,2); | |
theta = sqrt(xprime0.*xprime0 + yprime0.*yprime0) / focal; | |
Xradius = 1.0; | |
Z = Xradius*cos(theta); | |
phi = atan2(yprime0, xprime0); | |
X = Xradius*sin(theta).*cos(phi); | |
Y = Xradius*sin(theta).*sin(phi); | |
% Convert XYZ to second camera | |
%% Forward direction | |
translateScale = 1.0; | |
tscale = t*translateScale; | |
XX = X + tscale(1); | |
YY = Y + tscale(2); | |
ZZ = Z + tscale(3); | |
XXradius = sqrt(XX.^2 + YY.^2); | |
theta2 = atan2(XXradius, ZZ); | |
alpha2 = focal*theta2; | |
phi2 = atan2(YY, XX); | |
xprime1 = alpha2 .* cos(phi2); | |
yprime1 = alpha2 .* sin(phi2); | |
u1 = xprime1 + K1(1,3); | |
v1 = yprime1 + K1(2,3); | |
vectorxforward = u1 - u0; | |
vectoryforward = v1 - v0; | |
%% Backward direction | |
translateScale = 0.01; | |
tscale = t*(-translateScale); | |
XX = X + tscale(1); | |
YY = Y + tscale(2); | |
ZZ = Z + tscale(3); | |
XXradius = sqrt(XX.^2 + YY.^2); | |
theta2 = atan2(XXradius, ZZ); | |
alpha2 = focal*theta2; | |
phi2 = atan2(YY, XX); | |
xprime1 = alpha2 .* cos(phi2); | |
yprime1 = alpha2 .* sin(phi2); | |
u1 = xprime1 + K1(1,3); | |
v1 = yprime1 + K1(2,3); | |
vectorxbackward = u1 - u0; | |
vectorybackward = v1 - v0; | |
vectorx = 0.5*(vectorxforward - vectorxbackward); | |
vectory = 0.5*(vectoryforward - vectorybackward); | |
% Normalize | |
magnitude = sqrt(vectorx.^2 + vectory.^2); | |
vectorx = vectorx ./ magnitude; | |
vectory = vectory ./ magnitude; | |
translationVector(:,:,1) = vectorx; | |
translationVector(:,:,2) = vectory; | |
writeFlowFile(translationVector, translationFilename); | |
%% Calibration Vector | |
XX = R(1,1)*X + R(1,2)*Y + R(1,3)*Z; | |
YY = R(2,1)*X + R(2,2)*Y + R(2,3)*Z; | |
ZZ = R(3,1)*X + R(3,2)*Y + R(3,3)*Z; | |
XXradius = sqrt(XX.^2 + YY.^2); | |
theta2 = atan2(XXradius, ZZ); | |
alpha2 = focal*theta2; | |
phi2 = atan2(YY, XX); | |
xprime1 = alpha2 .* cos(phi2); | |
yprime1 = alpha2 .* sin(phi2); | |
u1 = xprime1 + K1(1,3); | |
v1 = yprime1 + K1(2,3); | |
calibrationVectorX = u1 - u0; | |
calibrationVectorY = v1 - v0; | |
calibrationVector(:,:,1) = calibrationVectorX; | |
calibrationVector(:,:,2) = calibrationVectorY; | |
writeFlowFile(calibrationVector, calibrationFilename); | |
%% Display | |
quiverSampling = 10; | |
u0s = zeros(height/10, floor(width/10) + 1); | |
v0s = zeros(height/10, floor(width/10) + 1); | |
vectorxs = zeros(height/10, floor(width/10) + 1); | |
vectorys = zeros(height/10, floor(width/10) + 1); | |
for j=1:quiverSampling:height | |
for i=1:quiverSampling:width | |
u0s(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = u0(j,i); | |
v0s(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = v0(j,i); | |
vectorxs(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = vectorx(j,i); | |
vectorys(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = vectory(j,i); | |
end | |
end | |
normVectorxs = vectorxs./sqrt(vectorxs.^2 + vectorys.^2); | |
normVectorys = vectorys./sqrt(vectorxs.^2 + vectorys.^2); | |
calibrationVectorXs = zeros(height/10, floor(width/10) + 1); | |
calibrationVectorYs = zeros(height/10, floor(width/10) + 1); | |
for j=1:quiverSampling:height | |
for i=1:quiverSampling:width | |
u0s(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = u0(j,i); | |
v0s(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = v0(j,i); | |
calibrationVectorXs(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = calibrationVectorX(j,i); | |
calibrationVectorYs(int32(j/quiverSampling) + 1, int32(i/quiverSampling) + 1) = calibrationVectorY(j,i); | |
end | |
end | |
normRotationVectorxs = calibrationVectorXs./sqrt(calibrationVectorXs.^2 + calibrationVectorYs.^2); | |
normRotationVectorys = calibrationVectorYs./sqrt(calibrationVectorXs.^2 + calibrationVectorYs.^2); | |
figure('name','Calibration Vector'), imshow(computeColor(calibrationVectorX/50, calibrationVectorY/50)); | |
hold on | |
h0 = quiver(u0s, v0s, normRotationVectorxs, normRotationVectorys); | |
hold off | |
figure('name','Translation Vector'), imshow(computeColor(vectorx/5, vectory/5)); | |
hold on | |
h1 = quiver(u0s, v0s, normVectorxs, normVectorys); | |
axis equal | |
hold off |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment