Created
September 5, 2020 23:06
-
-
Save messefor/869f20f4228d34372165623c11eb83e3 to your computer and use it in GitHub Desktop.
Code for gamma regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Simulate exponential data / gamma distribution with stan | |
library(rstan) | |
library(tidyverse) | |
options(mc.cores = parallel::detectCores()) | |
rstan_options(auto_write = TRUE) | |
# ----------------------------------------------------------- | |
# Build toy data | |
# ----------------------------------------------------------- | |
# a <- 1.7 | |
# b0 <- 0.3 | |
# b1 <- 1.5 | |
# phi <- 10. | |
set.seed(1234) | |
a <- 0.3 | |
b0 <- 1.0 | |
b1 <- 1.5 | |
phi <- 0.1 | |
# pop.set <- seq(0, 10, by=0.05) | |
# x <- sample(pop.set, N) | |
N <- 150 | |
x <- runif(n=N, 0.1, 20) | |
mu <- b0 + b1 * x ^ a | |
shape <- mu ^ 2 / phi | |
rate <- mu / phi | |
y <- rgamma(n = length(x), shape = shape, rate = rate) | |
# Plot toy data | |
g <-list(x = x, y = y, mu = mu) %>% data.frame() %>% ggplot() | |
g <- g + geom_point(aes(x=x, y=y)) | |
g <- g + geom_line(aes(x=x, y=mu, color='mu')) | |
g <- g + ggtitle('Toy data: mu = 0.2 + 1.5 * x ^ 0.3') | |
g | |
ggsave('toy_data_exp.png', plot=g) | |
# ----------------------------------------------------------- | |
# Fit stan | |
# ----------------------------------------------------------- | |
# Fit | |
data <- list(N = N, x = x, y = y) | |
fit <- stan(file='example01.stan', | |
data=data, seed=1234, iter=2000) | |
# Diagnose sampling result | |
par <- c('a', 'b0', 'b1', 'phi') | |
result.summay <- summary(fit)$summary | |
result.summay[par, ] | |
stan_rhat(fit) | |
png("trace01.png", width = 1200, height = 1200, res = 150) | |
stan_trace(fit, par=par) | |
dev.off() | |
png("stan_plot01.png", width = 1200, height = 1200, res = 150) | |
stan_plot(fit, par=par, show_density=T) | |
dev.off() | |
# Predicted | |
is.pred <- str_detect(rownames(result.summay), 'y_new.') | |
data <- data.frame(result.summay[is.pred,]) | |
colnames(data) <- | |
c('mean', 'se_mean', 'sd', 'p2.5', 'p25', 'p50', | |
'p75', 'p97.5', 'n_eff', 'Rhat') | |
data$x <- x | |
data$y <- y | |
data$mu <- mu | |
g <- ggplot(data=data) | |
g <- g + geom_line(aes(x=x, y=mean, color='post_mean')) + | |
geom_line(aes(x=x, y=mu, color='mu')) + | |
geom_point(aes(x=x, y=y)) | |
g <- g + geom_ribbon(aes(x=x, ymin=p25,ymax=p75), fill="blue", alpha=0.2) + | |
geom_ribbon(aes(x=x, ymin=p2.5,ymax=p97.5), fill="blue", alpha=0.2) | |
g <- g + ggtitle('True and Predicted') + labs(y='y') | |
g | |
ggsave('pred_exp01.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment