Skip to content

Instantly share code, notes, and snippets.

@mic159
Created October 22, 2017 11:04
Show Gist options
  • Save mic159/c80494c7be5034150e29d21b0388d5a6 to your computer and use it in GitHub Desktop.
Save mic159/c80494c7be5034150e29d21b0388d5a6 to your computer and use it in GitHub Desktop.
Broken attempt to get OV7670 working with ESP32
#include "sccb.h"
#include <driver/ledc.h>
#define PIN_XCLK 18 // Clock provided to camera
#define PIN_RESET 5 // Reset pin.
#define OV7670_ADDR (0x21)
#define OV7670_REG_PID (0x0A)
#define OV7670_REG_VER (0x0B)
#define OV7670_REG_MIDH (0x1c)
#define OV7670_REG_MIDL (0x1d)
void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
Serial.println("\n\nOV7670 TEST\nStarting...");
printf("Enable clock on pin %i\n", PIN_XCLK);
enable_clock();
printf("Start SCCB SDA: %i SCL: %i\n", SDA, SCL);
SCCB_Init(SDA, SCL);
pinMode(PIN_RESET, OUTPUT);
gpio_pulldown_en(GPIO_NUM_5);
digitalWrite(PIN_RESET, LOW);
delay(10);
gpio_pulldown_dis(GPIO_NUM_5);
digitalWrite(PIN_RESET, HIGH);
delay(100);
Serial.println("Scanning SCCB... ");
Serial.println(SCCB_Probe(), HEX);
delay(100);
Serial.println(SCCB_Probe(), HEX);
delay(100);
Serial.println(SCCB_Probe(), HEX);
}
void loop() {
// put your main code here, to run repeatedly:
printf(
"PID: %i VER %i\n",
SCCB_Read(OV7670_ADDR, OV7670_REG_PID),
SCCB_Read(OV7670_ADDR, OV7670_REG_VER)
);
delay(500);
}
int enable_clock() {
periph_module_enable(PERIPH_LEDC_MODULE);
ledc_timer_config_t timer_conf;
timer_conf.bit_num = (ledc_timer_bit_t)1;
timer_conf.freq_hz = 10000000; // 10MHz
timer_conf.speed_mode = LEDC_HIGH_SPEED_MODE;
timer_conf.timer_num = LEDC_TIMER_0;
esp_err_t err = ledc_timer_config(&timer_conf);
if (err != ESP_OK) {
Serial.print("ledc_timer_config failed, rc=");
Serial.println(err);
return err;
}
ledc_channel_config_t ch_conf;
ch_conf.channel = LEDC_CHANNEL_0;
ch_conf.timer_sel = LEDC_TIMER_0;
ch_conf.intr_type = LEDC_INTR_DISABLE;
ch_conf.duty = 1;
ch_conf.speed_mode = LEDC_HIGH_SPEED_MODE;
ch_conf.gpio_num = PIN_XCLK;
err = ledc_channel_config(&ch_conf);
if (err != ESP_OK) {
Serial.print("ledc_channel_config failed, rc=");
Serial.println(err);
return err;
}
Serial.println("Clock enabled");
}
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* SCCB (I2C like) driver.
*
*/
#include <stdbool.h>
#include <Arduino.h>
#include "sccb.h"
#include "twi.h"
#include <stdio.h>
#define SCCB_FREQ (100000) // We don't need fast I2C. 100KHz is fine here.
#define TIMEOUT (1000) /* Can't be sure when I2C routines return. Interrupts
while polling hardware may result in unknown delays. */
int SCCB_Init(int pin_sda, int pin_scl)
{
twi_init(pin_sda, pin_scl);
return 0;
}
uint8_t SCCB_Probe()
{
uint8_t reg = 0x00;
uint8_t slv_addr = 0x00;
for (uint8_t i=0; i<127; i++) {
if (twi_writeTo(i, &reg, 1, true) == 0) {
slv_addr = i;
break;
}
if (i!=126) {
delay(1); // Necessary for OV7725 camera (not for OV2640).
}
}
return slv_addr;
}
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg)
{
uint8_t data=0;
noInterrupts();
int rc = twi_writeTo(slv_addr, &reg, 1, true);
if (rc != 0) {
data = 0xff;
}
else {
rc = twi_readFrom(slv_addr, &data, 1, true);
if (rc != 0) {
data=0xFF;
}
}
interrupts();
if (rc != 0) {
printf("SCCB_Read [%02x] failed rc=%d\n", reg, rc);
}
return data;
}
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data)
{
uint8_t ret=0;
uint8_t buf[] = {reg, data};
noInterrupts();
if(twi_writeTo(slv_addr, buf, 2, true) != 0) {
ret=0xFF;
}
interrupts();
if (ret != 0) {
printf("SCCB_Write [%02x]=%02x failed\n", reg, data);
}
return ret;
}
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* SCCB (I2C like) driver.
*
*/
#ifndef __SCCB_H__
#define __SCCB_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
int SCCB_Init(int pin_sda, int pin_scl);
uint8_t SCCB_Probe();
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg);
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data);
#ifdef __cplusplus
}
#endif
#endif // __SCCB_H__
/*
si2c.c - Software I2C library for ESP31B
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the ESP31B core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <stdbool.h>
#include "twi.h"
#include "soc/gpio_reg.h"
#include <esp32-hal-gpio.h>
#include <stdio.h>
unsigned char twi_dcount = 18;
static unsigned char twi_sda, twi_scl;
static inline void SDA_LOW() {
//Enable SDA (becomes output and since GPO is 0 for the pin,
// it will pull the line low)
if (twi_sda < 32) {
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(twi_sda));
}
else {
REG_WRITE(GPIO_ENABLE1_W1TS_REG, BIT(twi_sda - 32));
}
}
static inline void SDA_HIGH() {
//Disable SDA (becomes input and since it has pullup it will go high)
if (twi_sda < 32) {
REG_WRITE(GPIO_ENABLE_W1TC_REG, BIT(twi_sda));
}
else {
REG_WRITE(GPIO_ENABLE1_W1TC_REG, BIT(twi_sda - 32));
}
}
static inline uint32_t SDA_READ() {
if (twi_sda < 32) {
return (REG_READ(GPIO_IN_REG) & BIT(twi_sda)) != 0;
}
else {
return (REG_READ(GPIO_IN1_REG) & BIT(twi_sda - 32)) != 0;
}
}
static void SCL_LOW() {
if (twi_scl < 32) {
REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(twi_scl));
}
else {
REG_WRITE(GPIO_ENABLE1_W1TS_REG, BIT(twi_scl - 32));
}
}
static void SCL_HIGH() {
if (twi_scl < 32) {
REG_WRITE(GPIO_ENABLE_W1TC_REG, BIT(twi_scl));
}
else {
REG_WRITE(GPIO_ENABLE1_W1TC_REG, BIT(twi_scl - 32));
}
}
static uint32_t SCL_READ() {
if (twi_scl < 32) {
return (REG_READ(GPIO_IN_REG) & BIT(twi_scl)) != 0;
}
else {
return (REG_READ(GPIO_IN1_REG) & BIT(twi_scl - 32)) != 0;
}
}
#ifndef FCPU80
#define FCPU80 80000000L
#endif
#if F_CPU == FCPU80
#define TWI_CLOCK_STRETCH 800
#else
#define TWI_CLOCK_STRETCH 1600
#endif
void twi_setClock(unsigned int freq){
#if F_CPU == FCPU80
if(freq <= 100000) twi_dcount = 19;//about 100KHz
else if(freq <= 200000) twi_dcount = 8;//about 200KHz
else if(freq <= 300000) twi_dcount = 3;//about 300KHz
else if(freq <= 400000) twi_dcount = 1;//about 400KHz
else twi_dcount = 1;//about 400KHz
#else
if(freq <= 100000) twi_dcount = 32;//about 100KHz
else if(freq <= 200000) twi_dcount = 14;//about 200KHz
else if(freq <= 300000) twi_dcount = 8;//about 300KHz
else if(freq <= 400000) twi_dcount = 5;//about 400KHz
else if(freq <= 500000) twi_dcount = 3;//about 500KHz
else if(freq <= 600000) twi_dcount = 2;//about 600KHz
else twi_dcount = 1;//about 700KHz
#endif
}
void twi_init(unsigned char sda, unsigned char scl){
twi_sda = sda;
twi_scl = scl;
pinMode(twi_sda, OUTPUT);
pinMode(twi_scl, OUTPUT);
digitalWrite(twi_sda, 0);
digitalWrite(twi_scl, 0);
pinMode(twi_sda, INPUT_PULLUP);
pinMode(twi_scl, INPUT_PULLUP);
twi_setClock(100000);
}
void twi_stop(void){
pinMode(twi_sda, INPUT);
pinMode(twi_scl, INPUT);
}
static void twi_delay(unsigned char v){
unsigned int i;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
unsigned int reg;
for(i=0;i<v;i++) reg = REG_READ(GPIO_IN_REG);
#pragma GCC diagnostic pop
}
static bool twi_write_start(void) {
SCL_HIGH();
SDA_HIGH();
if (SDA_READ() == 0) return false;
twi_delay(twi_dcount);
SDA_LOW();
twi_delay(twi_dcount);
return true;
}
static bool twi_write_stop(void){
unsigned int i = 0;
SCL_LOW();
SDA_LOW();
twi_delay(twi_dcount);
SCL_HIGH();
while (SCL_READ() == 0 && (i++) < TWI_CLOCK_STRETCH);// Clock stretching (up to 100us)
twi_delay(twi_dcount);
SDA_HIGH();
twi_delay(twi_dcount);
return true;
}
bool do_log = false;
static bool twi_write_bit(bool bit) {
unsigned int i = 0;
SCL_LOW();
if (bit) {SDA_HIGH(); if (do_log) {twi_delay(twi_dcount+1);}}
else {SDA_LOW(); if (do_log) {} }
twi_delay(twi_dcount+1);
SCL_HIGH();
while (SCL_READ() == 0 && (i++) < TWI_CLOCK_STRETCH);// Clock stretching (up to 100us)
twi_delay(twi_dcount);
return true;
}
static bool twi_read_bit(void) {
unsigned int i = 0;
SCL_LOW();
SDA_HIGH();
twi_delay(twi_dcount+2);
SCL_HIGH();
while (SCL_READ() == 0 && (i++) < TWI_CLOCK_STRETCH);// Clock stretching (up to 100us)
bool bit = SDA_READ();
twi_delay(twi_dcount);
return bit;
}
static bool twi_write_byte(unsigned char byte) {
if (byte == 0x43) {
// printf("TWB %02x ", (uint32_t) byte);
// do_log = true;
}
unsigned char bit;
for (bit = 0; bit < 8; bit++) {
twi_write_bit((byte & 0x80) != 0);
byte <<= 1;
}
if (do_log) {
printf("\n");
do_log = false;
}
return !twi_read_bit();//NACK/ACK
}
static unsigned char twi_read_byte(bool nack) {
unsigned char byte = 0;
unsigned char bit;
for (bit = 0; bit < 8; bit++) byte = (byte << 1) | twi_read_bit();
twi_write_bit(nack);
return byte;
}
unsigned char twi_writeTo(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop){
unsigned int i;
if(!twi_write_start()) return 4;//line busy
if(!twi_write_byte(((address << 1) | 0) & 0xFF)) {
if (sendStop) twi_write_stop();
return 2; //received NACK on transmit of address
}
for(i=0; i<len; i++) {
if(!twi_write_byte(buf[i])) {
if (sendStop) twi_write_stop();
return 3;//received NACK on transmit of data
}
}
if(sendStop) twi_write_stop();
i = 0;
while(SDA_READ() == 0 && (i++) < 10){
SCL_LOW();
twi_delay(twi_dcount);
SCL_HIGH();
twi_delay(twi_dcount);
}
return 0;
}
unsigned char twi_readFrom(unsigned char address, unsigned char* buf, unsigned int len, unsigned char sendStop){
unsigned int i;
if(!twi_write_start()) return 4;//line busy
if(!twi_write_byte(((address << 1) | 1) & 0xFF)) {
if (sendStop) twi_write_stop();
return 2;//received NACK on transmit of address
}
for(i=0; i<(len-1); i++) buf[i] = twi_read_byte(false);
buf[len-1] = twi_read_byte(true);
if(sendStop) twi_write_stop();
i = 0;
while(SDA_READ() == 0 && (i++) < 10){
SCL_LOW();
twi_delay(twi_dcount);
SCL_HIGH();
twi_delay(twi_dcount);
}
return 0;
}
/*
twi.h - Software I2C library for ESP31B
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the ESP31B core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SI2C_h
#define SI2C_h
#ifdef __cplusplus
extern "C" {
#endif
void twi_init(unsigned char sda, unsigned char scl);
void twi_stop(void);
void twi_setClock(unsigned int freq);
uint8_t twi_writeTo(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop);
uint8_t twi_readFrom(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop);
#ifdef __cplusplus
}
#endif
#endif
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment