Forked from Mahedi-61/cuda_11.8_installation_on_Ubuntu_22.04
Last active
September 5, 2020 23:45
-
-
Save mesmesgit/4152556a749083531c9c18245dbf5930 to your computer and use it in GitHub Desktop.
CUDA 10.2 Installation on Ubuntu 18.04
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
## This gist contains instructions about cuda v10.2 and cudnn 7.6 installation in Ubuntu 18.04 for Tensorflow 2.1.0 | |
# Rev MES 9/5/20 - hopefully this will work for opencv build as well | |
### steps #### | |
# verify the system has a cuda-capable gpu | |
# download and install the nvidia cuda toolkit and cudnn | |
# setup environmental variables | |
# verify the installation | |
### | |
### If you have previous installation remove it first. | |
sudo apt-get purge nvidia* | |
sudo apt remove nvidia-* | |
sudo rm /etc/apt/sources.list.d/cuda* | |
sudo apt-get autoremove && sudo apt-get autoclean | |
sudo rm -rf /usr/local/cuda* | |
sudo apt-get purge cuda | |
sudo apt-get autoremove --purge cuda* | |
# Use sudo dpkg -r to remove cuda-* | |
# Use sudo dpkg -P to purge all the cuda deb packages individually. These deb packages were listed by dpkg -l | grep cuda | |
# use sudo dpkg -l | grep nvidia to find packages and remove with sudo dpkg -P | |
# use sudo dpkg -l | grep cuda to find packages and remove with sudo dpkg -P | |
sudo apt-get remove --purge '^nvidia-.*' | |
sudo apt-get --purge remove libnvidia-compute-440 | |
### to verify your gpu is cuda enable check | |
lspci | grep -i nvidia | |
### gcc compiler is required for development using the cuda toolkit. to verify the version of gcc install enter | |
gcc --version | |
# system update | |
sudo apt-get update | |
sudo apt-get upgrade | |
# install other import packages | |
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev | |
# first get the PPA repository driver | |
sudo add-apt-repository ppa:graphics-drivers/ppa | |
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub | |
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list | |
sudo apt-get update | |
# installing CUDA-10.2 | |
sudo apt-get -o Dpkg::Options::="--force-overwrite" install cuda-10-2 cuda-drivers | |
# download 10.2 cuBLAS patch1, dated 8/26/2020 from: | |
# https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=runfilelocal | |
# follow instructions to install local runfile using sh | |
# setup your paths | |
echo 'export PATH=/usr/local/cuda-10.2/bin:$PATH' >> ~/.bashrc | |
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc | |
source ~/.bashrc | |
sudo ldconfig | |
# install cuDNN v7.6 | |
# in order to download cuDNN you have to be regeistered here https://developer.nvidia.com/developer-program/signup | |
# then download cuDNN v7.6 form https://developer.nvidia.com/cudnn | |
CUDNN_TAR_FILE="cudnn-10.2-linux-x64-v7.6.5.32.tgz" | |
# download cudnn above, but URL below is incorrect | |
# wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.1_20191031/cudnn-10.2-linux-x64-v7.6.5.32.tgz | |
tar -xzvf ${CUDNN_TAR_FILE} | |
# copy the following files into the cuda toolkit directory. | |
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-10.2/include | |
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64/ | |
sudo chmod a+r /usr/local/cuda-10.2/lib64/libcudnn* | |
# Finally, to verify the installation, check | |
nvidia-smi | |
nvcc -V | |
# install Tensorflow (an open source machine learning framework) | |
# I choose version 2.1.0 because it is stable and compatible with CUDA 10.1 Toolkit and cuDNN 7.6 | |
sudo pip3 install --user tensorflow-gpu==2.1.0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment