Last active
January 19, 2016 06:22
-
-
Save micahwoods/79dd2b8f22bf7f4fc441 to your computer and use it in GitHub Desktop.
downloads temperature data for 4 cities in 2015 then calculates and makes plots of GP and GDD and permutations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# compare C3 growth potential (GP) and growing degree days (GDD) | |
# at a few locations, start with Sydney, Minneapolis, Tokyo, London | |
# these data and charts are shown at http://www.blog.asianturfgrass.com/2016/01/g.html | |
# load libraries | |
library("dplyr") | |
library("lubridate") | |
library("ggplot2") | |
library("cowplot") | |
library("RColorBrewer") | |
# functions for conversion F to C and for calculating GP | |
f2c <- function(x) { | |
tempC <- (x - 32) * (5/9) | |
return(tempC) | |
} | |
# function to calculate gp C3 | |
c3gp <- function(x) { | |
GP <- 2.71828 ^ (-0.5 * ((x - 20) / 5.5) ^ 2) | |
return(GP) | |
} | |
calcValues <- function(x) { | |
tempC <- f2c(x) | |
gp <- c3gp(tempC) | |
gdd0 <- ifelse(tempC <= 0, 0, tempC) | |
gdd10 <- ifelse(tempC <= 10, 0, tempC - 10) | |
gpSum <- cumsum(gp) | |
gddSum0 <- cumsum(gdd0) | |
gddSum10 <- cumsum(gdd10) | |
return(list(tempC = tempC, gp = gp, | |
gdd0 = gdd0, gdd10 = gdd10, | |
gpSum = gpSum, gddSum0 = gddSum0, gddSum10 = gddSum10)) | |
} | |
# get data for 2015, for simplicity get weather underground airport data for SYD, MSP, LHR, HND | |
syd <- read.csv("http://www.wunderground.com/history/airport/YSSY/2015/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2015&req_city=NA&req_state=NA&req_statename=NA%22&format=1", | |
header = TRUE) | |
msp <- read.csv("http://www.wunderground.com/history/airport/KMSP/2015/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2015&req_city=NA&req_state=NA&req_statename=NA%22&format=1", | |
header = TRUE) | |
lhr <- read.csv("http://www.wunderground.com/history/airport/EGLL/2015/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2015&req_city=NA&req_state=NA&req_statename=NA%22&format=1", | |
header = TRUE) | |
hnd <- read.csv("http://www.wunderground.com/history/airport/RJTT/2015/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2015&req_city=NA&req_state=NA&req_statename=NA%22&format=1", | |
header = TRUE) | |
syd$date <- ymd(as.character(syd$AEDT)) | |
msp$date <- ymd(as.character(msp$CST)) | |
lhr$date <- ymd(as.character(lhr$GMT)) | |
hnd$date <- ymd(as.character(hnd$JST)) | |
syd$city <- "Sydney" | |
msp$city <- "Minneapolis" | |
lhr$city <- "London" | |
hnd$city <- "Tokyo" | |
syd <- select(syd, date, Mean.TemperatureF, city) | |
msp <- select(msp, date, Mean.TemperatureF, city) | |
lhr <- select(lhr, date, Mean.TemperatureF, city) | |
hnd <- select(hnd, date, Mean.TemperatureF, city) | |
sydOut <- as.data.frame(calcValues(syd$Mean.TemperatureF)) | |
mspOut <- as.data.frame(calcValues(msp$Mean.TemperatureF)) | |
lhrOut <- as.data.frame(calcValues(lhr$Mean.TemperatureF)) | |
hndOut <- as.data.frame(calcValues(hnd$Mean.TemperatureF)) | |
syd <- cbind.data.frame(syd, sydOut) | |
msp <- cbind.data.frame(msp, mspOut) | |
lhr <- cbind.data.frame(lhr, lhrOut) | |
hnd <- cbind.data.frame(hnd, hndOut) | |
all <- rbind.data.frame(syd, msp, lhr, hnd) | |
# plot temperature | |
p <- ggplot(data = all, aes(x = date, y = tempC)) | |
t <- p + geom_point(aes(colour = city), alpha = 0.2) + | |
geom_smooth(se = FALSE, aes(colour = city), span = 0.25, | |
size = 0.6) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = "Mean daily temperature (°C)") | |
save_plot("temperature.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot GP | |
