Created
September 9, 2015 12:45
-
-
Save mfigurnov/4736f2f4a6e1676d074d to your computer and use it in GitHub Desktop.
CIFAR-10 Network in Network with fix for cuDNN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
net: "train_val.prototxt" | |
test_iter: 100 | |
test_interval: 500 | |
base_lr: 0.1 | |
momentum: 0.9 | |
weight_decay: 0.0001 | |
lr_policy: "step" | |
gamma: 0.1 | |
stepsize: 100000 | |
display: 100 | |
max_iter: 120000 | |
snapshot: 10000 | |
snapshot_prefix: "cifar10_nin" | |
solver_mode: GPU |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "CIFAR10_full" | |
layer { | |
name: "cifar" | |
type: "HDF5Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
hdf5_data_param { | |
source: "../cifar-train.txt" | |
batch_size: 128 | |
shuffle: false | |
} | |
} | |
layer { | |
name: "cifar" | |
type: "HDF5Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
hdf5_data_param { | |
source: "../cifar-test.txt" | |
batch_size: 100 | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "cccp1" | |
type: "Convolution" | |
bottom: "conv1" | |
top: "cccp1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 160 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp1" | |
type: "ReLU" | |
bottom: "cccp1" | |
top: "cccp1" | |
} | |
layer { | |
name: "cccp2" | |
type: "Convolution" | |
bottom: "cccp1" | |
top: "cccp2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp2" | |
type: "ReLU" | |
bottom: "cccp2" | |
top: "cccp2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "cccp2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
engine: CAFFE | |
} | |
} | |
layer { | |
name: "drop3" | |
type: "Dropout" | |
bottom: "pool1" | |
top: "pool1" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "cccp3" | |
type: "Convolution" | |
bottom: "conv2" | |
top: "cccp3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp3" | |
type: "ReLU" | |
bottom: "cccp3" | |
top: "cccp3" | |
} | |
layer { | |
name: "cccp4" | |
type: "Convolution" | |
bottom: "cccp3" | |
top: "cccp4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp4" | |
type: "ReLU" | |
bottom: "cccp4" | |
top: "cccp4" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "cccp4" | |
top: "pool2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "drop6" | |
type: "Dropout" | |
bottom: "pool2" | |
top: "pool2" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "cccp5" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "cccp5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp5" | |
type: "ReLU" | |
bottom: "cccp5" | |
top: "cccp5" | |
} | |
layer { | |
name: "cccp6" | |
type: "Convolution" | |
bottom: "cccp5" | |
top: "cccp6" | |
param { | |
lr_mult: 0.1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 0.1 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 10 | |
kernel_size: 1 | |
group: 1 | |
weight_filler { | |
type: "gaussian" | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "relu_cccp6" | |
type: "ReLU" | |
bottom: "cccp6" | |
top: "cccp6" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "cccp6" | |
top: "pool3" | |
pooling_param { | |
pool: AVE | |
kernel_size: 8 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "pool3" | |
bottom: "label" | |
top: "accuracy" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "pool3" | |
bottom: "label" | |
top: "loss" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Why does layer
pool2
use average pooling?