p <- ggplot(data = all, aes(x = date, y = gp)) | |
t <- p + geom_point(aes(colour = city), alpha = 0.2) + | |
geom_smooth(se = FALSE, aes(colour = city), span = 0.25, | |
size = 0.6) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = bquote("Temperature-based"~C[3]~"growth potential (GP)")) | |
save_plot("gp.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot GDD zero | |
p <- ggplot(data = all, aes(x = date, y = gdd0)) | |
t <- p + geom_point(aes(colour = city), alpha = 0.2) + | |
geom_smooth(se = FALSE, aes(colour = city), span = 0.25, | |
size = 0.6) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = bquote("Growing degree days ("*GDD[0]*")")) | |
save_plot("gdd0.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot GDD 10 | |
p <- ggplot(data = all, aes(x = date, y = gdd10)) | |
t <- p + geom_point(aes(colour = city), alpha = 0.2) + | |
geom_smooth(se = FALSE, aes(colour = city), span = 0.25, | |
size = 0.6) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = bquote("Growing degree days ("*GDD[10]*")")) | |
save_plot("gdd10.svg", t, | |
base_aspect_ratio = 1.3) | |
# look at just two cities to avoid too much overlap | |
twoCity <- filter(all, city == "London" | | |
city == "Minneapolis") | |
# plot Temp vs GP | |
p <- ggplot(data = twoCity, aes(x = tempC, y = gp)) | |
t <- p + geom_jitter(size = 1, | |
aes(colour = city), alpha = 0.3, height = 0.025, width = 0.5) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "Mean daily temperature (°C)", | |
y = bquote("Temperature-based"~C[3]~"growth potential (GP)")) | |
save_plot("tVsGp.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot temp vs GDD | |
p <- ggplot(data = twoCity, aes(x = tempC, y = gdd0)) | |
t <- p + geom_jitter(size = 1, aes(colour = city), alpha = 0.3) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "Mean daily temperature (°C)", | |
y = bquote("Growing degree days ("*GDD[0]*")")) | |
save_plot("tVsGdd0.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot cumSum of GP | |
p <- ggplot(data = all, aes(x = date, y = gpSum)) | |
t <- p + geom_step(aes(colour = city)) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = "Cumulative sum of GP") | |
save_plot("cumsumGP.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot cumSum of gdd0 | |
p <- ggplot(data = all, aes(x = date, y = gddSum0)) | |
t <- p + geom_step(aes(colour = city)) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = bquote("Cumulative sum of"~GDD[0])) | |
save_plot("cumsumGDD0.svg", t, | |
base_aspect_ratio = 1.3) | |
# plot cumSum of gdd10 | |
p <- ggplot(data = all, aes(x = date, y = gddSum10)) | |
t <- p + geom_step(aes(colour = city)) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "", | |
y = bquote("Cumulative sum of"~GDD[10])) | |
save_plot("cumsumGDD10.svg", t, | |
base_aspect_ratio = 1.3) | |
p <- ggplot(data = all, aes(x = gpSum, y = gddSum0)) | |
t <- p + geom_step(aes(colour = city)) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "Cumulative sum of GP", | |
y = bquote("Cumulative sum of"~GDD[0])) | |
save_plot("gpVsGDD0.svg", t, | |
base_aspect_ratio = 1.3) | |
p <- ggplot(data = all, aes(x = gpSum, y = gddSum10)) | |
t <- p + geom_step(aes(colour = city)) + | |
scale_color_brewer(palette = "Set1") + | |
background_grid(major = "xy") + | |
theme(legend.title=element_blank(), | |
legend.position="top", | |
plot.margin=unit(c(0,0.5,0,0), "cm")) + | |
labs(x = "Cumulative sum of GP", | |
y = bquote("Cumulative sum of"~GDD[10])) | |
save_plot("gpVsGDD10.svg", t, | |
base_aspect_ratio = 1.3) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment